设备喘振知识
离心机喘振的解决方法

离心机喘振的解决方法
离心机是工业中常用的设备之一,但在使用中会出现一些问题,其中之一就是喘振现象。
喘振会造成设备的振动、噪音、甚至损坏,因此需要采取措施进行解决。
喘振的原因:
1.离心机叶轮或转子的不平衡或变形等问题。
2.系统的不稳定性,例如管道系统的质量不好或者管道的设计不合理,会导致气流过程中的不稳定。
3.离心机进口与出口之间的压力差异,有时候管道系统可能会堵塞导致压差增大。
解决方法:
1.增加离心机的支撑或是减小转子质量,使叶轮达到平衡状态,避免因叶轮不平衡造成的喘振。
2.管道系统质量要好,设计要合理,必要时可以加装阀门、减小管道长度、增加管道直径等方式来减少气体流动过程中的摩擦因素。
3.设置进口和出口通道,加强进出口的管道,减少管道堵塞的可能,降
低压力差。
4.调整离心机的工作条件,如调整叶轮转速、减少进口流量等方式来避免喘振。
5.安装机器振动监测仪器,及时监测离心机的工作情况,发现问题及时处理。
总之,离心机喘振是一种不可避免的现象,但是采取措施可以有效地解决喘振问题,避免设备运转中的故障和损害。
压缩机喘振基础知识讲解

压缩机喘振基础知识
离心压缩机在运行过程中,当负荷降低到一定程 度时,气体的排出量会出现强烈振荡,同时机身 也会剧烈振动,并发出“哮喘”或吼叫声,这种 现象叫做压缩机的“喘振”。
压缩机喘振基础知识
喘振是离心压缩机的一种固有现象,具有较大的 危害性,是压缩机损坏的主要原因之一。如果能 有效避免发生喘振,离心压缩机的维修量非常小 ;而发生喘振往往造成设备叶轮、主轴、轴承、 导叶等重要部件损坏,有时甚至导致整个机组报 废。
(四)压缩机的开停车操作。在开车时,最好是先 升速后升压;在停车时,最好是先降压后降速。
压缩机喘振,在离心式压缩机运行接近喘振点时,最直 接最有效的方法就是打开防喘振控制阀,增加压 缩机流量,进行流量调节。而运用转速调节的方 法大都运用在工作点离喘振线还有一定距离时采 用。
压缩机喘振基础知识
压缩机喘振基础知识
因此,当压缩机工作点在稳定工作区,根据压缩 机出口压力,进行适当的转速调节,可以达到节 能的目的,影响喘振的因素较多,为保证离心式 压缩机高效、可靠地运行,必须设置相应的控制 系统,对喘振现象产生的先兆加以快速和准确的 预测与判断,从而加以控制,以避免喘振现象的 发生。
压缩机喘振基础知识
(二)压缩机入口流量。压缩机的入口流量测量 及显示时必须确保准确,这样压缩机工作点的显 示才会准确,否则会增加操作难度,且易发生误 操作,造成喘振。
压缩机喘振基础知识
(三)压缩机出口管网压力。压缩机出口管道中容 器或燃气管网压力应尽量保持平稳,压力突然过 高,易发生喘振;压力过低,影响外供瓦斯。
压缩机喘振基础知识
压缩机喘振基础知识
压缩机喘振基础知识
压缩机喘振基础知识
压缩机喘振基础知识
压缩机喘振现象和机理

压缩机喘振现象和机理稿子一:嗨,朋友们!今天咱们来聊聊压缩机喘振这个有趣的话题。
你们知道吗?压缩机喘振那可是个让人头疼的现象。
简单说,就好像压缩机在“大喘气”。
想象一下,它一会儿呼呼地使劲转,一会儿又好像没力气了,断断续续的。
为啥会这样呢?其实就像是人跑步,跑太快了,气接不上来。
压缩机也一样,当它的进气量和排气量不平衡的时候,就容易喘振。
比如说,进气量突然变少了,可压缩机还在拼命往外排,这就乱套啦。
还有哦,压缩机的工作曲线也很关键。
要是运行点跑到了曲线不稳定的区域,那就像走进了迷宫,容易迷失方向,喘振就来啦。
而且哦,系统的压力变化也能引起喘振。
如果后面的压力太高,压缩机就会被“憋得慌”,然后就开始喘啦。
怎么样,是不是觉得压缩机喘振有点调皮捣蛋?其实搞清楚了它的机理,咱们就能想办法对付它啦!稿子二:亲爱的小伙伴们,咱们来聊聊压缩机喘振这回事儿!压缩机喘振啊,就像是它在闹脾气似的。
你听那声音,“呼哧呼哧”的,一点都不平稳。
这到底是为啥呢?打个比方,好比我们吃饭,嘴巴张得太大,一下子咽不下去,就噎着了。
压缩机也是,进气太多或者排气不畅,它就“难受”啦,开始喘振。
