第10章 无刷直流电动机1

合集下载

无刷直流电动机精选全文完整版

无刷直流电动机精选全文完整版

10.2.2 转子磁场相对于定子绕组位置的检测是无刷直流电动
机运行的关键,对这一位置检测的直接方法就是采用位置 传感器,将转子磁极的位置信号转换成电信号。 正余弦旋转变压器或者编码器也可用作位置传感器,但成 本较高,仅用在精密控制场合。此外,还有利用容易检测 的电量信号来间接判断转子磁极位ห้องสมุดไป่ตู้的方案,其中最具代 表性的是电动机定子绕组的反电动势过零检测法或者称为 端电压比较法(详见10.6节)
本节将简单介绍电磁式、光电式和霍尔元件式等三种 常用位置传感器的结构和原理。
1.电磁式位置传感器 电磁式位置传感器是利用电磁感应原理来工作的,由 定子和转子两部分组成,其结构如图10-5所示。
图10-5 电磁式位置传感器结构 (a)传感器A-A′剖面图;(b)传感器端面图
在图10-5中,定子上有铁心和线圈,铁心的中间为圆 柱体,安放励磁绕组Wj,绕组外施高频(一般为几千赫兹到 几十千赫兹)电源励磁;铁心沿定子圆周有轴向凸出的极, 极上套有信号线圈Wa、Wb和Wc,以感应信号电压。导磁扇 形片放置在不导磁的铝合金圆形基盘上制成转子,固定在电 动机的转轴上,扇形片数等于电机极对数。由于励磁电源的 频率高达几千赫兹以上,因此定子铁心及转子导磁扇形片均 由高频导磁材料(如软磁铁氧体)制成。可以看出,这实际 上是有着共同励磁线圈的几个开口变压器。当扇形导磁片随 着电动机转子同步旋转时,其与传感器定子圆周凸极的相对 位置发生变化,使开口变压器磁路的磁阻变化,信号线圈匝 链的磁通大小变化,可感应出不同幅值的电动势,依此判断 转子的位置。
光电式位置传感器是利用光电效应而工作的,由固定在 定子上的数个光电耦合开关和固定在转子轴上的遮光盘所组 成,如图10-6所示。遮光盘上开有透光槽(孔),其数目等 于电动机转子磁极的极对数,且有一定的跨度。光电耦合开 关沿圆周均匀分布,每只均由轴向相对的红外发光二极管和

无刷直流电机原理(个人整理版)PPT课件

无刷直流电机原理(个人整理版)PPT课件

3.5反电动势
3.工作原理 BLDC 电机转动时,每个绕组都会产生叫做反电动势的电压,根据 楞次定律,其方向与提供给绕组的主电压相反。这一反电动势的极性与励 磁电压相反。反电动势主要取决于三个因素:
转子角速度
转子磁体产生的磁场
定子绕组的匝数
电机设计完毕后,转子磁场和定子绕组的匝数都是固定的。唯一决 定反电动势的因素就是角速度,或者说转子转速,随着转子转速的提高, 反电动势也随之增加。反电动势常数可用于估计给定转速下的反电动势。
定、转子磁芯均由高频导磁材 料(如软磁铁氧体)制成。
定子有6个级,间隔的三个极 为同一绕组,接高频电源,作为 励磁极,其他为感应极,作为输 出端。
电机运行时,输入绕组中通以 高频激磁电流,当转子扇形磁芯 处在输出绕组下面时,输入和输 出绕组通过定、转子磁芯耦合, 输出绕组中则感应出高频信号, 经滤波整形和逻辑处理后,即可 控制逆变器开关管。
1. 线性型 2. 开关型 3. 锁存型
2.5.4旋转变压器
2.结构构成 旋转变压器的输出电压与转子转角呈一定的函数关系,它又是一种精密测位用的 机电元件,在伺服系统、数据传输系统和随动系统中也得到了广泛的应用。 这种变压器的原、副边绕组分别装在定、转子上。原、副边绕组之间的电磁耦合 程度由转子的转角决定,意味着:转子绕组的输出电压大小及相位必然与转子的转 角有关。
我们把这种利用电子电路来实现电枢绕组内电流变化的物理过程称为电子换向 (相)或“换流”。每“换流”一次,定子磁状态就改变一次,连续不断地“换流”, 就会在工作气息内产生一个跳跃式的旋转磁场。
1.3无刷直流电机与有刷直流电机比较
1.特点应用
特性
无刷直流电机
换向器 寿命
基于霍尔传感器的电子换向 较长

