高二数学(文科)期末复习试卷
2022-2023学年高二上学期期末考试数学(文)试题

2022-2023学年度上学期期末考试高二数学试卷(文科)第Ⅰ卷(选择题,满分60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,则“1a >”是“21a >”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件2.直线1:30l x ay ++=和直线()2:230l a x y a -++=互相平行,则a 的值为( ). A .1-或3B .3-或1C .1-D .3-3、设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ). A .若m α∥,n α∥,则m n ∥B .若αβ∥,m α⊂,n β⊂,则m n ∥C .若m αβ⋂=,n α⊂,n m ⊥,则n β⊥D .若m α⊥,m n ∥,n β⊂,则αβ⊥4.已知圆的方程为2260x y x +-=,则过点()1,2的该圆的所有弦中,最短弦长为( ).A .12B .1C .2D .45.函数()1sin f x x =+,其导函数为()f x ',则π3f ⎛⎫'=⎪⎝⎭( ). A .12B .12-C .32 D 36.已知抛物线24x y =上一点M 到焦点的距离为3,则点M 到x 轴的距离为( ). A .12B .1C .2D .47.已知命题:p x ∀∈R ,210ax ax ++>;命题:q x ∃∈R ,20x x a -+=.若p q ∧是真命题,则a 的取值范围是( ).A .(),4-∞B .[]0,4C .10,4⎛⎫ ⎪⎝⎭D .10,4⎡⎤⎢⎥⎣⎦8.若函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ). A .12a <≤B .4a ≥C .2a ≤D .03a <≤9.已知长方体1111ABCD A B C D -中,4AB BC ==,12CC =,则直线1BC 和平面1DBBD 所成角的正弦值等于( ). A .32B .52C .105D .101010.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5AB =,7BC =,2AC =.则此三棱锥的外接球的体积为( ). A .8π3B .82π3C .16π3D .32π311.已知函数()21,12,1ax x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是( ). A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-12.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则2122e e +的最小值为( ). A .6B .3C .6D .3第Ⅱ卷(非选择题,满分90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上) 13.曲线21y x x=+在点()1,2处的切线方程为__________. 14.当直线()24y k x =-+和曲线24y x =-有公点时,实数k 的取值范围是__________. 15.点P 是椭圆221169x y +=上一点,1F ,2F 分别是椭圆的左,右焦点,若1212PF PF ⋅=.则12F PF ∠的大小为__________.16.若方程22112x y m m+=+-所表示曲线为C ,则有以下几个命题: ①当()1,2m ∈-时,曲线C 表示焦点在x 轴上的椭圆; ②当()2,m ∈+∞时,曲线C 表示双曲线; ③当12m =时,曲线C 表示圆; ④存在m ∈R ,使得曲线C 为等轴双曲线. 以上命题中正确的命题的序号是__________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知2:280p x x --+≥,()22:2100q x x m m -+=≤>.(1)若p 是q 的充分条件,求实数m 的取值范围.(2)若“p ⌝”是“q ⌝”的充分条件,求实数m 的取值范围. 18.(本小题12分)求下列函数的导数:(1)sin xy e x =; (2)2311y x x x x ⎛⎫=++ ⎪⎝⎭; (3)(3)sin cos 22x xy x =-. 19.(本小题12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,90BAD ABC ∠=∠=︒.(1)证明:直线BC ∥平面PAD ;(2)若PCD △的面积为7P ABCD -的体积. 20.(本小题12分)已知抛物线()21:20C y px p =>过点()1,1A . (1)求抛物线C 的方程;(2)过点()3,1P -的直线与抛物线C 交于M ,N 两个不同的点(均与点A 不重合),设直线AM ,AN 的斜率分别为12k k ,求证:12k k 为定值. 21.(本小题12分)已知若函数()34f x ax bx =-+,当2x =时,函数()f x 有极值43-. (1)求函数解析式; (2)求函数的极值;(3)若关于x 的方程()f x k =有三个零点,求实数k 的取值范围. 22.(本小题12分)已知椭圆()2222:10x y C a b a b+=>>3. (1)求椭圆C 的离心率;(2)点33,M ⎭在椭圆C 上,不过原点O 与直线l 与椭圆C 相交于A ,B 两点,与直线OM 相交于点N ,且N 是线段AB 的中点,求OAB △的最大值.四平市第一高级中学2019-2020学年度上学期期末考试高二数学试卷(文科)参考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCACDACBCC13.10x y -+= 14.3,4⎡⎫+∞⎪⎢⎣⎭15.π316.②③ 三、解答题17.解:(1)因为2:280p x x --+≥,()22:2100q x x m m -+-≤>.故:42p x -≤≤,:11q m x m -≤≤+.若p 是q 的充分条件,则[][]4,21,1m m --⊆-+, 故4121mm-≥-⎧⎨≤+⎩,解得5m ≥.(2)若“p ⌝”是“q ⌝”的充分条件,即q 是p 的充分条件,则[][]1,14,2m m -+⊆-,即14120m m m -≥-⎧⎪+≤⎨⎪>⎩,解得01m <≤.即实数m 的取值范围为(]0,1.18.解:(1)()()sin sin sin cos xxxx y ex e x ex e x '''=+=+.(2)因为3211y x x =++,所以2323y x x '=-. (3)因为1sin 2y x x =-,所以11cos 2y x '=-. 19.解:(1)四棱锥P ABCD -中,因为90BAD ABC ∠=∠=︒,所以BC AD ∥. 因为AD ⊂平面PAD ,BC ⊄平面PAD , 所以直线BC ∥平面PAD . (2)由12AB BC AD ==,90BAD ABC ∠=∠=︒. 设2AD x =,则AB BC x ==,2CD x =.设O 是AD 的中点,连接PO ,OC . 设CD 的中点为E ,连接OE ,则22OE x =.由侧面PAD 为等边三角形,则3PO x =,且PO AD ⊥.平面PAD ⊥底面ABCD ,平面PAD ⋂底面ABCD ,且PO ⊂平面PAD . 故PO ⊥底面ABCD .又OE ⊂底面ABCD ,故PO OE ⊥,则2272x PE PO OE =+=, 又由题意可知PC PD =,故PE CD ⊥.PCD △面积为271272PE CD ⋅=,即:1722722x x =, 解得2x =,则3PO = 则()()111124223433232P ABCD V BC AD AB PO -=⨯+⨯⨯=⨯⨯+⨯⨯=. 20.解:(1)由题意抛物线22y px =过点()1,1A ,所以12p =. 所以抛物线的方程为2y x =.(2)设过点()3,1P -的直线l 的方程为()31x m y -=+, 即3x my m =++,代入2y x =得230y my m ---=,设()11,M x y ,()22,N x y ,则12y y m +=,123y y m =-, 所以()()1212122212121211111111111y y y y k k x x y y y y ----⋅=⋅=⋅=----++ ()()12121111312y y y y m m ===-++++--+.所以12k k ⋅为定值.21.解:(1)()23f x ax b '=-.由题意知()()2120428243f a b f a b '=-=⎧⎪⎨=-+=-⎪⎩,解得134a b ⎧=⎪⎨⎪=⎩. 所以所求的解析式为()31443f x x x =-+. (2)由(1)可得()()()2422f x x x x '=-=+-. 令()0f x '=得2x =或2x =-.当x 变化时,()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2 ()2,+∞()f x ' + 0 - 0 + ()f x↑极大值↓极小值↑所以当2x =-时,函数()f x 有极大值()23f -=; 当2x =时,函数()f x 有极小值()423f =-. (3)由(2)知,可得当2x <-或2x >时,函数()f x 为增函数; 当22x -<<时,函数()f x 为减函数. 所以函数()31443f x x x =-+的图象大致如图,由图可知当42833k -<<时,()f x 与y k =有三个交点,所以实数k 的取值范围为428,33⎛⎫-⎪⎝⎭. 22.解:(1)由题意,得3a c -=,则()2213a cb -=. 结合222b ac =-,得()()22213a c a c -=-,即22230c ac a -+=. 亦即22310e e -+=,结合01e <<,解得12e =. 所以椭圆C 的离心率为12. (2)由(1)得2a c =,则223b c =.将33,2M ⎭代入椭圆方程2222143x y c c +=,解得1c =. 所以椭圆方程为22143x y +=. 易得直线OM 的方程为12y x =. 当直线l 的斜率不存在时,AB 的中点不在直线12y x =上, 故直线l 的斜率存在.设直线l 的方程为()0y kx m m =+≠,与22143x y +=联立, 消y 得()2223484120k x kmx m +++-=, 所以()()()2222226443441248340k m k mk m ∆=-+-=+->.设()11,A x y ,()22,B x y ,则122834kmx x k +=-+,212241234m x x k -=+.由()121226234m y y k x x m k +=++=+,得AB 的中点2243,3434km m N k k ⎛⎫- ⎪++⎝⎭, 因为N 在直线12y x =上,所以224323434km m k k -=⨯++,解得32k =. 所以()248120m ∆=->,得1212m -<<,且0m ≠.则()222212121313412394122236m AB x x x x m m -=+-=-=-又原点O 到直线l 的距离213m d =所以()2222221393312121232666213AOBm m m S m m m -+=-=-⋅=△. 当且仅当2212m m -=,即6m =时等号成立,符合1212m -<<0m ≠.所以AOB △3。
