研究生高等工程数学《数值分析》-05
东北大学09数值分析(研)答案

。 2 − n ,...,2,1 = k � 0 =
i≠ j
k
i
∑ �即
) 4 h(O + ) 2n f
2 n
x∂ 61 y∂ y∂x∂ y∂ x∂ 2 + n fh + n y = + ) nf n + n ( + nf n 2 + n2 ( f 2∂ f 2 ∂ 3 h3 f 2∂ f∂ f∂ 2 h
3 n 2
1+ k
i)
1= i j − i 1= j 1= i ∏ ( ∑ = i y ) x ( i l ∑ = ) x ( nL = ) x ( f = j −x n n n
x
�有性一唯的式项多值插由
i≠ j
j i 1= j j − i 1= j ∏ x− x∏ = = )x ( il jx − x j −x n n
x−
) k(
x 使若� T )4 / 3 ,3 / 2 ,2 / 1( =
)1(
x �得步一代迭
解
�有且而。3�n 取应�故
4
� 4 /1 − 2 /1 − � � � 0 6 0 3 / 1 − � = B 为阵矩代迭 . = 1 B, � 3 / 1 − i b o c a J 于由 5 � � � 2 /1 2 /1 − 0 �
2
解
。线曲合拟的 2 xb + a = y 如形求试 1 0 3 1�
i y
… … … … 密 … … … …
○
。步 2 5 代迭应即。 2 5� k 取�以所
1
4 2
2 1
82.15 ≈
ix
x − )1( x 6 21 / 32 )0 ( nl ÷ nl = 1 B nl ÷ 1 nl > k 5 6 / 3− 01 ) B − 1( ε
(完整版)数值分析第五版答案(全)(最新整理)

第一章 绪论1.设,的相对误差为,求的误差。
0x >x δln x 解:近似值的相对误差为*x *****r e x x e x x δ-===而的误差为ln x ()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设的相对误差为2%,求的相对误差。
x n x 解:设,则函数的条件数为()n f x x ='()||()p xf x C f x =又, 1'()n f x nx -= 1||n p x nx C n n-⋅∴==又((*))(*)r p r x n C x εε≈⋅ 且为2(*)r e x ((*))0.02n r x nε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:,, , ,*1 1.1021x =*20.031x =*3385.6x =*456.430x =*57 1.0.x =⨯解:是五位有效数字;*1 1.1021x =是二位有效数字;*20.031x =是四位有效数字;*3385.6x =是五位有效数字;*456.430x =是二位有效数字。
*57 1.0.x =⨯4.利用公式(2.3)求下列各近似值的误差限:(1) ,(2) ,(3) .***124x x x ++***123x x x **24/x x 其中均为第3题所给的数。
****1234,,,x x x x 解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x x εεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===A A (*)(*)3(*)r p r r V C R R εεε∴≈=A 又%1(*)1r V ε=故度量半径R 时允许的相对误差限为εr (V ∗)=13∗1%=13006.设,按递推公式 (n=1,2,…)028Y =1n n Y Y -=-计算到(5位有效数字),试问计算将有多大误差?100Y 27.982≈100Y解: 1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =-……10Y Y =-依次代入后,有1000100Y Y =-即,1000Y Y =-, 27.982≈100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯的误差限为。
研究生数值分析(5)

。
条件( 条件(4)表明曲线y=f(x)在[a ,b]内凹向不变。 表明曲线 = ( ) ]内凹向不变。
曲线y= ( ) 曲线 =f(x)在[a ,b]上只有下图四种情形。 ]上只有下图四种情形。
y
f '' ( x ) > 0 f ' ( x) > 0
y f '' ( x ) > 0
f ' ( x) < 0