无刷直流电机运行原理与基本控制方法课件

无刷直流电机运行原理与基本控制方法课件

t
T4 T4 T6 T6 T2 T2 T4
0 60 120 180 240 300 360 420
HALL状态 101 100 110 010 011 001
导通功率管 T4 T4
T6
T6
T2
T2
33
无刷直流电机的制动控制
T1
T3
T5
T1
T3
T5
D1
20
无刷直流电机的电路模型
Halla
ea
t
Hallb
eb
t
Hallc
ec
t
101 100 110 010 011 001 101
PWM a
t
ia
t
PWM b
t
ib
t
PWM c
t
T1T6 T1T2 T3T2 T3T4 T5T4 T5T6 T1T6
ic
t
T1T6 T1T2 T3T2 T3T4 T5T4 T5T6 T1T6
30% 18.5% 33.8% 42.4%
30%
37.5 %
15.4 %
42.4 %
无刷直流电机的换流模式
(1)采用pwm-on方式时,下桥换相和上桥换相的换相转矩脉动相等,且最小;非换 向相电流脉动也是最小的; (2)采用on-pwm方式时,下桥和上桥换相转矩脉动相等且比pwm-on方式大,非换向 相电流脉动也比pwm-on方式时大。 (3)采用H_pwm-L_on方式时,下桥换相转矩脉动和非换向相电流脉动大且与on-pwm 方式时的转矩脉动和电流脉动相等,上桥换相转矩脉动和非换向相电流脉动小且与 pwm-on方式时的转矩脉动和电流脉动相等。 (4)采用H_on-L_pwm方式时,下桥换相转矩脉动和非换向相电流脉动小且与pwm-on 方式时的转矩脉动和电流脉动相等,上桥换相转矩脉动和非换向相电流脉动大且与 on-pwm方式时的转矩脉动和电流脉动相等。 (5)采用H_pwm-L_pwm方式时,换相转矩脉动最大且非换向相电流脉动也最大。

无刷直流电动机的工作原理

无刷直流电动机的工作原理

无刷直流电动机的工作原理无刷直流电动机是一种采用电子换向技术的直流电动机,其工作原理与传统的有刷直流电动机有很大的区别。

无刷直流电动机通过电子器件来实现换向,无需使用传统的机械换向器,因此具有结构简单、可靠性高、效率高等优点。

无刷直流电动机的工作原理主要涉及电磁感应、霍尔效应和电子换向等基本原理。

首先,无刷直流电动机中的转子由一组永磁体构成,它们产生的磁场与定子绕组中的电流相互作用,产生电磁力矩,驱动电机转动。

定子绕组中的电流由电源供应,可以通过调节电流的大小和方向来控制电动机的运动。

在无刷直流电动机中,换向是通过霍尔效应来实现的。

霍尔效应是指在磁场中通过一种特殊的半导体材料——霍尔元件,可以产生电压信号。

无刷直流电动机中的霍尔元件被安装在定子上,当转子旋转时,永磁体的磁场通过定子上的霍尔元件,产生电压信号。

根据电压信号的变化,控制器可以判断转子的位置,从而确定电机的转向和转速。

在无刷直流电动机中,电子换向器是实现电子换向的关键部件。

电子换向器是由一组功率晶体管和控制电路组成的,它可以根据霍尔元件输出的电压信号,控制功率晶体管的导通和截断,从而使定子绕组中的电流按照特定的顺序流过,实现电机的换向。