高二数学(文科)练习(必修5 选修1-1)期末复习辅导1

高二数学(文)期末测试题第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、在等差数列}{n a 中,1a =3,93=a 则5a 的值为A . 15B . 6 C. 81 D. 92、设a R ∈,则1a >是11a< 的 A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件3、已知命题p :R x ∈∀,1cos ≤x ,则( )A 、00:,cos 1p x R x ⌝∃∈≥B 、00:,cos 1p x R x ⌝∀∈≥C 、1cos ,:00>∈∃⌝x R x pD 、00:,cos 1p x R x ⌝∀∈>4、在等比数列{}n a (n ∈N*)中,若11a =,418a =,则该数列的前10项和为 A .4122-B .9122-C .10122-D .11122-5、在ABC ∆中,60B =,2b ac =,则ABC ∆一定是A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形6、函数y=2x 2+3x 在x=1时的导数为 ( )A .5B .6C .7D .87、椭圆2241x y +=的离心率为 ( ) A.22 B.43 C. 23 D.32 8、数列{}n a 的前n 项和为n S ,若1(1)n a n n =+,则5S 等于( ) A .1 B .56 C .16 D .1309、已知变量y x ,满足⎪⎩⎪⎨⎧≤-+≥≥0311y x y x ,则目标函数y x z +=2有A .5max =z ,z 无最小值B .3,5min max ==z zC .z z ,3min =无最大值D .z 既无最大值,也无最小值10、若不等式02>++a ax x 恒成立,则a 的取值范围是( )A .01<-或4>aB .40<<aC .4≥a 或0≤aD .40≤≤a11、12第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
高二文科数学第二学期末复习检测题

高二文科数学第二学期末复习检测题 姓名1.已知样本4,5,6,x ,y ,的平均数是5,标准差是2,则xy =2.“m <1”是“函数f (x )=x 2-x +14m 存有零点”的的 条件.(填“充要”,“充分不必要”,“必要不充分”,“ 既不充分也不必要条件”) 4.函数2321x x y -=+的值域为 .5.如图是由所输入的x 值计算y 值的一个算法程序,若x 依次取数列)2009,(42≤∈⎭⎬⎫⎩⎨⎧+*n N n n n 中的项,则所得y 值中的最小值为____ _. 6.设x x x f -+=22lg)(,则函数)2()2(xf x f y +=的定义域为___ ___. 7.一个盒子中放有大小相同的3个白球和1个黑球,从中任取两个球,则所取的两个球不同色的概率为 .8.设函数π()sin()3cos()(0,)2f x ωx φωx φωφ=++><的最小正周期为π,且满足()()f x f x -=,则函数()f x 的单调增区间为 .9.若1>>b a ,)2lg(b a A +=,b a B lg lg ⋅=,)lg (lg 21b a C +=, 则A ,B ,C 从小到大的顺序为10.求“方程34()()155x x +=的解”有如下解题思路:设34()()()55x x f x =+,则()f x 在R 上单调递减,且(2)1f =,所以原方程有唯一解2x =.类比上述解题思路,方程623(2)2x x x x +=+++的解为 .11.已知函数)1(log -=x a y a 在区间]52,0(上单调递增,则实数a 的取值范围是 . 12.过原点O 的直线l 与函数e e x x x f ),,0((ln )(∈=为自然对数的底数)的图象从左到右依次交于点A ,B 两点,假如A 为OB 的中点,则A 点的坐标为 .13.已知函数⎩⎨⎧≤>=-0,20,)(2x x x x f x ,则方程121)(=-x x f 的解的个数为 .14.已知点),(y x A 为函数xy 1=图象上在第一象限内的动点,若233)(y x a y x +≥+恒成立,则实数a 的取值范围是 .15.已知函数132)(++-=x x x f 的定义域为A ,)1)](2)(1lg[()(<---=a x a a x x g 的定义域为B.(1)求集合A ;(2)若A B ⊆,求实数实数a 的取值范围.16. 关于x 的方程)(09)6(2R a ai x i x ∈=+++-有实根b x =.(1)求实数b a ,的值.(2)若复数z 满足02=---z bi a z ,求复数z 为何值时,z 有最小值?并求出z 的值.17.已知函数()sin()cos 6f x x x π=++(1)求函数()f x 的最大值,并写出当()f x 取得最大值时x 的取值集合;(2)若(0,),()26f ππαα∈+=()2f α的值18.已知a 为正实数,函数ax a ax x f 1)(22--=的图象与x 轴交于A,B 两点,且A 在B 的左边.(1)解关于x 不等式)1()(f x f >;(2)求AB 的最小值;(3)假如],22,1[∈a 求OA 的取值范围.19.围建一个地面面积为900平方米的矩形场地的围墙,有一面长度为a 米)300(≤<a 的旧 墙(图中斜杠局部),有甲、乙两种维修利用旧墙方案.甲方案:选择局部旧墙维修后单独作 为矩形场地的一面围墙(如图①,多余局部不维修);乙方案:旧墙全部利用,维修后再续建 一段新墙共同作为矩形场地的一面(如图②).已知旧墙维修费用为10元/米,新墙造价为80 元/米.(1)假如按甲方案修建,怎样修建,使得费用最小?(2)假如按乙方案修建,怎样修建,使得费用最小?(3)比较两种方案,哪种方案更好?20.已知a 为非零常实数,e 为自然对数的底数,函数22)(a ax ax x f +-=的图象的对称中心为点P ,函数)()(xe f x g =.(1)如0>a ,当]4,3[∈x 时,不等式41)(>x f 恒成立,求a 的取值范围;(2)假如点P 在第四象限,当P 到坐标原点的距离最小时,是否存有实数21,x x 满足3)()(,02121=-<<x g x g x x 请说明理由;(3)对任意R n ∈,函数)(x g 在区间]2,[+n n 上恒有意义,且在区间]2,[+n n 上的最大值、最小值分别记为)(),(n m n M ,当且仅当1-=n 时,)()(n m n M -取得最大值,求a 的值.方案① 方案②参考答案:1、21;2、充分不必要;3. 2<a ; 4、(-3,1);5、答案17解析 从程序知函数y =⎩⎪⎨⎪⎧x 2+1,(x <5)5x ,(x ≥5),因n 2+4n ≥4.所以当n =2时,x 取最小值4,从而函数y 取得最小值17.6.)4,1()1,4(⋃--;7. 21;8.π[π,π],()2k k k -+∈Z ;9. A C B << ;10.12x =-或;11.152<<a ;12.)2ln 31,24(3;13.3;14.]21,(-∞. 15.(1)),1[)1,(+∞⋃--∞=A ;(2)).21(]2,(∞+⋃--∞∈a .16.如图,17.18. (1)2>a 时,不等式的解集为),1()1,(+∞-⋃-∞a ;2=a 时,不等式的解集为),1()1,(+∞⋃-∞;2<a 时,不等式的解集为),1()1,(+∞⋃--∞a ;(2)2=a 时,2min =AB ;(3)]215,42434[--.19.(1)a a y a x x x y 14400090),300)(1600(9011+>≤<<+=. (2)a y a x a xx y 709600)(),(70)900(160max 22-=≥-+= (3)0)30(160221≥->-aa y y ,所以乙方案更好. 20. (1)10<<a ;(2)不存有;(3)1±=a .。
高二下学期文科数学期末复习试题含答案

高二文科数学期末复习一、填空题:1.若复数z 满足()12i 34i z +=-+(i 是虚数单位),则=z . 答案:i 21+.2.设全集=U Z ,集合2{|20=--≥A x x x ,}∈x Z ,则U=A (用列举法表示).答案:{0,1}.3.若复数z 满足i iz 31+-=(i 是虚数单位),则=z .i +4.已知A ,B 均为集合{=U 2,4,6,8,10}的子集,且}4{=⋂B A ,}10{)(=⋂A B C U ,则=A .答案:{4,10}5.已知全集R U =,集合=A {32|≤≤-x x },=B {1|-<x x 或4>x },那么集合⋂A (UB )等于 .答案:{x|-1≤x≤3}解析:主要考查集合运算.由题意可得,UB ={x|-1≤x≤4},A ={x|-2≤x≤3},所以(⋂A U)B ={x|-1≤x≤3}.6.已知集合},3,1{m A =,}4,3{=B ,且}4,3,2,1{=B A ,则实数m = . 答案:27.命题“若b a >,则b a 22>”的否命题为 . 答案:若b a ≤,则ba22≤8.设函数()⎩⎨⎧=x xx f 2log 2 11>≤x x ,则()[]=2f f .答案:2 9.函数)23(log 5.0-=x y 的定义域是 .答案:]1,32(10.已知9.01.17.01.1,7.0log ,9.0log ===c b a ,则c b a ,,按从小到大依次为 .答案:c a b <<11.设函数)(x f 是定义在R 上的奇函数.若当),0(∞+∈x 时,x x f lg )(=,则满足0)(>x f 的x 的取值范围是 .答案:),1()0,1(∞+-12.曲线C :x x y ln =在点M (e ,e )处的切线方程为 . 答案:e x y -=213.已知函数211)(xx f -=的定义域为M ,)1(log )(2x x g -=(1-≤x )的值域为N ,则(RM )N ⋂等于 .答案:{x|x≥1}解析:考查定义域求解.可求得集合M ={x|-1<x<1},集合N ={g (x )|g (x )≥1},则RM ={x|x≤-1或x≥1},∴(RM )N ⋂={x|x≥1}.14.设⎪⎩⎪⎨⎧+--=,11,2|1|)(2x x x f 1||1||>≤x x ,则)]21([f f 等于 .答案:134解析:本题主要考查分段函数运算. ∵232|121|)21(-=--=f ,∴134)23(11)23()]21([2=-+=-=f f f .15.已知函数)1ln()(2++=x x x f ,若实数a ,b 满足0)1()(=-+b f a f ,则b a +等于 .答案:1解析:考查函数奇偶性.观察得)(x f 在定义域内是增函数, 而)1ln()(2++-=-x x x f )(11ln2x f x x -=++=,∴)(x f 是奇函数,则)1()1()(b f b f a f -=--=,∴b a -=1,即1=+b a .16.