牛顿(Newton) (Newton)迭代法 5 牛顿(Newton)迭代法 (1)牛顿迭代公式 )=0的一个近似根 设xk是非线性方程 f(x)=0的一个近似根,把 ( )=0的一个近似根, f(x)在xk处作一阶泰勒展开,即用前两项近似代替 ( ) 处作一阶泰勒展开,
f (x) = f (xk ) + f ' (xk )(x − xk )
则近似方程转化为 设
f ( x) ≠ 0
'
f ( xk ) + f ( xk )( x − xk ) = 0
'
,上式解为
x = xk −
f ( xk ) f ' ( xk )
)=0的新的近似根 于是方程 f(x)=0的新的近似根 k+1,可由牛顿 ( )=0的新的近似根x +1 迭代公式
f ( xk ) xk +1 = xk − ' f ( xk ) k = 0,1, 2,L
(2)牛顿迭代法收敛的充分条件 当
f ' ( x) ≠ 0 时,方程 x = x −
f ( x) f ' ( x)
与 f ( x) = 0
具有相同的根。因此, 具有相同的根。因此,牛顿迭代法是一种以
南京理工大学工程硕士高等工程数学题081数值分析部分

数值分析(计算方法)部分一. (8分)求一个次数不高于3的多项式)(x f ,使它满足:,3)1(,4)0(==f f0)1(,8)2(/==f f ,并求差商]3,1,1,3[--f 的值。
解:先用f(0)=4,f(1)=3,f(2)=8求N 2(x) 商差表:0 413-12 8 5 3∴ N 2(x)=4+(-1)(x-0)+3(x-0)(x-1)=4-4x+3x 2∵ f(x)次数≤3∴ 可设f(x)= N 2(x)+k(x-0)(x-1)(x-2)(k 为待定常数)f(x)=4-4x+3x 2+k(x 3-3x 2+2x) ∴ f ’(x)=6x-4+k(3x 2-6x+2)f ’(1)=6-4+k(3-6+2)=2-k=0 ∴ k=2∴ f(x)= 4-4x+3x 2+2(x 3-3x 2+2x)=2x 3-3x 2+4∴ (3)f ()23!f[3,1,1,3]23!3!ξ⨯--===二.(10分)用迭代法求解方程:02010223=-++x x x 的所有实数根(要求判断根的个数及范围,构造收敛的迭代格式,并且求出精确到510-的近似根)。
解:设f(x)=x 3+2x 2+10x-20∵ f ’(x)=3x 2+4x+10=2x 2+(x+2)2+6>0 (x (,)∀∈-∞+∞)∴ f(x)在(-∞,+∞)上单调递增 ∴ 方程最多有一个实根∵ f(1)=-7<0,f(2)=16>0∴ 方程有且仅有一个实根x *,并且x *∈(1,2) 选用Neuton 迭代法32k k k k k 1k k 2k k k f (x )x 2x 10x 20x x x f '(x )3x 4x 10+++-=-=-++ (k=0,1,2,……) 它在单根x *附近至少平方收敛计算,选取x 0=1.5x 1=1.373626,x 2=1.368815,x 3=1.368808 ∵ |x 3-x 2|=0.000007<10-5∴ 1.36881为精确到10-5的近似根1.用列主元素法解方程组: ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13814142210321321x x x 2.写出用Seidel Gauss-迭代法求解线性方程组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--13741133403312321x x x 的迭代格式,并讨论其收敛性。
《数值分析》所有参考答案

等价三角方程组
, ,
11.设计算机具有4位字长。分别用Gauss消去法和列主元Gauss消去法解下列方程组,并比较所得的结果。
解:Gauss消去法
回代
列主元Gauss消去
15.用列主元三角分解法求解方程组。其中
A= ,
解:
等价三角方程组
回代得
, , ,
16.已知 ,求 , , 。
解:
, ,
17.设 。证明
,(II)
,
当 时
当 时
迭代格式(II)对任意 均收敛
3) ,
构造迭代格式 (III)
,
当 时
当 时
迭代格式(III)对任意 均收敛
4)
取格式(III)
, , ,
4.用简单迭代格式求方程 的所有实根,精确至有3位有效数。
解:
当 时, ,
1 2
当 时
,
,
, ,
1)
迭代格式 ,
,
当 时, ,
任取 迭代格式收敛于
是中的一种向量范数。
解:
当 时存在 使得
,
,
所给 为 上的一个范数
18.设 。证明
(1) ;
(2) ;
(3) 。
解:(1)
(2)
(3)
19.设
A=
求 , , 及 , 。
解: ,