电子换向器的工作原理是将直流电源的电能转换成交流电能,以驱动电动机转动。

无刷直流电动机的工作原理可以通过以下简单的步骤来描述。

首先,当电机通电时,电源提供电流给定子绕组,产生磁场。

其次,转子中的永磁体受到定子磁场的作用,开始转动。

在转动过程中,霍尔元件不断感应转子的位置,将信号传递给电子换向器。

电子换向器根据霍尔元件的信号,控制定子绕组中的电流方向,使转子持续转动。

最后,通过不断重复以上步骤,无刷直流电动机可以实现稳定的转速和转向。

无刷直流电动机的工作原理使其具有许多优点。

首先,由于没有机械换向器,无刷直流电动机的结构更加简单,减少了故障和维护成本。

其次,无刷直流电动机的效率较高,能量转换更加充分,可以提高电机的工作效率。

无刷直流电机结构、类型和基本原理

无刷直流电机结构、类型和基本原理

无刷直流电机结构、类型和基本原理2009年10月14日无刷直流电动机一、概述直流电动机的主要优点是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。

但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严重地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。

缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。

随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。

本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。

又具有交流电动机结构简单、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。

元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。

无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。

二、无刷直流电动机的基本结构和类型(一)基本结构无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。

其基本结构如图5一20所示。

电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。

的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成的一对磁极。

转子位置传感器也由定子、转子两部分组成。

定子安装在主电动机壳内,转子和主转子同轴旋转。

它的作用是把主转子的位置检测出来.变成电信号去控制电子开关电路,故也称转子位置检测器。

电子开关电路中的功率开关元件分别与主定子上各相绕组相连接.通过位置传感器输出的信号,控制三极管的导通和截止.从而使主定子上各相绕组中的电流也随着转子位置的改变,按一定的顺序进行切换,实现无接触式的换向。

《无刷直流电机》课件

《无刷直流电机》课件
维护与成本
无刷直流电机结构简单,维护成本较低,而交流电机结构复杂,维护 成本较高。
与永磁同步电机的比较
磁场结构
无刷直流电机采用电子换向,没有永磁同步电机的永磁体,因此 磁场结构不同。
调速性能
永磁同步电机具有较高的效率和转矩密度,但调速范围较窄;而无 刷直流电机调速范围广,适用于多种应用场景。
成本与维护
可靠性
总结词
无刷直流电机具有较高的可靠性,能够保证长期稳定运行。
详细描述
无刷直流电机采用电子换向技术,减少了机械磨损和故障,因此具有较高的可靠 性。此外,无刷直流电机还具有较长的使用寿命和较低的维护成本,这使得它在 需要高可靠性的应用中成为理想选择,如医疗器械、军事装备等领域。
04
无刷直流电机的驱动控制
无刷直流电机的成本和维护相对较低,而永磁同步电机由于使用了 永磁材料,成本较高,但具有更高的效率和性能。
感谢您的观看
THANKS
05
无刷直流电机的发展趋势 与挑战
技术发展趋势
1 2 3
高效能化
随着技术的进步,无刷直流电机在效率、功率密 度和可靠性方面不断提升,以满足更广泛的应用 需求。
智能化控制
通过引入先进的控制算法和传感器技术,实现无 刷直流电机的智能化控制,提高其性能和稳定性 。
集成化设计
将无刷直流电机与其他部件(如驱动器、传感器 等)集成在一起,简化系统结构,降低成本。
详细描述
无刷直流电机采用先进的电子换向技术,避免了传统直流电 机机械换向器的损耗,因此具有更高的效率和功率密度。这 使得无刷直流电机在需要高效率和高功率密度的应用中表现 出色,如电动工具、电动车等领域。
调速性能
总结词
无刷直流电机具有优良的调速性能,可满足不同应用需求。

无刷直流电机的工作原理

无刷直流电机原理无刷直流电动机的工作原理普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。

为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。

无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。

为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。

无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电动机的原理简图如图一所示:主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。