若函数)(log )(3ax x x f a -=(0>a ,1≠a )在区间(21-,0)上单调递增,则a 的范围是 .答案:143<≤a解析:本题考查复合函数单调性,要注意分类讨论.设ax x x u -=3)(,由复合函数的单调性,可分10<<a 和1>a 两种情况讨论:①当10<<a 时,ax x x u -=3)(在(21-,0)上单调递减,即03)('2≤-=a x x u 在(21-,0)上恒成立,∴43≥a ,∴143<≤a ;②当1>a 时,ax x x u -=3)(在(21-,0)上单调递增,即03)('2≥-=a x x u 在(21-,0)上恒成立,∴0≤a ,∴a 无解.综上,可知143<≤a .17.已知()f x 为偶函数,且)3()1(x f x f -=+,当02≤≤-x 时,xx f 3)(=,则=)2011(f . 答案:3118.函数221x xy =+的值域为 .答案:)1,0(19.已知函数)(x f 的定义域为A ,若其值域也为A ,则称区间A 为)(x f 的保值区间.若()ln g x x m x =++的保值区间是[,)e +∞ ,则实数m 的值为 .答案:1-20.若不等式0122<-+-m x mx 对任意]2,2[-∈m 恒成立,则实数x 的取值范围是 .答案:)213,217(+-21.直线1=y 与曲线a x x y +-=2有四个交点,则实数a 的取值范围是 . 答案:)45,1(22.已知函数0)(3(log 2≠-=a ax y a 且)1±≠a 在]2,0[上是减函数,则实数a 的取值范围是 . 答案:)23,1()0,1( -二、解答题: 1.已知函数132)(++-=x x x f 的定义域为A ,函数)1()]2)(1lg[()(<---=a x a a x x g 的定义域为B . (1)求A ;(2)若A B ⊆,求实数a 的取值范围. 解:(1)由0132≥++-x x ,得011≥+-x x ,∴1-<x 或1≥x , ……4分即),1[)1,(+∞--∞= A ; ……6分 (2)由0)2)(1(>---x a a x ,得0)2)(1(<---a x a x .∵1<a ,∴a a 21>+.∴)1,2(+=a a B . ……8分 ∵A B ⊆,∴12≥a 或11-≤+a ,即21≥a 或2-≤a . ……12分而1<a ,∴121<≤a 或2-≤a .故当A B ⊆时,实数a 的取值范围是)1,21[]2,( --∞. ……14分2.已知命题p :函数)2(log 25.0a x x y ++=的值域为R ,命题q :函数x a y )25(--= 是减函数.若p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.解:对命题p :∵函数)2(log 25.0a x x y ++=的值域为R ,∴1)1(222-++=++a x a x x 可以取到),0(+∞上的每一个值,∴01≤-a ,即1≤a ; ……4分命题q :∵函数xa y )25(--=是减函数,∴125>-a ,即2<a . ……8分 ∵p 或q 为真命题,p 且q 为假命题,∴命题p 与命题q 一真一假,若p 真q 假,则1≤a 且2≥a ,无解, ……10分 若p 假q 真,则21<<a , ……12分 ∴实数a 的取值范围是)2,1( ……14分3.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为2.1万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为x 75.0,同时预计年销售量增加的比例为x 6.0.已知年利润=(出厂价–投入成本)⨯年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内? 解:(1)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯⨯+⨯-+⨯=x x x x y ,…5分 整理得 )10( 20020602<<++-=x x x y ;……7分(2)要保证本年度的利润比上年度有所增加,当且仅当⎩⎨⎧<<>⨯--.10,01000)12.1(x y …10分即⎩⎨⎧<<>+-.10,020602x x x 解不等式得 310<<x . ……13分答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x .…14分 4.已知命题p :指数函数xa x f )62()(-=在R 上单调递减,命题Q :关于x 的方程012322=++-a ax x 的两个实根均大于3.若p 或q 为真,p 且q 为假,求实数a 的取值范围.解:若p 真,则f (x )=(2a -6)x在R 上单调递减,∴0<2a -6<1,∴3<a<72,若q 真,令f (x )=x 2-3ax +2a 2+1,则应满足⎩⎪⎨⎪⎧Δ= -3a 2-4 2a 2+1 ≥0--3a2>3f 3 =9-9a +2a 2+1>0,∴⎩⎪⎨⎪⎧a ≥2或a ≤-2a>2a<2或a>52,故a>52,又由题意应有p 真q 假或p 假q 真.①若p 真q 假,则⎩⎪⎨⎪⎧3<a<72a ≤52,a 无解.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤3或a ≥72a>52,∴52<a ≤3或a ≥72.故a 的取值范围是{a|52<a ≤3或a ≥72}.5.已知函数)(x f 满足对任意实数y x ,都有1)()()(+++=+xy y f x f y x f ,且2)2(-=-f .(1)求)1(f 的值;(2)证明:对一切大于1的正整数t ,恒有t t f >)(;(3)试求满足t t f =)(的所有的整数t ,并说明理由.解:(1)令0==y x ,得1)0(-=f ;令1-==y x ,得2)1()1()2(+-+-=-f f f ,又2)2(-=-f ,∴2)1(-=-f ; 令1,1-==y x ,得)1()1()0(-+=f f f ,∴1)1(=f . ……4分 (2)令1=x ,得2)()1(+=-+y y f y f ①∴当N y ∈时,有0)()1(>-+y f y f ,由1)1(),()1(=>+f y f y f 知对*N y ∈有0)(>y f ,∴当*N y ∈时,111)(2)()1(+>+++=++=+y y y f y y f y f ,于是对于一切大于1的正整数t ,恒有t t f >)(. ……9分 (3)由①及(1)可知1)4(,1)3(=--=-f f ; ……11分下面证明当整数4-≤t 时,t t f >)(,∵4-≤t ,∴02)2(>≥+-t 由① 得0)2()1()(>+-=+-t t f t f ,即 0)4()5(>---f f ,同理0)5()6(>---f f , ……,0)2()1(>+-+t f t f ,0)1()(>+-t f t f , 将以上不等式相加得41)4()(->=->f t f ,∴当4-≤t 时,t t f >)(, ……15分 综上,满足条件的整数只有2,1-=t . ……16分6.如下图所示,图1是定义在R 上的二次函数)(x f 的部分图象,图2是函数)(log )(b x x g a +=的部分图象.(1)分别求出函数)(x f 和)(x g 的解析式;(2)如果函数)]([x f g y =在区间[1,m )上单调递减,求实数m 的取值范围. 解:(1)由题图1得,二次函数)(x f 的顶点坐标为(1,2), 故可设函数2)1()(2+-=x a x f ,又函数)(x f 的图象过点(0,0),故2-=a , 整理得x x x f 42)(2+-=.由题图2得,函数)(log )(b x x g a +=的图象过点(0,0)和(1,1),故有⎩⎨⎧=+=1)1(log 0log b b aa ,∴⎩⎨⎧==12b a ,∴)1(log )(2+=x x g (1->x ).(2)由(1)得)142(l og )]([22++-==x x x f g y 是由t y 2log =和1422++-=x x t 复合而成的函数,而t y 2log =在定义域上单调递增,要使函数)]([x f g y =在区间[1,m )上单调递减,必须1422++-=x x t 在区间[1,m )上单调递减,且有0>t 恒成立.由0=t 得262±=x ,又因为t 的图象的对称轴为1=x .所以满足条件的m 的取值范围为2621±<<m .7.已知1212)3(4)(234+-++-=x x m x x x f ,R m ∈.(1)若f 0)1('=,求m 的值,并求)(x f 的单调区间;(2)若对于任意实数x ,0)(≥x f 恒成立,求m 的取值范围.解:(1)由f ′(x )=4x 3-12x 2+2(3+m )x -12,得f ′(1)=4-12+2(3+m )-12=0,解得m =7.………2分所以 f ′(x )=4 x 3-12x 2+20x -12=4(x -1)(x 2-2x +3) .方程x 2-2x +3=0的判别式Δ=22-3×4=-8<0,所以x 2-2x +3>0. 所以f ′(x )=0,解得x =1.……………………………4分由此可得f (x )的单调减区间是(-∞,1),f (x )的单调增区间是(1,+∞).…8分(2)f (x )=x 4-4x 3+(3+m )x 2-12x +12=(x 2+3)(x -2)2+(m -4)x 2. 当m <4时,f (2)=4(m -4)<0,不合题意;……………12分当m≥4时,f (x )=(x 2+3)(x -2)2+(m -4)x 2≥0,对一切实数x 恒成立. 所以,m 的取值范围是[4,+∞).……………16分。
高二(下)期末数学复习试卷三(文科)