有时候呢,是因为管道设计不合理。
就像路不好走,车就容易颠簸。
管道有问题,气体流动不顺畅,压缩机也会喘起来。
还有呀,操作不当也会惹祸。
要是把压缩机的转速调得不合适,或者阀门开开关关没弄好,它也会发脾气喘振的。
其实啊,压缩机喘振就像是个小怪兽,只要我们了解它的脾气,掌握它的机理,就能把它制服,让压缩机乖乖工作,不再捣乱!好啦,今天关于压缩机喘振就聊到这儿,下次咱们再接着说!。
离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。
判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。
压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。
当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。
二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。
如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。
图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。
(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。
(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。
风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的振动现象,通常表现为风机整体或部分结构的不稳定振动,会导致设备损坏甚至危及人身安全。
喘振的出现往往会给生产和运行带来严重的影响,因此对于喘振现象的原因和处理方法,我们有必要进行深入的了解和研究。
一、原因分析。
1. 气动力失稳。
风机在运行时,由于叶片的设计不合理或叶片表面的腐蚀、磨损等因素,会导致风机叶片受到气动力的不稳定作用,从而引起振动。
2. 结构失稳。
风机的结构设计不合理、材料疲劳、连接螺栓松动等因素都会导致风机结构的失稳,从而引起喘振现象。
3. 惯性失稳。
风机在运行过程中,由于叶轮的不平衡或转子的不对称等因素,会导致风机的惯性失稳,从而引起振动现象。
二、现象表现。
1. 频率跳变。
风机在运行中,频率突然发生跳变,表现为振动频率明显变化,这是喘振现象的典型表现。
2. 声音异常。
风机在喘振时,会发出异常的噪音,通常是低频、深沉的嗡嗡声,这是喘振现象的另一种表现形式。
3. 振动幅值增大。
喘振时,风机的振动幅值会明显增大,甚至超出正常范围,这是喘振现象的直观表现。
三、处理方法。
1. 优化设计。
针对风机叶片和结构的设计不合理问题,可以通过优化设计来解决。
采用流场仿真、结构分析等技术手段,对风机进行全面的设计优化,提高风机的稳定性和抗振能力。
2. 定期检测。
针对风机结构的材料疲劳、连接螺栓松动等问题,需要定期进行检测和维护。
通过振动监测系统、结构健康监测技术等手段,及时发现并处理风机结构的失稳问题。
3. 动平衡调整。
针对风机惯性失稳问题,可以通过动平衡调整来解决。
对风机叶轮、转子等部件进行动平衡校正,提高风机的运行平稳性。
4. 加强管理。
在风机运行过程中,加强对风机的管理和维护,做好日常巡检和保养工作,及时发现并处理风机的异常现象,防止喘振现象的发生。
综上所述,风机喘振是一种常见的振动现象,其产生的原因复杂多样,需要我们对风机的设计、运行和维护进行全面的考虑和处理。
大型透平式压缩机防喘振控制及应用

大型透平式压缩机防喘振控制及应用大型透平式压缩机是工业生产中常见的设备,其运行过程中可能会出现喘振现象,严重时甚至会对设备造成损坏。
对大型透平式压缩机进行喘振控制至关重要。
本文将从大型透平式压缩机的喘振原因、喘振控制方法和应用实例等方面进行探讨。