永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。

无刷直流电机工作原理

无刷直流电机工作原理
无刷直流电机是一种将直流电能转换为机械能的电动机。

与传统的有刷直流电机相比,无刷直流电机采用了新的控制技术和结构设计,以提高效率、减少噪音和提高可靠性。

无刷直流电机的工作原理基于霍尔效应和电磁感应原理。

无刷直流电机通常由定子、转子和控制器组成。

定子是无刷直流电机的固定部分,通常由一系列电磁线圈组成,这些线圈被称为相。

每个相都有一个对应的霍尔传感器,用于检测转子的位置。

转子是无刷直流电机的旋转部分,通常由永磁体或电磁体组成。

转子上安装有若干个永磁体或电磁体的磁极,这些磁极和定子相的电磁线圈之间建立起磁场。

控制器是无刷直流电机的核心部分,用于控制电流流向电磁线圈。

控制器根据霍尔传感器检测到的转子位置信号,准确地控制电流的方向和大小。

通过改变电流的方向和大小,控制器能够实现转子的旋转。

当电流通过定子相的线圈时,根据电磁感应原理,线圈会产生磁场。

根据磁场的方向和大小,可以吸引或排斥转子上的磁极,从而使转子旋转。

通过不断地改变电流的方向和大小,控制器可以使转子以恒定的速度旋转。

此外,控制器还可以根据外部输入信号调整电机
的转速和扭矩。

总之,无刷直流电机通过控制电流的方向和大小,将直流电能转换为旋转运动。

它具有高效率、低噪音和高可靠性等优点,被广泛应用于工业和消费电子领域。

图文讲解无刷直流电机的工作原理

图文讲解无刷直流电机的工作原理电动无刷直流电机由电动机主体和驱动器组成导读:,是一种典型的机电一体化产品。

同三相异步电动机十分相似。

它的应用非常广泛,,机的定子绕组多做成三相对称星形接法在很多机电一体化设备上都有它的身影。

什么是无刷电机?无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

由于无刷所以不会像变频调速下重载启动的同步电机那样在转子上另直流电动机是以自控式运行的,加启动绕组,也不会在负载突变时产生振荡和失步。

中小容量的无刷直流电动机的永磁体,稀土永磁无刷电动机的体积比材料。

因此,现在多采用高磁能级的稀土钕铁硼(Nd-Fe-B)同容量三相异步电动机缩小了一个机座号。

. . .无刷直流电动机是采用半导体开关器件来实现电子换向的,即用电子开关器件代替传无换向火花、机械噪声低等优点,广泛应用于统的接触式换向器和电刷。

它具有可靠性高、高档录音座、录像机、电子仪器及自动化办公设备中。

无刷直流电动机由永磁体转子、多极绕组定子、位置传感器等组成。

位置传感按转子(即检测转子磁极相对定子绕组的位位置的变化,沿着一定次序对定子绕组的电流进行换流按并在确定的位置处产生位置传感信号,经信号转换电路处理后去控制功率开关电路,置,定子绕组的工作电压由位置传感器输出控制的电子开。

一定的逻辑关系进行绕组电流切换)关电路提供。

位置传感器有磁敏式、光电式和电磁式三种类型。

采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(例如霍尔元件、磁敏二极管、磁敏诂极管、磁敏电阻器或专用集成电路等)装在定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。

采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子上装有遮光板,光源为发光二极管或小灯泡。

转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇间生脉冲信号。

(例是在定子组件上安装有电磁传感器部件采用电磁式位置传感器的无刷直流电动机,谐振电路等),当永磁体转子位置发生变化时,电磁效应将如耦合变压器、接近开关、LC 使电磁传感器产生高频调制信号(其幅值随转子位置而变化)。

无刷直流电动机简介和基本工作原理

无刷直流电动机简介和基本工作原理无刷直流电动机简介和基本工作原理无刷直流电动机简介直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”。

是将交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。

无刷直流电动机Brushless Direct Current Motor ,BLDC,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料;产品性能超越传统直流电机的所有优点,同时又解决了直流电机碳刷滑环的缺点,数字式控制,是当今最理想的调速电机。