高二(下)期末数学复习试卷三(文科)一、选择题(每小题5分,共60.0分)1.设复数z满足(1+i)z=2i,则|z|=()A. 12B. √22C. √2D. 22.用反证法证明“三角形中最多只有一个内角是钝角”的结论的否定是( )A. 有两个内角是钝角B. 有三个内角是钝角C. 至少有两个内角是钝角D. 没有一个内角是钝角3.设函数y=√4−x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=()A. (1,2)B. (1,2]C. (−2,1)D. [−2,1)4.设i为虚数单位,m∈R,“复数m(m−1)+i是纯虚数”是“m=1”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件5.执行如图所示的程序框图,如果运行结果为720,那么判断框中可以填入( )A. k<6?B. k<7?C. k>6?D. k>7?6.设某中学的高中女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,3,…,n),用最小二乘法近似得到回归直线方程为,则下列结论中不正确的是()A. y与x具有正线性相关关系B. 回归直线过样本的中心点(x,y)C. 若该中学某高中女生身高增加1cm,则其体重约增加0.85kgD. 若该中学某高中女生身高为160cm,则可断定其体重必为50.29kg7.函数f(x)=ln|x+1|x+1的大致图象为()A. B.C. D.8.用二分法求方程近似解的过程中,已知在区间[a,b]上,f(a)>0,f(b)<0,并计算得到f(a+b2)<0,那么下一步要计算的函数值为()A. f(3a+b4) B. f(a+3b4) C. f(a+b4) D. f(3a+3b4)9.随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,图2是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( )①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气达标天数的比重下降了 ③8月是空气质量最好的一个月 ④6月份的空气质量最差.A. ①②③B. ①②④C. ①③④D. ②③④10. 下列说法错误的是()A. 在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B. 在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C. 线性回归方程对应的直线y ̂=b ̂x +a ̂至少经过其样本数据点中的一个点D. 在回归分析中,相关指数R 2越大,模拟的效果越好 11. 若函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A. 1<a ≤2B. a ≥4C. a ≤2D. 0<a ≤312. 已知定义在R 上的函数y =f (x )对任意的x 满足f (x +1)=−f (x ),当−1≤x <1,f (x )=x 3.函数g(x)={|log a x|,x >0−1x,x <0,若函数h (x )=f (x )-g (x )在[-6,+∞)上恰有6个零点,实数a 的取值范围是( )A. (0,17)⋃(7,+∞)B. [19,17)⋃(7,9]C. (19,17]⋃[7,9)D. [19,1)⋃(1,9]二、填空题(本大题共4小题,每题5分,共20.0分)13. 函数f (x )=ax 3+3x 2+2,若f ′(-1)=6,则a 的值等于______ . 14. ln1=0,ln (2+3+4)=2ln3,ln (3+4+5+6+7)=2ln5,ln (4+5+6+7+8+9+10)=2ln7,……则根据以上四个等式,猜想第n 个等式是______.(n ∈N *) 15. 已知函数f(x)={3x −1,x >0−2x 2−4x,x ≤0,若方程f(x)=m 有3个不等的实根,则实数m 的取值范围是________.16. 已知函数f (x )的定义域为[-1,5],部分对应值如下表,f (x )的导函数y =f ˈ(x )图象如图所示.下列关于f (x )的命题:X -1 0 4 5 f (x )1221①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a有4个零点.其中正确命题的序号是__________.三、解答题(本大题共7小题,共84.0分)17.已知命题p:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,命题q:函数y=log a(1-2x)在定义域上单调递增,若“p∨q”为真命题且“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=(a2-3a+3)a x是指数函数.(1)求f(x)的表达式;(2)判断F(x)=f(x)-f(-x)的奇偶性,并加以证明;(3)解不等式:log a(1-x)>log a(x+2).19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)20. 中国"一带一路"战略构思提出后,某科技企业为抓住"一带一路"带来的机遇,决定开发生产一款大型电子设备.生产这种设备的年固定成本为500万元,每生产x台,需另投入成本c (x )(万元),当年产量不足80台时,c (x )=12x 2+40x(万元);当年产量不小于80台时,c (x )=101x +8100x−2180(万元).若每台设备售价为100万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y(万元)关于年产量x(台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?21. 已知函数f (x )=x •ln x .(Ⅰ)求曲线y =f (x )在点(1,f (1))处的切线方程; (Ⅱ)求f (x )的单调区间;(Ⅲ)若对于任意x ∈[1e ,e],都有f (x )≤ax -1,求实数a 的取值范围.四、选考题(本题满分10,请在22题23题任选一题作答,多答则以22题计分,解答应写出文字说明、证明过程或演算步骤.)[选修4-4:坐标系与参数方程]22. 已知曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,有曲线C 2:ρ=2cosθ-4sinθ (1)将C 1的方程化为普通方程,并求出C 2的平面直角坐标方程 (2)求曲线C 1和C 2两交点之间的距离.23. 已知函数f (x )=|2x +1|-|x -m |(m ∈R ).(1)当m =1时,解不等式f (x )≥2;(2)若关于x 的不等式f (x )≥|x -3|的解集包含[3,4],求m 的取值范围.答案和解析1.【答案】C2.【答案】C3.【答案】D4.【答案】B5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】A 10.【答案】C 11.【答案】A 12.【答案】B【解析】解:∵对任意的x 满足f (x+1)=-f (x ),∴f (x+2)=-f (x+1)=f (x ),即函数f (x )是以2为周期的函数,画出函数f (x )、g (x )在[-6,+∞)的图象,由图象可知:在y 轴的左侧有2个交点,只要在右侧有4个交点即可,则即有,故7<a≤9或≤a <.13.【答案】4 14.【答案】15.【答案】(0,2) 16.【答案】①②【解析】由导函数的图象可知:当x ∈(-1,0),(2,4)时,f′(x )>0, 函数f (x )增区间为(-1,0),(2,4); 当x ∈(0,2),(4,5)时,f′(x )<0, 函数f (x )减区间为(0,2),(4,5). 由此可知函数f (x )的极大值点为0,4,命题①正确; ∵函数在x=0,2处有意义,∴函数f (x )在[0,2]上是减函数,命题②正确; 当x ∈[-1,t]时,f (x )的最大值是2,那么t 的最大值为5,命题③不正确; 2是函数的极小值点,若f (2)>1,则函数y=f (x )-a 不一定有4个零点,命题④不正确. ∴正确命题的序号是①②. 故答案为:①②.17.【答案】解:不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.当a =2时不等式等价为-4<0成立,当a ≠2时,可得{a −2<0∆=4(a −2)2+16(a −2)<0,解得-2<a <2,综上-2<a ≤2.即p :-2<a ≤2,函数y =log a (1-2x )在定义域上单调递增,可得0<a <1,即q :0<a <1,若“p ∨q ”为真命题且“p ∧q ”为假命题,则p ,q 为一真一假,若p 真q 假,则{−2<a ≤2a ≥1或a ≤0即1≤a ≤2或-2<a ≤0,若p 假q 真,则{a >2或a ≤−20<a <1,此时无解,故实数a 的取值范围是1≤a ≤2或-2<a ≤0. 18.【答案】解:(1)∵函数f(x)=(a 2−3a +3)a x 是指数函数,a >0且a ≠1, ∴a 2-3a +3=1,可得a =2或a =1(舍去),∴f (x )=2x ;(2)由(1)得F (x )=2x -2-x ,∴F (-x )=2-x -2x ,∴F (-x )=-F (x ), ∴F (x )是奇函数;(3)不等式:log 2(1-x )>log 2(x +2),以2为底单调递增, 即1-x >x +2>0,∴-2<x <-12,解集为{x |-2<x <-12}.19.【答案】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完2×2…(分)将列联表中的数据代入公式计算,得: K 2=100×(30×10−45×15)275×25×45×55=10033≈3.030 因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(6分)(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i =1,2,3,b i 表示女性,i =1,2.Ω由10个等可能的基本事件组成.…(9分)用A 表示“任选2人中,至少有1个是女性”这一事件,则A ={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成.∴P (A )=710 (12)20.【答案】解:(1)∵当0<x <80时,∴y =100x −(12x 2+40x)−500=−12x 2+60x −500,∵当x ≥80时,∴y =100x −(101x +8100x−2180)−500=1680−(x +8100x),∴y ={−12x 2+60x −500,0<x <801680−(x +8100x),x ≥80; (2)∵由(1)可知当0<x <80时,y =−12(x −60)2+1300,∴此时当x =60时y 取得最大值为1300(万元),∵当x ≥80时,y =1680−(x +8100x)≤1680−2√x ·8100x=1500,∴当且仅当x =8100x,即x =90时,y 取最大值为1500(万元),∴综上所述,当年产量为90台时,该企业在这一电子设备的生产中所获利润最大,最大利润为1500万元.21.【答案】解:(Ⅰ)因为函数f (x )=x lnx ,所以f′(x)=lnx +x ⋅1x =lnx +1,f '(1)=ln1+1=1.又因为f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为y =x -1.(Ⅱ)函数f (x )=x lnx 定义域为(0,+∞),由(Ⅰ)可知,f '(x )=ln x +1. 令f ′(x )=0,解得x =1e .所以,f (x )的单调递增区间是(1e ,+∞),f (x )的单调递减区间是(0,1e ). (Ⅲ)当1e ≤x ≤e 时,“f (x )≤ax -1”等价于“a ≥lnx +1x ”.令g(x)=lnx +1x ,x ∈[1e,e],g′(x)=1x−1x 2=x−1x 2,x ∈[1e ,e].当x ∈(1e ,1)时,g '(x )<0,所以以g (x )在区间(1e ,1)单调递减.当x ∈(1,e )时,g '(x )>0,所以g (x )在区间(1,e )单调递增.而g(1e )=−lne +e =e −1>1.5,g(e)=lne +1e =1+1e <1.5.所以g (x )在区间[1e ,e]上的最大值为g(1e )=e −1.