Newton迭代格式
,
20.设 为 上任意两种矩阵(算子)范数,证明存在常数
, 使得
对一切 均成立。
解:由向量范数的等价性知道存在正常数 使得
,
=0.187622
[23.015625 , 23.015625+0.187622]
研究生数值分析 讲义

第一章绪论上次课要点:§1 数值分析的几个基本问题一、用数学方法解决科学与工程问题的步骤二、研究对象三、研究内容四、研究数值计算方法的意义五、算法设计的基本思想六、算法应具备的特性§2 数值计算的误差一、误差的分类 1.截断误差 2.舍入误差二、误差的概念 1.绝对误差x x x E -=**)(2.相对误差xx E x E r )()(**=(其中0≠x )本次课继续。
三、数值运算的误差当自变量有误差时,一般地,其函数值也有误差。
误差——可能是截断误差——也可能是舍入误差1.一元函数的误差设*x 是准确值x 的近似值,则函数)(x f 的近似值为)(*x f 。
由于))(()()(**x x f x f x f -'=-ξ,ξ介于x 与*x 之间,所以)()()()(**x x f x f x f -'=-ξ从而)()())((**x f x f εξε'≈2. 多元函数的误差对于多元函数),,,(21n x x x f ,设自变量的近似值分别为**2*1,,,nx x x ,则),,,(),,,(),,,((21**2*1**2*1n nnx x x f x x x f x x x f E -=)(|)(|*),,,(*1),,,(1**2*1**2*1nx x x nx x x x e x f x e x f nn∂∂++∂∂≈于是误差限),,,((**2*1nx x x f ε∑=∂∂≈nk kx x x kx x f n1*),,()(|**2*1ε特别)()()(*2*1*2*1x x x x εεε+≈±)()()(*1*2*2*1*2*1x x x x x x εεε+≈2*2*1*2*2*1*2*1)()()/(xx x x x x x εεε+≈四、病态问题与条件数一个工程或科学计算问题:——往往需要巨量的机器运算——每次运算都可能产生误差——这些误差有正有负,绝对值有大有小误差积累的结果很难定量分析。
研究生课程《数值分析》第四章数值积分与数值微分
b
a
f
(x)dx
1 (b 6
a)
f
(a)
4
f
(a
2
b)
f
(b)
y=f(x)
梯形公式把 f(a), f(b) 的加权平均值
1 f (a) f (b)
2
aa ((aa++bb))//22 bb
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
中矩形公式把 [a,b] 的中点处函数值
f
ab 2
定义 (代数精度) 设求积公式(1)对于一切次 数小于等于 m 的多项式( f (x) 1, x, x2 , , xm 或 f (x) a0 a1x a2 x 2 am x m )是准确的,而对于 次数为 m+1 的多项式是不准确的,则称该求积公 式具有 m 次代数精度(简称代数精度)
作为平均高度 f( ) 的近似值而获得的一种数值积分方法。
Simpson公式是以函数 f(x)在 a, b, (a+b)/2 这三点的函数
值 f(a),
f(b),
f
a
2
b
的加权平均值
。
1 ( f (a) 4 f ( a b ) f (b))作为平均高度 f() 的近
6
2
似值而获得的一种数值积分方法。
将积分区间细分, 在每个小区间内用简单函数代替复 杂函数进行积分,这是数值积分的思想。本章主要讨论 用代数插值多项式代替 f(x) 进行积分。
5.1.1 数值积分的基本思想
积分 I b f (x)dx 在几何上可以理解为由 x=a, x=b, a
y=0 以及 y = f(x) 这四条边所围成的曲边梯形面积。如图 1 所 示,而这个面积之所以难于计算是因为它有一条曲边 y=f(x)。
数值分析第五章线性方程组-数值分析课件
即
(1) (1) (1) (1) a11 x1 a12 x 2 a1n x n b1 ( 2) ( 2) ( 2) a 22 x 2 a 2 n x n b2 (n) (n) a x b nn n n
3.2 解线性方程组的直接法(高斯消去法) 3.2.1 高斯消去法的基本思想 先用一个简单实例来说明Gauss法的基本思想 例3.1 解线性方程组
2 x1 x 2 3 x3 1 4 x1 2 x 2 5 x 3 4 x 2x 7 2 1
① ② ③
解: 该方程组的求解过程实际上是将一个方程乘或 除以某个常数,然后将两个方程相加减,逐步减少方 程中的未知数,最终使每个方程只含有一个未知数, 从而得出所求的解。整个过程分为消元和回代两个 部分。