无刷直流电动机具有上述的三高特性,非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳选择。

基本工作原理无刷直流电动机由同步电动机和驱动器组成,是一种典型的机电一体化产品。

同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。

由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流—转矩特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AU HC HA
Phase B
Phase A
Phase C
AL HC HA
BU HA HB
Hall B
Hall A
Rotation
Hall C
HC
HC
BL H A H B
HA
CU HB HC
HA
HB
CL HB HC
HB
2016/10/5
XJTU
41
EE 10.2.3 功率电子驱动电路 功率器件采用具有自关断能力的全控器件 GTR、GTO、功率MOSFET和IGBT等 功率MOSFET和IGBT目前已占主导地位 逆变主电路一般有桥式或非桥式(半桥式)两种 与电机电枢绕组的连接有不同的组合
2016/10/5
B
m
d
I
l
EH
XJTU
38
EE
2016/10/5
XJTU
39
EE
霍尔元件式位置传感器 由定子和转子两部分组成 电动机转子磁极的永磁体 兼作位置传感器转子产生励磁磁场 霍尔元件间隔一定角度安置于电机定子作传感器定子 并通以控制电流
2016/10/5
XJTU
40
EE
Inverter Gate Reference Signals:
EE
第10章 无刷直流电动机 Brushless DC Motor
10.1 概述
10.2 无刷直流电动机系统组成
10.3 三相无刷直流电动机运行分析 10.4 无刷直流电动机的模型 10.5 无刷直流电动机的转矩脉动 10.6 无位置传感器的转子位置检测 10.7 无刷直流电动机的电枢反应 10.8 无刷直流电动机改变转向的方法
+
A N Y Br S X n Ba C B Z
A n Y Br S C X Ba B
D4
A
N
Z
VT1
D1
VT3
D3
VT5
D5
N B S C
Udc
VT4 VT6
D6
VT2
D2
(e) C+A(f) C+BR
47
EE MC33033
2016/10/5
XJTU
48
EE
2016/10/5
XJTU
49
EE
2016/10/5
XJTU
50
EE 10.3 无刷直流电动机运行分析 10.3.1 工作原理 三相无刷直流电动机 电机本体是一两极的永磁电动机 定子三相对称绕组按Y连接,无中线 功率驱动采用三相全桥式电路 两两导通工作方式
+
A N B S C
VT1
D1
VT3
D3
VT5
D5
Udc
VT4
D4
VT6
D6
VT2
D2
R
控 制 器
转子位置传感器
2016/10/5
XJTU
51
EE
CU
AC
BU
AU
CL
BL
AL
Current Sensor
ib
L, R
eb d M ic dt
+
ia
ea
M
ec
M
d ib ic dt L, R + ib
ia
+ L, R
d ia dt
ic
2016/10/5
XJTU
52
EE
2016/10/5
XJTU
53
EE
A S
Z Br N B X
A n Y S Ba C
A
A n
S Z
Y
Ba C
n Br N X
Z
Y
n N
Ba Br
Y
N Br
Ba S
Z
B
C X
B
C X
B
(a) A+B-
(b) A+C-
(c) B+C-
(d) B+A-
N 1 S S NN S S N S 3 N 2