所以当a ≥e -1时,对于任意x ∈[1e ,e],都有f (x )≤ax -1.22.【答案】解:(1)曲线C 1在平面直角坐标系中的参数方程为{x =√55ty =2√55t −1(t 为参数),消去参数t 可得普通方程:y =2x -1.由曲线C 2:ρ=2cosθ-4sinθ,即ρ2=ρ(2cosθ-4sinθ),可得直角坐标方程:x 2+y 2=2x -4y .(2)x 2+y 2=2x -4y .化为(x -1)2+(y +2)2=5.可得圆心C 2(1,-2),半径r =√5. 圆心C 2(1,-2)到直线y =2x -1的距离为d =√12+22∴曲线C 1和C 2两交点之间的距离=2√5−(√12+22)2=8√55. 23.【答案】解:(1)当x ≤−12时,f (x )=-2x -1+(x -1)=-x -2,由f (x )≥2解得x ≤-4,综合得x ≤-4;当−12<x <1时,f (x )=(2x +1)+(x -1)=3x ,由f (x )≥2解得x ≥23,综合得23≤x <1;当x ≥1时,f (x )=(2x +1)-(x -1)=x +2,由f (x )≥2解得x ≥0,综合得x ≥1.所以f (x )≥2的解集是(−∞,−4]∪[23,+∞).(2)∵f (x )=|2x +1|-|x -m |≥|x -3|的解集包含[3,4],∴当x ∈[3,4]时,|2x +1|-|x -m |≥|x -3|恒成立原式可变为2x +1-|x -m |≥x -3,即|x -m |≤x +4,∴-x -4≤x -m ≤x +4即-4≤m ≤2x +4在x ∈[3,4]上恒成立,显然当x =3时,2x +4取得最小值10,即m 的取值范围是[-4,10].。
高二数学文科期末测试题

高二数学文科期末测试题高二数学文科期末测试题一.选择题(每小题5分,共60分)1.以下四个命题中,真命题的序号是(。
)A。
①②。
B。
①③。
C。
②③。
D。
③④2.“x≠”是“x>”的(。
)A。
充分而不必要条件。
B。
必要而不充分条件C。
充分必要条件。
D。
既不充分也不必要条件3.若方程C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a是常数),则下列结论正确的是(。
)A。
$\forall a\in R^+$,方程C表示椭圆。
B。
$\forall a\in R^-$,方程C表示双曲线C。
$\exists a\in R^-$,方程C表示椭圆。
D。
$\exists a\in R$,方程C表示抛物线4.抛物线:$y=x^2$的焦点坐标是(。
)A。
$(0,\frac{1}{4})$。
B。
$(0,\frac{1}{2})$。
C。
$(1,\frac{1}{4})$。
D。
$(1,\frac{1}{2})$5.双曲线:$\frac{y^2}{4}-\frac{x^2}{1}=1$的渐近线方程和离心率分别是(。
)A。
$y=\pm2x$,$e=3$。
B。
$y=\pm\frac{1}{2}x$,$e=5$C。
$y=\pm\frac{1}{2}x$,$e=3$。
D。
$y=\pm2x$,$e=5$6.函数$f(x)=e^xlnx$在点$(1,f(1))$处的切线方程是(。
)A。
$y=2e(x-1)$。
B。
$y=ex-1$。
C。
$y=e(x-1)$。
D。
$y=x-e$7.函数$f(x)=ax^3+x+1$有极值的充要条件是(。
)A。
$a>$。
B。
$a\geq$。
C。
$a<$。
D。
$a\leq$8.函数$f(x)=3x-4x^3$($x\in[0,1]$)的最大值是(。
)A。
$\frac{2}{3}$。
B。
$-1$。
C。
$1$。
D。
$-\frac{2}{3}$9.过点$P(0,1)$与抛物线$y^2=x$有且只有一个交点的直线有(。
(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)
(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)一、单选题(本大题共12小题,共48.0分)1.命题“∀x∈R,x2-x≥0”的否定是()A. ∀x∈R,x2-x≥0B. ∃x∈R,x2-x≥0C. ∀x∈R,x2-x<0D. ∃x∈R,x2-x<02.下列求导运算正确的是()A. (cos x)′=sin xB.C. (2x)′=2x log2eD.3.若a,b∈R,则|a|+|b|>1是|a+b|>1的()条件A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 非充分非必要条件4.曲线y=-x3+3x2在点(1,2)处的切线方程为()A. y=3x-1B. y=-3x+5C. y=3x+5D. y=2x5.从1,2,3,4这四个数中一次随机选取两个数,所取两个数之和为5的概率是()A. B. C. D.6.过定点P(0,2)作直线l,使l与曲线y2=4x有且仅有1个公共点,这样的直线l共有()A. 1条B. 2条C. 3条D. 4条7.函数的导数是( )A. B. C. D.8.某天,由重庆八中渝北校区发往沙坪坝校区的三辆校车分别在,,发车,何老师在至之间到达乘车地点乘坐校车,且何老师到达乘车地点的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. B. C. D.9.若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,则p的值为()A. B. 2 C. D. 410.设函数,f'(x)为f(x)的导函数,若函数g(x)=f(x)+f'(x)的图象关于原点对称,则cosθ的值是()A. B. C. D.11.设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A. B. C. D.12.已知定义在R上的奇函数f(x),当x>0时xf′(x)>f(x),且f(3)=0,则不等式f(x)≥0的解集为()A. (-∞,-3]∪[3,+∞)B. [-3,3]C. (-∞,-3]∪[0,3]D. [-3,0]∪[3,+∞)二、单空题(本大题共4小题,共16.0分)13.一个骰子连续投2次,点数和为4的概率______ .14.若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是______ (写出所有正确命题的编号)①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3.②直线l:y=x-1在点P(1,0)处“切过”曲线C:y=ln x.③直线l:y=-x+π在点P(π,0)处“切过”曲线C:y=sin x.④直线l:y=x+1在点P(0,1)处“切过”曲线C:y=e x.15.已知过双曲线C:=1(a>0,b>0)的焦点的直线l与C交于A,B两点,且使|AB|=4a的直线l恰好有3条,则双曲线C的离心率为______.16.函数f(x)=x3+ax2+bx+a2(a,b∈R)在x=1处有极值为10,则b的值为______.三、解答题(本大题共6小题,共56.0分)17.若双曲线C与曲线x2-3y2=3有相同的渐近线,且过点(-6,3),试求C的方程.18.设函数f(x)=ln x-x(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求函数y=f(x)的极值.19.某商场举行抽奖活动,从装有编号为0,1,2,3四个小球的抽奖箱中同时抽出两个小球,两个小球号码相加之和等于5中一等奖,等于4中二等奖,等于3中三等奖.(1)求中三等奖的概率;(2)求中奖的概率.20.袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.(1)求n的值;(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①记“a+b=2”为事件A,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.21.已知斜率为1的直线l过椭圆+y2=1的右焦点F交椭圆于A、B两点,(1)求焦点F的坐标及其离心率(2)求弦AB的长.22.(Ⅰ)设函数f(x)定义域为I,叙述函数f(x)在定义域I内某个区间D上是减函数的定义;(Ⅱ)用单调性的定义证明函数f(x)=在x∈[2,6]的单调性;(Ⅲ)当x∈[2,6]时,求函数f(x)=的值域.(某某市县区中学)高二(上学期)文科数学期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】D【解析】【分析】本题考查全称命题的否定形式,属于基础题目.全称命题“∀x∈M,p(x)”的否定为特称命题“∃x∈M,¬p(x)”.【解答】解:命题“∀x∈R,x2-x≥0”的否定是“∃x∈R,x2-x<0”.故选:D.2.【答案】B【解析】解:(cos x)′=-sin x,,(2x)′=2x ln2,.故选:B.根据基本初等函数和复合函数的导数的求导公式求导即可.本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.3.【答案】B【解析】解:∵|a|+|b|≥|a+b|,∴若|a+b|>1,则|a|+|b|>1成立,即必要性成立,反之不一定成立,即充分性不成立即|a|+|b|>1是|a+b|>1必要不充分条件,故选:B.根据绝对值不等式的性质,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合绝对值不等式的性质是解决本题的关键.4.【答案】A【解析】【分析】本题主要考查了利用导数研究曲线上某点切线方程,属于基础题.根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,再用点斜式写出切线方程,化成斜截式即可.【解答】解:∵y=-x3+3x2,∴y'=-3x2+6x,∴y'|x=1=(-3x2+6x)|x=1=3,∴曲线y=-x3+3x2在点(1,2)处的切线方程为y-2=3(x-1),即y=3x-1,故选:A.5.【答案】C【解析】解:从1,2,3,4这四个数中一次随机地取两个数,其基本事件共有以下6个:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).其中两个数的和为5的共有两个(1,4),(2,3).故所求事件的概率P==,故选:C.从1,2,3,4这四个数中一次随机地取两个数,其基本事件共有以下6个,其中两个数的和为5的共有两个(1,4),(2,3).据此可得出答案.把所有的基本事件一一列举出来,再找出所要求的事件包含的基本事件个数即可.6.【答案】C【解析】解:由题意可知过点p与x轴平行时直线与抛物线有一个交点;当过点p与x轴不平行时设直线方程为y=kx+2,与抛物线方程联立消去y得k2x2+(4k-4)x+4=0要使直线与曲线有且仅有1个公共点需△=(4k-4)2-16k2=0,解得k=,同时抛物线与y轴也只有一个交点,故y轴也符合;故选:C.通过图象可知当直线与抛物线相切时,与x轴平行时和y轴时直线与抛物线有且仅有1个公共点.本题主要考查了抛物线的应用.本题可采用数形结合方法解决.7.