( 3.3 )
解线性方程组(3.1)的高斯(Gauss)消去法的消元 过程就是对( 3.3 )的增广矩阵进行初等行变换。将例 3.1中解三阶线性方程组的消去法推广到一般的 n n 阶线性方程组并记 (1) aij aij , bi(1) bi (i, j 1,2,, n)
则高斯消去法的算法构造归纳为:
需要(n-1)2次乘法运算及(n-1)2次加减法运
算,
第k 步
1 2 3 … n-1 合计
加减法次 数 (n-1)2 (n-2)2 (n-3)2 … 1 n(n-1) (2n-1)/6
乘法次数
(n-1)2 (n-2)2 (n-3)2 … 1 n(n-1) (2n-1)/6
除法次数
(n-1) (n-2) (n-3) … 1 n(n-1)/2
(k ) 只要 akk 0 ,消元过程就可以进行下去,直到 经过n-1次消元之后,消元过程结束,得到与 原方程组等价的上三角形方程组,记为 A(n) x b 1) 11
研究生数值分析课件ch
数值分析是数学的一个重要分支,主要研究如何利用数值方法求解数学问题和近似计算 实际问题的数值解。它为科学研究、工程技术和实际应用等领域提供了重要的数学工具。 数值分析的重要性在于它能够将许多抽象的数学概念和理论转化为具体的数值计算方法,
使得我们能够更加方便地解决各种复杂的实际问题。
数值分析的应用领域
在金融领域,数值分析也被 广泛应用于风险评估、投资 组合优化、期权定价等方面 。通过数值分析的方法,我 们可以更加准确地评估投资 风险和收益,从而做出更加 明智的决策。
数值分析的发展历程
总结词
数值分析的发展历程可以追溯到上世纪初,随着计算 机技术的不断发展,数值分析的理论和方法也在不断 更新和完善。
05
数值积分与微分
牛顿-莱布尼兹公式与复化求积法
牛顿-莱布尼兹公式
该公式是微积分中的一个基本定理,用于计算定积分。 通过将积分区间分成若干小区间,并在每个小区间上应 用微积分基本定理,再利用定积分的线性性质进行求和 ,最后取极限得到定积分的值。
复化求积法
当被积函数是复杂函数或者积分区间是复杂形状时,直 接应用牛顿-莱布尼兹公式可能会遇到困难。此时,可以 采用复化求积法,即将积分区间分成若干个小区间,然 后在每个小区间上应用牛顿-莱布尼兹公式,最后将所有 的结果相加得到定积分的近似值。
改进欧拉法
为了提高欧拉方法的精度,可以对欧拉方法进行改进。一种常见的改进方法是使用二阶 欧拉方法,它考虑了更多的函数值,从而提高了逼近的精度。
龙格-库塔方法
龙格-库塔方法是一种高阶数值方法,用于求解常微分方程。它基于泰勒级数的思想,通过迭代的方式逐步逼近方程的精确解 。与欧拉方法相比,龙格-库塔方法具有更高的精度和更好的稳定性。
研究生数值分析
研究生数值分析目录1. 内容概要 (3)1.1 研究背景 (3)1.2 研究目的与意义 (4)1.3 研究内容与方法 (5)2. 数值分析基本概念 (6)2.1 数值分析的定义 (8)2.2 数值分析的研究对象 (9)2.3 数值分析的应用领域 (10)3. 数值逼近 (11)3.1 插值法 (12)3.1.1 插值问题的提出 (13)3.1.2 插值函数的性质 (14)3.1.3 常用插值方法 (15)3.2 近似计算 (16)3.2.1 近似计算的必要性 (18)3.2.2 近似误差分析 (19)3.2.3 常用近似方法 (20)4. 线性代数方程组 (22)4.1 线性代数方程组的基本理论 (23)4.2 高斯消元法 (24)4.3 迭代法 (25)4.3.1 迭代法的原理 (26)4.3.2 常用迭代法 (27)5. 微分方程数值解法 (28)5.1 常微分方程初值问题的数值解法 (29)5.1.1 欧拉法 (30)5.1.2 迭代法 (31)5.1.3 高斯赛德尔法 (32)5.2 偏微分方程数值解法 (33)5.2.1 有限差分法 (34)5.2.2 有限元法 (36)6. 最优化方法 (37)6.1 最优化问题的基本理论 (38)6.2 无约束最优化方法 (39)6.3 约束最优化方法 (40)6.3.1 拉格朗日乘子法 (40)6.3.2 内点法 (41)7. 数值计算软件介绍 (42)7.1 MATLAB软件介绍 (44)7.2 Python编程语言在数值分析中的应用 (45)7.3 其他数值计算软件简介 (46)8. 实例分析 (47)8.1 某工程问题的数值分析 (48)8.2 某科学问题的数值模拟 (49)9. 总结与展望 (50)9.1 研究成果总结 (52)9.2 存在的问题与不足 (53)9.3 未来研究方向 (54)1. 内容概要本课程《研究生数值分析》旨在为研究生提供深入的数值分析理论知识和实践技能。