一、大型透平式压缩机的喘振原因1. 受力不平衡:透平式压缩机在运行过程中,由于零部件的磨损或装配不良等原因,会导致叶片、轴承等部件受到不平衡的力,从而引起喘振。
2. 流体动态影响:透平式压缩机在高速旋转时,叶片与流体之间的相互作用会导致流体的波动和压力的变化,若流体动态影响不稳定则容易引起喘振。
3. 控制系统不良:大型透平式压缩机的控制系统,包括调速装置、润滑系统等,如果调控不当或存在故障,也会导致喘振的发生。
1. 结构设计优化:在透平式压缩机的设计阶段,可以通过优化结构设计来降低叶轮、轴承等部件的受力不平衡,减少喘振的发生概率。
2. 流体动态分析:通过数值模拟或实验手段,对透平式压缩机叶片与流体的相互作用进行研究,找出流体动态影响不稳定的原因,并采取相应措施来稳定流场,减少喘振的可能性。
3. 控制系统优化:对于透平式压缩机的调速装置、润滑系统等控制系统,进行优化设计和严格的质量控制,确保其正常运行,避免因控制系统问题引起的喘振。
4. 振动监测与诊断:对大型透平式压缩机进行振动监测,并建立相应的诊断系统,及时发现喘振现象并采取措施进行控制。
以某大型化工装置中采用的透平式压缩机为例,通过对其喘振问题的控制,取得了良好的应用效果。
该透平式压缩机采用了先进的结构设计和流体动态分析技术,通过优化叶轮结构和流道形状等手段,降低了受力不平衡和流体动态影响,极大地减少了喘振的发生概率。
控制系统方面,采用了先进的调速装置和智能化的润滑系统,保证了设备在高速旋转时的平稳运行,有效地避免了因控制系统不良引起的喘振。
该透平式压缩机还配备了振动监测与诊断系统,对设备的振动进行实时监测,一旦发现异常振动就可以及时采取措施进行处置,避免喘振对设备造成损害。
喘振的产生与预防
喘振是透平式压缩机(也叫叶片式压缩机)在流量减少到一定程度时所发生的一种非正常工况下的振动。
离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害。
离心式压缩机发生喘振时,典型现象有:1)压缩机制出口压力量初先升高,继而急剧下降,并呈周期性大幅波动;2)压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;3)拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;4)机器产生强烈的振动,同时发出异常的气流噪声。
机理性研究结果表明,喘振产生的内部原因与叶道内气体的脱离密切相关。
当气体流量减少到一定程度时,压缩机内部气流的流动方向与叶片的安装方向发生严重偏离,使进口气流角与叶片进口安装角产生较大的正冲角,从而造成叶道内叶片凸面气流的严重脱离。
此外,对于离心式压缩机的叶轮而言,由于轴向涡流等的存在和影响,更极易造成叶道里的速度不均匀,上述气流脱离现象进一步加剧。
气流脱离现象严重时,叶道中气体滞流,压力突然下降,引起叶道后面的高压气流倒灌,以弥补流量的不足和缓解气流脱离现象,并可使之暂恢复正常。
但是,当将倒灌进来的气体压出时,由于级中流量缺少补给,随后再次重复上述现象。
这样,气流脱离和气流倒灌现象周而复始地进行,使压缩机产生一种低频高振幅的压力脉动,机器也强烈振动,并发出强烈的噪声,这就是喘振的内部原因。
从压缩机性能曲线的角度来看,压缩机的发生喘振时,其工作点肯定进入了喘振区,因此严重的压缩机喘振还与管网有着密切关系。
或者说,一切能够使压缩机与管网联合工作点进入喘振区的外部原因均会造成喘振。
在压缩机的实际运行中,以下因素都会导致喘振发生:1)空分系统的切换故障。
进主换热器或分子筛吸附器的阀门不能及时打开,造成空压机排出压力超高,导致管网特性曲线急剧变陡,压缩机与管网联合工作点迅速移动,进入喘振区导致喘振;2)压缩机流道堵塞。
由于冷却器泄露或尘埃结垢,使得流道粗糙,并且局部截面变小;3)压缩机进气阻力大,例如过滤器堵塞或叶轮进口堵塞;4)电网质量不好,电网周波下降或电压过低,使电机失速,造成压缩机流量降至喘振区;5)压缩机启动操作升压过程中,操作不当,升压速度快,进口导叶开度小;6)电气故障或连锁停机时放空阀或防喘振阀没有及时打开。