【答案】C【解析】试题分析:考点:函数求导公式点评:本题考查的是幂函数的导数:若则8.【答案】C【解析】【分析】本题考查与长度有关的几何概型,求出何老师等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设何老师到达时间为y,当y在17:50至18:00,或18:20至18:30时,何老师等车时间不超过10分钟,故.故选C .9.【答案】D【解析】【分析】本题考查椭圆及抛物线的简单几何性质,考查转化思想,属于基础题.求得椭圆的焦点坐标,由题意可得=2,即可求得p的值.【解答】解:由椭圆a=,b=,c2=a2-b2=4,则椭圆的焦点右焦点F(2,0),由抛物线y2=2px的焦点为,则=2,则p=4,故选:D.10.【答案】D【解析】【分析】本题考查了导数的运法和三角函数的化简,属于中档题.先求导,再利用两角差的正弦公式可得可得g(x)=-4sin(x+θ-),再根据函数的性质即可求出θ=,问题得以解决.【解答】解:f(x)=2cos(x+θ),(0<θ<π)∴f′(x)=-2sin(x+θ),∴g(x)=f(x)+f'(x)=2cos(x+θ)-2sin(x+θ)=-4sin(x+θ-),∵函数g(x)=f(x)+f'(x)的图象关于原点对称,∴θ-=kπ,k∈Z,∵0<θ<π,∴θ=,∴cosθ=,故选:D.11.【答案】D【解析】【分析】本题考查了双曲线的焦点、虚轴、渐近线、离心率,考查了两条直线垂直的条件,考查了方程思想,属于基础题.先设出双曲线方程,则F,B的坐标可得,根据直线FB与渐近线y=垂直,得出其斜率的乘积为-1,进而求得b和a,c的关系式,进而根据双曲线方程a,b和c的关系进而求得a和c的等式,则双曲线的离心率可得.【分析】解:设双曲线方程为,则F(c,0),B(0,b)直线FB:bx+cy-bc=0与渐近线y=垂直,所以,即b2=ac所以c2-a2=ac,即e2-e-1=0,所以或(舍去).故选D .12.【答案】D【解析】解:根据题意,设g(x)=,(x>0),则其导数g′(x)=,而当x>0时xf′(x)>f(x),必有g′(x)>0,即g(x)在(0,+∞)上为增函数,又由f(3)=0,则g(3)==0,在区间(0,3)上,g(x)<0,在区间(3,+∞)上,g(x)>0,而g(x)=,则在区间(0,3)上,f(x)<0,在区间(3,+∞)上,f(x)>0,又由f(x)是定义在R上的奇函数,则f(0)=0,f(-3)=-f(3)=0,且在区间(-∞,-3)上,f(x)<0,在区间(-3,0)上,f(x)>0,综合可得:不等式f(x)≥0的解集为[-3,0]∪[3,+∞);故选:D.根据题意,设g(x)=,(x>0),求出其导数,分析可得g(x)在(0,+∞)上为增函数,又由f(3)=0可得g(3)=0,分析可得g(x)的符号,进而分析f(x)在(0,+∞)上的符号规律,结合函数的奇偶性分析可得答案.本题考查函数的单调性与导数的应用,涉及函数的奇偶性、单调性的综合应用,属于中档题.13.【答案】【解析】解:由题意知本题是一个古典概型,试验发生包含的基本事件共6×6=36个,满足条件的事件是点数和为4的可以列举出有(1,3)、(2,2)、(3,1)共3个,∴故答案为:本题是一个古典概型,试验发生包含的基本事件共6×6个,满足条件的事件是点数和为4的可以列举出有(1,3)、(2,2)、(3,1)共3个,根据古典概型概率公式得到结果.本题考查古典概型,古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型.14.【答案】①③【解析】解:①,由y=x3,得y′=3x2,则y′|x=0=0,直线y=0是过点P(0,0)的曲线C的切线,又当x>0时y>0,当x<0时y<0,满足曲线C在P(0,0)附近位于直线y=0两侧,故命题①正确;②由y=ln x,得y′=,则y′|x=1=1,曲线在P(1,0)处的切线为y=x-1,由g(x)=x-1-ln x,得g′(x)=1-,当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0.则g(x)在(0,+∞)上有极小值也是最小值,为g(1)=0.即y=x-1恒在y=ln x的上方,不满足曲线C在点P附近位于直线l的两侧,故命题②错误,③由y=sin x,得y′=cos x,则y′|x=π=-1,直线y=-x+π是过点P(0,0)的曲线的切线,又x∈(-,0)时x<sin x,x∈(0,)时x>sin x,满足曲线C在P(0,0)附近位于直线y=-x+π两侧,故命题③正确;④函数y=e x的导数f′(x)=y=e x,则f′(0)=1,则切线方程为y=x+1,设g(x)=e x-(x+1),则g′(x)=e x-1,当x>0,g′(x)>0,函数g(x)递增,当x<0时,g′(x)<0,函数g(x)递减,则当x=0时,函数取得极小值同时也是最小值g(0)=1-1=0,则g(x)≥g(0)=0,即e x≥x+1,则曲线不在切线的两侧,故④错误.故答案为:①③分别求出每一个命题中曲线C的导数,得到曲线在点P出的导数值,求出曲线在点P 处的切线方程,再由曲线在点P两侧的函数值与对应直线上点的值的大小判断是否满足(ii),则正确的选项可求.本题考查命题的真假判断与应用,考查了利用导数研究过曲线上某点处的切线方程,综合考查导数的应用.15.【答案】【解析】解:由|AB|=4a的直线1恰好有3条,由双曲线的对称性可得,必有一条与x轴垂直,另两条关于x轴对称,令x=c,代入双曲线C:=1(a>0,b>0),可得y=±b=±,即有此时|AB|==4a,即为b2=2a2=c2-a2,e>1,可得e=.故答案为:.由|AB|=4a的直线1恰好有3条,由双曲线的对称性可得,必有一条与x轴垂直,另两条关于x轴对称,令x=c,代入双曲线方程,计算即可得到双曲线的离心率.本题考查双曲线的渐近线方程的求法,注意运用双曲线的对称性,考查运算能力,属于中档题.16.【答案】-11【解析】解:函数f(x)=x3+ax2+bx+a2,则f'(x)=3x2+2ax+b,因为f(x)在x=1处有极值为10,则,解得a=4,b=-11或a=-3,b=3,当a=4,b=-11时,f'(x)=3x2+8x-11,Δ=64+132>0,所以函数有极值点;当a=-3,b=3时,f'(x)=3(x-1)2≥0,所以函数无极值点.综上所述,b的值为-11.故答案为:-11.利用极值以及极值点的定义,列出方程组,求出a,b的值,然后进行检验即可.本题考查了利用导数研究函数极值的理解与应用,函数极值点的理解与应用,考查了逻辑推理能力与化简运算能力,属于中档题.17.【答案】解:设所求双曲线方程为x2-3y2=λ,λ≠0,把点(-6,3)代入,得:36-27=λ,即λ=9,∴双曲线C的方程为.【解析】设所求双曲线方程为x2-3y2=λ,λ≠0,把点(-6,3)代入,能求出双曲线C的方程.本题考查双曲线方程的求法,是基础题,解题时要注意双曲线性质的合理运用.18.【答案】解:(Ⅰ)f(x)的定义域是(0,+∞),f′(x)=,令f′(x)>0,解得:0<x<1,令f′(x)<0得x>1,∴f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由(Ⅰ)得:f(x)在x=1处取得极大值,f(x)极大值=f(1)=-1.【解析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的极值即可.本题考查了函数的单调性、极值问题,考查导数的应用,是一道基础题.19.【答案】解:从袋中同时抽两个小球共有(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)六种情况.(1)设抽出两个球的号码之和为3为事件A,事件A共包含(0,3)(1,2)两种情况,∴.(2)设抽出两球的号码之和为5为事件B,两球的号码之和为4为事件C,由上知,.∴中奖概率为P=.【解析】本题考查古典概型及其计算,互斥事件的概率,属于基础题.求古典概型事件的概率,首先要求出各个事件包含的基本事件,求基本事件个数的常用方法有:列举法、排列、组合法、图表法.(1)先列举出从袋中同时抽两个小球的所有情况,得到号码之和为3的所有情况,据古典概型概率公式求出中三等奖的概率.(2)先列举出从袋中同时抽两个小球的所有情况,得到号码之和为4,5的所有情况,据古典概型概率公式求出中一等奖,中二等奖的概率,利用互斥事件的概率公式求出中奖概率.20.【答案】(1)n=2(2) 1-【解析】(1)由题意可得=,解得n=2.(2)①由于是不放回抽取,事件A只有两种情况:第一次取0号球,第二次取2号球;第一次取2号球,第二次取0号球.所以P(A)=.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4恒成立”.(x,y)可以看成平面中的点,则全部结果所构成的区域为Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)==1-.21.【答案】(1)解:∵a2=4,b2=1∴…(2分)∴…(4分)离心率e==…(6分)(2)解:由斜率为1的直线l过椭圆+y2=1的右焦点F得直线l的方程为设A(x1,y1),B(x2,y2),…(7分)由得:…(8分)∴…(9分)所以:…(10分)=…(11分)=…(12分)【解析】(1)利用椭圆的标准方程,求出a,b,c即可求出椭圆的焦点坐标,以及椭圆的离心率.(2)设出AB坐标,求出直线方程,联立椭圆与直线方程,利用韦达定理以及弦长公式求解即可.本题考查椭圆的标准方程的应用,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.22.【答案】解:(Ⅰ)减函数的定义为:一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1>x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是减函数.(Ⅱ)证明:设2≤x1<x2≤6,==,∵2≤x1<x2≤6,∴x2-x1>0,x1-1>0,x2-1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2);则f(x)在x∈[2,6]上单调递减;(Ⅲ)由(Ⅱ)f(x)在x∈[2,6]上单调递减,则,f max(x)=f(2)=5,故f(x)在x∈[2,6]上的值域为[,5].【解析】(Ⅰ)根据题意,由减函数的定义可得答案;(Ⅱ)根据题意,由作差法分析可得结论,(Ⅲ)根据题意,利用函数的单调性求出函数的最大值和最小值,即可得答案.本题考查函数单调性的判断以及性质的应用,注意函数单调性的定义,属于基础题.。
高二文科数学第一学期期末复习《不等式关系及不等式》(含答案)