1
N S
N
S
2 S N
S 1 N S N N SN S 2 N 3
S
N
3
S
2016/10/5
XJTU
24
EE
2016/10/5
XJTU
25
EE
2016/10/5
XJTU
26
EE
2016/10/5
XJTU
27
EE
2016/10/5
XJTU
28
EE
2016/10/5
XJTU
2
EE
2016/10/5
XJTU
3
EE
2016/10/5
XJTU
4
EE
2016/10/5
XJTU
5
EE
2016/10/5
XJTU
6
EE
2016/10/5
XJTU
7
EE
2016/10/5
XJTU
8
EE
2016/10/5
XJTU
9
EE
2016/10/5
XJTU
10
2016/10/5
XJTU
1
EE 10.1 概述 传统有刷直流电机的优点: 机械特性线性,调节特性线性,调速和起动性 能好,堵转转矩大,广泛用于驱动和伺服系统 缺点: 电刷和换向器产生火花,引起干扰;定期维护 无刷直流电机: 用电子开关电路和位置传感器代替传统电机中 的电刷和换向器 既有普通有刷电机的调速特性,又克服了电刷 和换向器带来的缺点 通过电子线路进行控制和运行----电子运行电机 电子换向器代替机械换向器----电子换向式电机 ECM(Electronically Commutated Motor)
+
A B C
B
+
A C
2016/10/5
-
XJTU
42
EE
+
A
+
A B C D
B
C
-
-
+
A B
2016/10/5
XJTU
43
EE
2016/10/5
XJTU
44
EE 电枢绕组的相数和功率主电路连接方式不同,电机转矩 脉动及绕组利用率不同。 相数越多,转矩脉动越小 相同相数下,桥式电路比非桥式电路转矩脉动小, 绕组利用率高 随着相数的增多,驱动电路中使用的开关器件也越 多,成本也就越高 三相星形桥式驱动电路采用两两导通方式工作,其 绕组利用率较高、力矩波动小,因而得到广泛应用。 注意: 无刷直流电动机控制系统中驱动电路的频率由转子 的转速决定--“自控式逆变器” 电机中相绕组的频率和电机转速始终保持同步,不 会产生振荡和失步。
2016/10/5
XJTU
29
EE
2016/10/5
XJTU
30
EE
2016/10/5
XJTU
31
EE 无刷直流电机磁场分布 --矩形波
感应反电动势
--方波或梯形波
0.400 0.300 0.200
1.00 0.75 0.50 0.25
Bg/T
0.100
E/En
0.125 0.250 0.375 0.500 θ/2π 0.625 0.750 0.875 1.000
EE
2016/10/5
XJTU
11
EE 10.2 无刷直流电动机的基本组成 由电动机本体、转子位置传感器、功率电子开关线路 和控制器等4部分组成
直流电源 电子开关线路 (逆变电路) 电动机 本体 输出
控制器
位置传感器
• 直流电源通过电子开关线路向电动机定子绕组供电 • 位置传感器检测电机转子位置并送入控制器 • 控制器经过逻辑处理产生相应的换相信号 • 以一定的规律控制电子开关线路中的功率开关器件 • 将电源顺序分配给电动机定子的各相绕组
2
Wa
2 4 5 6 7
1
3
Wc
2016/10/5
Wj
Wb
1-信号线圈;2-导磁片; 3-磁心;4—铝合金; 5—副边线圈;6—环氧树脂; 7—激磁线圈
XJTU
34
EE 励磁电源的频率高达几千赫兹以上,故定子铁心及 转子导磁扇形片均由高频导磁材料制成 实际上是有着共同励磁线圈的几个开口变压器 扇形导磁片随着电动机转子同步旋转,其与传感器 定子圆周凸极的相对位置发生变化,使开口变压器磁路 的磁阻变化,信号线圈匝链的磁通大小变化,感应出不 同幅值的电动势,依此判断转子位置。
2016/10/5
XJTU
45
EE 10.2.4 控制器 无刷直流电动机正常运行并实现各种调速伺服功能的 指挥中心 功能: (1) 对转子位置信号、正反转和停车信号进行逻辑综 合,为功率驱动电路各开关管提供选通信号(换相信 号),实现电机的正、反转及停车控制; (2) 在固定的供电电压下,根据速度给定和负载大小, 产生PWM调制信号,实现电机开环或闭环控制; (3) 实现短路、过流、过电压和欠电压等故障检测和 保护
0.000 -.100 -.200
0.00 -0.25 -0.50
-.300
-0.75
-.400 0.000
-1.00 0.000
0.125
0.250
0.375
0.500 t/T
0.625
0.750
0.875
1.000
0.250 0.200 0.150 0.100 0.050
ψ/Wb
0.000 -.050 -.100 -.150
相关文档
最新文档