工艺空气压缩机的喘振及预防模版
工艺空气压缩机的喘振及预防模版工艺空气压缩机是工业生产中常用的设备之一,它将空气进行压缩储存,并提供给生产设备使用。
然而,在使用工艺空气压缩机的过程中,一些常见的问题会出现,其中之一就是喘振。
喘振会导致设备的损坏和生产效率的降低,因此,对喘振进行有效的预防非常重要。
喘振是指在空气压缩机工作时,由于压气机或压缩机本身的结构问题,导致压力波动频繁,进而引起设备的振动和噪音。
喘振对设备的损害包括轴承、齿轮、密封件等部件的过早磨损和损坏,同时也会给生产线上的其他设备带来不利影响,甚至可能导致生产过程的中断。
为了有效预防喘振,以下是一些常见的方法和模版可以参考:1. 选用合适的空气压缩机:- 对于不同的工艺需求,选择合适类型和规格的空气压缩机,确保其工作范围和性能能够满足生产需求。
- 选择压缩机时,要考虑其结构稳定性、动平衡性和可靠性等因素,避免选用容易产生喘振的产品。
2. 合理安装和布置空气压缩机:- 安装空气压缩机时,要遵循操作说明书中的要求,确保压力管道和排气管道的正确安装和连接。
- 确保设备的基础牢固,避免因地基不稳造成的振动和共振问题。
- 空气压缩机的布置要合理,避免与其他设备过于靠近,避免共振和互相干扰。
3. 定期维护和保养:- 对于空气压缩机,定期检查和维护是非常重要的。
包括检查和清理压缩机的进、排气通道、滤清器和冷却系统等部件,确保其畅通和高效工作。
- 定期更换磨损的密封件、轴承和齿轮等零部件,预防其被过度磨损引起的喘振问题。
4. 注重运行监测和调整:- 在压气机运行过程中,定期对其进行监测和调整。
通过安装振动传感器、压力传感器等监测设备,及时获取设备运行状态的数据,以便及时发现并处理异常。
- 出现喘振的情况时,及时调整设备运行参数和控制策略,降低喘振的影响。
5. 配置合适的降噪设备:- 在空气压缩机周围配置合适的降噪设备,如吸音棉、隔音罩等,减少噪音对设备和工作环境的干扰。
- 同时,考虑在压缩机的冷却系统中增加隔音材料,减少冷却风扇产生的噪音和振动。
喘振阀工作原理
喘振阀工作原理
1.喘振阀是一种调节阀门,在管道系统中主要用于调节流量,当管道中的流量不能满足设备运行要求时,它能自动地开启或关闭,以保持管道内气体流动的平稳,使设备安全运行。
2.喘振是一种紧急情况,当管道中流量突然减少到某一限度以下时,就会发生管道过流部件的强烈振动,导致设备损坏甚至发生事故。
因此,在管路系统中设置喘振阀是十分必要的。
3.喘振的产生主要有三种原因:
(1)当输送介质温度升高时,介质的热胀冷缩程度超过了管道材料的允许伸缩变形量。
(2)输送介质中含有固体颗粒、粘度过大或过小的固体杂质。
(3)输送介质中有较高的压力差。
在这三种原因中,前两种情况是主要原因,后一种情况主要是次要原因。
对于前两种情况来说,可根据实际情况采用适当的保护措施,如安装消音器、过滤器等;对于后一种情况来说,则应选择性能好、安装方便且经济合理的喘振阀。
—— 1 —1 —。
压缩机喘振与调节方法
压缩机喘振与调节方法压缩机的喘振是指压缩机在运行过程中出现的振动和噪音现象,通常产生的原因有两个方面:机械方面和气动方面。
喘振会严重影响压缩机的正常运行,甚至导致设备故障和损坏。
因此,对于压缩机的喘振问题,需要采取一些调节方法来减少和消除。
一、机械方面1.检查压缩机的支撑结构和基础,确保其稳定性。
如果支撑结构不牢固或基础不稳定,容易引发振动和噪音,导致喘振问题。
2.检查压缩机的叶轮、轴承和其他转动部件的装配情况和磨损程度。
如果叶轮装配不当或者轴承磨损严重,都会导致不平衡振动和喘振现象。
需要及时更换磨损严重的部件,并确保装配的正确性。
3.清洗和维护压缩机的冷却系统,确保冷却效果良好。
如果冷却系统存在堵塞或冷却水流量不足,会导致压缩机过热,引发振动和喘振。
4.对于柱塞式压缩机,要定期检查气缸套的磨损情况,及时更换磨损严重的气缸套,并确保柱塞的正确配合度。
柱塞不良配合度会引发气缸内部的振动和噪音。
二、气动方面1.检查压缩机的进气阀和排气阀的工作情况。