高二文科数学第一学期期末复习《不等式关系及不等式》一、 知识点回顾: 考点一:不等式的解法例1:不等式2320x x -+>的解集是 A .{}21x x x <->-或 B .{}12x x x <>或C .{}12x x <<D .{}21x x -<<-练习1: 不等式102x x +≥-的解集为 A .{|12}x x -≤≤B .{|12}x x -≤<C .{|1x x ≤-或2}x ≥D .{|1x x ≤-或2}x >练习2:函数y 的定义域为 .练习3:若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a +b 等于( )A .-18B .8C .-13D .1练习4:已知不等式2230x x --<的解集为A ,不等式2450x x +-<的解集为B . (1)求A B ;(2)若不等式20x ax b ++<的解集是AB ,求20ax x b ++<的解集.练习5:设已知条件2:8200p x x -->;:q 1x a >+或1x a <-;若q ⌝是p ⌝的充分而不必要条件,求正实数a 的取值范围.考点二:二元一次不等式组和线性规划问题例2:若 226x y x y ≥⎧⎪≥⎨⎪+≤⎩,则目标函数3z x y =+的取值范围是 .练习6:如果实数,x y 满足:102010x y x y x -+≤⎧⎪+-≤⎨⎪+≥⎩,则目标函数4z x y =+的最大值为A .2B .3C .27D .4练习7:221x y x y +--+()()0≥表示的平面区域是练习8:某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.那么通过合理安排生产计划,每天生产的甲、乙两种产品分别多少桶时,公司共可获得的最大利润?并求出该最大利润.★例3:已知点P (x ,y )的坐标满足条件41x y y x x +≤⎧⎪≥⎨≥⎪⎩,点O 为坐标原点,那么|PO |的最小值等于 ,最大值等于 .★练习9:若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx -1的取值范围是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-1)D .[1,+∞) 考点三:基本不等式及应用重要不等式:对于任意实数,a b ,有22____2a b ab +,当且仅当________时,等号成立.基本不等式:设,(0,)a b ∈+∞,则2a b+________时,不等式取等号. 例4:已知t >0,则函数y =t 2-4t +1t的最小值为练习10:在下列各函数中,最小值等于2的函数是( )A .y =x +1xB .y =cos x +1cos x (0<x <π2)C .y =x 2+3x 2+2D .y =e x +4e x -2练习11:已知正项等比数列{}n a 满足:7652a a a =+,如果存在两项m n a a 和14a ,则14m n+的最小值为 A .32 B .53 C .256D .不存在练习12:国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54000美元. (Ⅰ)写出钻石的价值y 关于钻石重量x 的函数关系式;(Ⅱ)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉,试证明:当n m =时,价值损失的百分率最大.(注:价值损失的百分率=100%-⨯原有价值现有价值原有价值;在切割过程中的重量损耗忽略不计)★练习13:证明不等式:a ,b ,c ∈R ,a 4+b 4+c 4≥abc (a +b +c ).二、 基础自测: 1.如果1a b <<-,则有A .2211b a b a <<< B .2211a b b a <<< C .2211b a a b <<<D .2211a b a b <<<2.不等式组300x x y x y ≤⎧⎪+≥⎨⎪-≥⎩表示的平面区域的面积等于A .29 B .9 C .227 D .183.下列二元一次不等式组可用来表示图中阴影部分表示的平面区域的是A .10220x y x y +-≥⎧⎨-+≥⎩B .10220x y x y +-≤⎧⎨-+≤⎩C .10220x y x y +-≥⎧⎨-+≤⎩D .10220x y x y +-≤⎧⎨-+≥⎩4. 若A =(x +3)(x +7),B =(x +4)(x +6),则A 、B 的大小关系为________.5.已知命题p :44x a -<-<,命题q :230x x --<()(),且q 是p 的充分而不必要条件,求a 的取值范围.高二文科数学第一学期期末复习《不等式关系及不等式》答案例1、B 练1、D 2、[-1,6] 3、C练4、解:(1)解不等式2230x x --<,得{}|13A x x =-<<……2分解不等式2450x x +-<,得{}|51B x x =-<< ……4分{}|53A B x x ∴=-<< ……6分(2)由20x ax b ++<的解集是(-5,3) ∴2550930a b a b -+=⎧⎨++=⎩,解得215a b =⎧⎨=-⎩……8分22150x x ∴+-< ,-3<x <25, ……10分故不等式解集为5|32x x ⎧⎫-<<⎨⎬⎩⎭……12分 练5、解: 由020x 8x 2>-- 解得:10x >或2x -< ……3分又因:q a 1x +>或a 1x -<∴ p ⌝:10x 2≤≤-, q ⌝:a 1x a 1+≤≤- ……6分 q ⌝是p ⌝的充分不必要条件,∴⎪⎩⎪⎨⎧-≥-≤+>2a 110a 10a ……10分解得: 3a 0≤<所以所求a 的取值范围是(]3,0. ……12分例2、[]14,8 练6、C 练7、A练8、解:设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元, 则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,z =300x +400y , ………… 6分在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0, …………10分 平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大, …………12分此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司生产甲产品4桶乙产品4桶时可获得的最大利润是2 800元. …………14分 例3、10;2 练9、B例4、-2 练10、D 练11、A练12、解:(Ⅰ)由题意可设价值与重量的关系式为:2kx y = ………… 2分 ∵ 3克拉的价值是54000美元∴ 23k 54000⋅=解得:6000k = ………… 4分 ∴ 2x 6000y ⋅=答:此钻石的价值与重量的函数关系式为2x 6000y ⋅=. …… 6分(Ⅱ)若两颗钻石的重量为m 、n 克拉 则原有价值是()2n m 6000+,现有价值是22n 6000m 6000+ ………… 8分 价值损失的百分率=()()%100n m 6000n 6000m 6000n m 60002222⨯+--+ ()()21n m 2n m 2%100n m mn 2222=+⎪⎭⎫ ⎝⎛+⨯≤⨯+= ………… 11分 当且仅当n m =时取等号答:当n m =时,价值损失的百分率最大. ………… 14分练习13:证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2) 即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2, c 2a 2+a 2b 2≥2a 2bc .∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc ), 即a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). ∴a 4+b 4+c 4≥abc (a +b +c ).二、基础自测:1、A2、B3、A4、A<B5. 解: 设q ,p 表示的范围为集合A ,B ,则A =(2,3),B =(a -4,a +4). ………… 4分 由于q 是p 的充分而不必要条件,则有A 是B 的真子集, ………… 6分即⎩⎪⎨⎪⎧a -4≤2,a +4>3或 ⎩⎪⎨⎪⎧a -4<2,a +4≥3,………… 10分解得-1≤a ≤6. ………… 12分。
高二数学试题:高二数学文科期末复习题一
高二数学试题:高二数学文科期末复习题一查字典数学网为大家提供高二数学试题:高二数学文科期末复习题一一文,供大家参考使用:高二数学试题:高二数学文科期末复习题一.命题的否定为()A. B.C. D.【答案】C.与直线垂直的直线的倾斜角为()A.B.C.D.【答案】B.已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A、y=x (B)y=x (C)y=x (D)y=x【答案】C;.设是可导函数,且()A.B.-1 C.0 D.-2【答案】B.点到点的距离相等,则x的值为( )A.B.1 C.D.2【答案】B.若直线经过两点,则直线AB的倾斜角为A.30 B.45 C.90 D.0【答案】C.椭圆上一点M到焦点F1的距离为2,N是MF1的中点.则|ON|等于()(A)2 (B)4 (C)8 (D)【答案】B.是直线与直线平行的(A)充分必要条件(B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件【答案】C.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是A.BD//平面CB1D1 B.AC1BDC.AC1平面CB1D1 D.异面直线AD与CB1所成的角为60【答案】D.已知圆:+=1,圆与圆关于直线对称,则圆的方程为()A.+=1 B.+=1C.+=1D.+=1【答案】B w W w .x K b 1.c o M.已知函数f(x)=2(1)x4-2x3+3m,xR,若f(x)+90恒成立,则实数m的取值范围是()A.m2(3) B.m2(3) C.m2(3) D.m2(3)答案 A.已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则椭圆的离心率为()A.B.C.D.【答案】C观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。
四川省泸州市2022-2023学年高二下学期期末数学(文科)试题(教师版)