如果阀门存在卡滞或密封不良,会导致气体回流和压力不稳定,引发喘振现象。
需要及时清洗和维护阀门,确保其正常工作。
2.对于容积式压缩机,要调节气缸的容积比。
容积比过大或过小都会引发振动和噪音,需要根据实际情况进行调整。
3.检查压缩机的冷却器的工作情况,确保冷却器散热良好。
如果散热不良,会导致压缩机过热,引发振动和喘振。
4.检查压缩机的管道系统,确保管道的密封性和稳定性。
如果管道存在泄漏或支撑不稳定,会导致气体流动不畅,引发喘振。
在调节压缩机喘振时,应先排除机械方面的问题,检查和维护压缩机的各个部件。
如果机械方面的问题已经解决,但喘振问题仍然存在,则需要进一步检查和调节气动方面的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 引言
压缩机运行中一个特殊现象就是喘振。
防止喘振是压缩机运行中极其重要的问题。
许多事实证明,压缩机大量事故都与喘振有关。
喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。
喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。
喘振在运行中是必须时刻提防的问题。
在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。
判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。
1 喘振发生的条件
根据喘振原理可知,喘振在下述条件下发生:
1.1 在流量小时,流量降到该转速下的喘振流量时发生
压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。
当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。
上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。
在一定转速下使流量大于喘振流量就不会发生喘振。
1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振
如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。
2 在运行中造成喘振的原因
在运行中可能造成喘振的各种原因有:
2.1 系统压力超高
造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。
2.2 吸入流量不足
由于外界原因使吸入量减少到喘振流量以下,而转速,使压缩机进入喘振区引起喘振。
如下图1。
这种情况的原因有:压缩机入口滤器阻塞,阻力太大,而压缩机转速未能调节造成喘振;滤芯太脏,或冬天结冰都可能发生这种情况;入口气源减少或切断,如压缩机供气不足,压缩机没有补充气源等等。
所有这些情况如不及时发现及时调节。
压缩机都可能发生喘振。
2.3 机械部件损坏脱落
机械密封,平衡盘密封,O型环等部件安装不全,安装位置不准或者脱落,会形成各级之间,各段之间串气,可能引起喘振;过滤器阻力太大,逆止阀失效或破损也都可以引起喘振。
2.4 操作中,升速升压过快,降速之前未能首先降压
升速、升压要缓慢均匀,降速之前应先采取卸压措施:如放空,回流等;以免转速降低后,气流倒灌。
2.5 工况改变,运行点落入喘振区
工况变化,如改变转速,流量,压力之前,未查看特性曲线,使压缩机运行点落入喘振区。
2.6 正常运行时,防喘振系统未投自动
当外界因素变化时,如蒸汽压力下降或气量波动;汽轮机转速下降而防喘振系统来不及手动调节;或来气中断等;由于未用自动防喘振装置可能造成喘振。
2.7 介质状态变化造成喘振
喘振发生的可能与气体介质状态有很大关系。
因为气体的状态影响流量,从而也影响喘振流量,当然影响喘振。
如进气温度,进气压力,气体成分即分子量等对喘振都有影响。
当转速不变,出口压力不变时,气体入口稳度增加容易发生喘振;当转速一定,进气压力越高则喘振流量值也越大;当进气压力一定,转速不变,气体分子量减少很多时,容易发生喘振。
3 防止与消除喘振的方法
3.1 防止与消除喘振的根本措施是设法增加压缩机的入口气体流量
对一般无毒,不危险气体如空气,CO2等可采用放空;对合成气,天然气,氨等气体可采取回循环。
采用上述方法后可使流经压缩机的气体流量增加,消除喘振;但压力随之降低,浪费功率,经济性下降。
如果系统需要维持等压的话,放空或回流之后应提升转速,使排出压力达到原有水平。
在升压前和降速,停机之前,应当将放空阀或回流阀预先打开,以降低背压,增加流量,防止喘振。
3.2 根据压缩机性能曲线,控制防喘裕度
防喘系统在正常运行时应投入自动。
升速,升压之前一定要事先查好性能曲线,选好下一步的运行工况点,根据防喘振安全裕度来控制升压,升速。
防喘振安全裕度就是在一定工作转速下,正常工作流量与该转速下喘振流量之比值,一般正常工作流量应比喘振流量大1.05~1.3倍,即:
裕度太大,虽不易喘振,但压力下降很多,浪费很大,经济性下降。
在实际运行中,最好将防喘阀门的整定值,根据防喘裕度来整定。
太大则不太经济,太小又不安全。
防喘系统根据安全裕度下整定好以后,在正常运行时防喘阀门应当关闭,并投入自动,这样既安全又经济。
有的单位防喘振装置不投自动,而用手动,恐怕发生喘振而不敢关严防喘阀门,正常运行时有大量气体回流或放空,这既不经济又不安全;因为发生喘振时用手动操作是来不及的,结果不能防止喘振。
3.3 在升压和变速时,强调“升压必先升速,降速必先降压”的原则
压缩机升压应当在汽轮机调速器投入工作后进行;升压之前查好性能曲线,确定应该到达的转速,升到该转速后再提升压力;压缩机降速应当在防喘阀门安排妥当后再开始;升速,升压不能过猛过快;降速降压也应当缓慢,均匀。
3.4 防喘阀门开启和关闭必须缓慢,交替
防喘阀门操作不要太猛,避免轴位移过大,轴向推力和振动加剧,油密封系统失调。
如压缩机组有两个以上的防喘阀门的话,在开或关时应当交替进行,以使各个缸的压力均匀变化,这对各缸受力,防喘和密封系统协调都有好处。
3.5 采用“等压比”升压法和“安全压比”升压法
为了安全起见,在升压时可以采用“等压比”升压法,这在前面已经介绍,这种方法有助于防止喘振。
“安全压比”升压法对升压时防止喘振是有效的。
它的基本原理是根据压缩机各缸的性能曲线,在一定转速下有一个喘振流量值,它与转速曲线的交点便对应一个“喘振压比”(或排出压力)。
在此转速下,升压比(或排出压力)达到此数值便发生喘振。
因此控制压比也就是控制一定转速下的流量。
如果根据防喘裕度,计算出不同转速下的正常流量,也就是安全流量,再查出对应的压比(或排出压力),在升压时根据转速,使压缩机出口压力值不超过安全压比计算出的出口压力,就不会发生喘振了。
可以将不同转速下正常流量,排出压力绘成图表和曲线。
在升速升压时,根据转速查出安全的出口压力,升压不超过此压力便不会喘振。
它们的关系如下图2所示。
图2中QC为该转速下的喘振流量;εc对应的喘振流量的喘振压比(或排出压力);QN考虑安全裕度后的正常流量即安全流量;εa对应安全流量的安全压比。
升压比ε与出口压力的关系为:
例:某厂合成气压缩机的“安全压比”计算数据如下表1。
本机共有三个缸,选定五个转速即80%,85%,90%,95%,100%额度转速。
根据这些转速在性能曲线上查出喘振流量和对应的喘振压比,取防喘振裕度为1.43,正常流量为防喘振流量的1.43倍,这相当安全。
再根据正常流量查对应的安全压比,从而算出相应的安全出口压力,再绘出曲线,见下图3。
在升速,升压时各转速下,控制出口压力不超过对应的安全出口压力,压缩机就不会喘振。
注:1.第一段,入口压力0.25MPa。
入口温度小于38℃,分子量8.7;
2.第二段,入口压力取第一段压力降0.15MPa入口温度8℃;
3.第三段,循环气入口温度43℃,分子量10.94;
4.表中压力为绝对压力。
一般出口降取0.15MPa。
各压缩机都可以根据这个原理算出并绘出安全压比曲线,供升压时使用以防发生喘振。