泸州市高2021级高二学年末统一考试数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码枮贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5黑米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题共60分)一、选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.命题“R x ∀∈,e 2xx ≥+”的否定是().A.0R x ∃∈,00e 2xx <+ B.R x ∀∈,2x e x <+C.0R x ∃∈,00e 2xx ≥+ D.0R x ∃∉,00e 2xx <+【答案】A 【解析】【分析】根据全称命题的否定分析判断.【详解】由题意可知:命题“R x ∀∈,e 2x x ≥+”的否定是“0R x ∃∈,00e 2x x <+”.故选:A.2.复数z 满足()1i 2i z +=,则z z +=().A.2-B.2C.2i- D.2i【答案】B 【解析】【分析】根据给定条件,利用复数的除法运算求出复数z ,再结合共轭复数的意义、复数加法求解作答.【详解】依题意,2i (2i)(1i)22i 1i 1i (1i)(1i)2z -+====+++-,则1i z =-,所以(1i)(1i)2z z +=++-=.故选:B3.某保险公司为客户定制了A ,B ,C ,D ,E 共5个险种,并对5个险种参保客户进行抽样调查,得出如下的统计图:用该样本估计总体,以下四个说法错误的是().A.57周岁以上参保人数最少B.18~30周岁人群参保总费用最少C.C 险种更受参保人青睐D.31周岁以上的人群约占参保人群80%【答案】B 【解析】【分析】根据扇形图、散点图、频率图对选项进行分析,从而确定正确答案.【详解】A 选项,57周岁以上参保人数所占比例是10%,是最少的,A 选项正确.B 选项,“18~30周岁人群参保平均费用”比“57周岁以上人群参保平均费用”的一半还多,而18~30周岁人群参保人数所占比例是57周岁以上参保人数所占比例的两倍,所以57周岁以上参保人群参保总费用最少,B 选项错误.C 选项,C 险种参保比例0.358,是最多的,所以C 选项正确.D 选项,31周岁以上的人群约占参保人群30%40%10%80%++=,D 选项正确.故选:B4.在区间[]1,9-上随机选取一个数M ,执行如图所示的程序框图,且输入x 的值为2,然后输出n 的值为N ,则MN ≤的概率为().A.15B.25C.310D.35【答案】C 【解析】【分析】根据程序框图分析可得2N =,再结合几何概型运算求解.【详解】因为2x =,则2242310-⨯+=-≤,可得3,1x n ==;因为3x =,则2343300-⨯+=≤,可得4,2x n ==;因为4x =,则2444330-⨯+=>,输出2n =,即2N =;所以M N ≤的概率()()2139110P --==--.故选:C.5.已知条件p :函数()21f x x mx =++在区间1(,)2+∞上单调递增,条件4:3q m ≥-,则p 是q 的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】求出条件p 的等价条件,再利用充分条件、必要条件的定义判断作答.【详解】函数()21f x x mx =++的单调递增区间是[,)2m -+∞,依题意,1(,)[,)22m+∞⊆-+∞,因此122m -≤,解得1m ≥-,显然[1,)-+∞ 4[,)3-+∞,所以p 是q 的充分不必要条件.故选:A6.某企业为了研究某种产品的销售价格x (元)与销售量y (千件)之间的关系,通过大量市场调研收集得到以下数据:x161284y24a3864其中某一项数据※丢失,只记得这组数据拟合出的线性回归方程为: 3.171y x =-+,则缺失的数据a 是()A.33B.35C.34D.34.8【答案】C 【解析】【分析】由于线性回归直线一定过样本中心点,所以将样本中心点坐标代入可求得结果.【详解】因为点(,)x y 一定在回归方程上,所以将161284104x +++==,24386412644a a y ++++==代入 3.171y x =-+解得34a =.故选:C.7.在样本的频率分布直方图中,共有4个小长方形,这4个小长方形的面积由小到大依次构成等比数列{}n a ,若212a a =,且样本容量为300,则对应小长方形面积最小的一组的频数为()A.20 B.30C.40D.50【答案】A 【解析】【分析】求出等比数列{}n a 公比的值,分析可知,数列{}n a 前四项的和为1,根据等比数列的求和公式求出1a 的值,利用频数、频率与总容量的关系可求得对应小长方形面积最小的一组的频数.【详解】设等比数列{}n a 的公比为q ,则212a q a ==,由题意可知,()()441112341112151112a q a a a a a a q--+++====--,解得1115a =,因此,对应小长方形面积最小的一组的频数为113003002015a =⨯=.故选:A .8.已如函数()()ln 1e xf x x x =+-,则()()232f x f x-<的解集为()A.()(),12,-∞+∞ B.()()0,12,⋃+∞C.()2,12,3⎛⎫+∞⎪⎝⎭D.()1,2【答案】C 【解析】【分析】求出函数()f x 的定义域,利用导数分析函数()f x 的单调性,由()()232f x f x -<可得出关于x的不等式组,由此可解得原不等式的解集.【详解】函数()()ln 1e xf x x x =+-的定义域为()0,∞+,则()1e 0xf x x x'=+>对任意的0x >恒成立,所以,函数()f x 在()0,∞+上为增函数,由()()232f x f x-<可得232320x x x ⎧>-⎨->⎩,解得213x <<或2x >,因此,不等式()()232f x f x -<的解集为()2,12,3⎛⎫+∞⎪⎝⎭.故选:C.9.已知定点()2,0P -和直线()()():131225l x y R λλλλ+++=+∈,则点P 到直线l 的距离的最大值为()A. B.C.D.【答案】B 【解析】【分析】根据直线l 的方程先确定出直线所过的定点Q ,然后判断出点P 到直线l 的距离的最大值为PQ ,结合点的坐标求解出结果.【详解】将()()131225x y λλλ+++=+变形得()()23250x y x y λ+-++-=,所以l 是经过两直线50x y +-=和3250x y +-=的交点的直线系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学(文科)期末复习试卷1. ( C )2 A ) A.3 B. 2 C. 1 3.已知函数()f x 的导函数为()f x ',且满足()2(1)ln f x xf x '=+,则(1)f '=( D ) A .e - B .e C .1 D . 1-4.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如图所示,则下列结论中一定成立的是( B )A .函数()f x 有极大值(2)f 和极小值(2)f -B .函数()f x 有极大值(2)f -和极小值(2)fC .函数()f x 有极大值(2)f 和极小值(1)fD .函数()f x 有极大值(2)f -和极小值5.已知函数c x x y +-=33的图像与x 轴恰有两个公共点,则c =( A ) A .-2或2 B .-9或3 C .-1或1 D .-3或16.已知定义在R 上的奇函数()f x ,设其导函数'()f x ,当(],0x ∈-∞时,恒有'()()xf x f x <-,则满足的实数x 的取值范围是( A ) C D .(-2,1)7.已知函数2|3|)(3--+=a x x x f 在)2,0(上恰有两个零点,则实数a 的取值范围为( D )A .)2,0(B .)4,0(C .)6,0(D .(2,4)8.设函数1)1(3)(223+--+=k x k kx x f 在区间(0,4)上是减函数,则k 的取值范围( D )9.已知x ax x x f 4)(23+-=有两个极值点1x 、2x ,且()f x 在区间(0,1)上有极大值,无极小值,则a 的取值范围是(C )10.已知点P 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围( D )11的图像在点00(,)A x y 处的切线斜率为1,0tan x =3-; 12 b>0 ; 13.,则()f x 的单调递增区间是(),0+∞ ;14.已知函数c bx ax x x f +++=23)(在2-=x 处取得极值,并且它的图象与直线33+-=x y 在点(1,0)处相切,则函数)(x f 的表达式为68)(23+-+=x x x x f ;15在()2,10a a -上有最小值,则实数a 的取值范围是 -3<a<1 .16.且曲线()(1))y f x f =在点(1,处的切线斜率为3.(1)求函数)(x f 的解析式;(2)求)(x f y =在[]4,1-上的最大值和最小值.17,R a ∈. (Ⅰ)(Ⅱ)若函数)(x f 在导函数)(x f '的单调区间上也是单调的,求a 的取值范围;解:(Ⅰ)(0>x ),舍), ……1分 +∞)上单调递增 ……2分 ∴()f x 在. ……4分(……5分 2224322a a a a a ∆=--=-,设()0g x =的两根为)(,2121x x x x < ,10当0∆≤即02a ≤≤,()f x '≥0,∴()f x 单调递增,满足题意. ……6分 20当0∆>即0a <或2a >时,(1)若210x x <<,则)(x f 在),0(2x 上递减,),(2+∞x 上递增,∴()f x '在(0,+∞)单调增,不合题意. ……7分(2)若021<<x x 时()f x 在(0,+∞)上单调增,满足题意. ……8分(3) 若210x x <<则即a>2时 ∴()f x 在(0,1x )上单调递增,在(1x ,2x )上单调递减,在(2x ,+∞)上单调递增, 不合题意. ……9分……10分 ……5分设()0g x =的两根)(,2121x x x x <10当0∆≤即02a ≤≤,()f x '≥0,∴()f x 单调递增,满足题意. ……6分 20当0∆>即(1)当0<a ,210x x <<,)(x f 在),0(2x 上单调递减,在),(2+∞x 上单调递增,单调增不合题意. ……7分在(0,+∞)上单调增,满足题意.……8分 (2)当2>a 时,,210x x << ∴f(x)在(0,x 1)单调增,(x 1,x 2)单调减,(x 2,+∞)单调增,不合题意 ……9分 或02a ≤≤. ……10分18.已知函数()1ln ()f x ax x a R =--∈. (Ⅰ)讨论函数()f x 在定义域内的极值点的个数;(Ⅱ)若函数()f x 在1x =处取得极值,对(0,),()2x f x bx ∀∈+∞≥-恒成立,求实数b 的取值范围. 【解析】(Ⅰ)显然函数的定义域为()0,+∞. 因为()1ln ()f x ax x a R =--∈,所以 当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞单调递减,∴)(x f 在),0(+∞上没有极值点; ……3分 当 0>a 时,由()0f x '<得,由()0f x '>得 ∴)(x f 在上递增,即)(x f 在∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时)(x f 在),0(+∞上有一个极值点.……6分 (Ⅱ)∵函数)(x f 在1=x 处取得极值,由(Ⅰ)结论知1=a ,……8分令()0g x '<可得)(x g 在(]2,0e 上递减,令()0g x '>可得)(x g 在[)+∞,2e 上递增, ……10分……12分 19.(Ⅰ)当2=m 时,求曲线)(x f y =在点))1(,1(f 处的切线方程;(Ⅱ)当1=m 时,判断方程)()(x g x f =实根个数; (Ⅲ)若(]e x ,1∈时,不等式2)()(<-x g x f 恒成立,求实数m 的取值范围. 【解析】试题分析:(1)利用导数的几何意义得到导数的值,切点坐标得到结论。
(2)1=m 时,令求解导数,并判定∴()x h y =在()+∞,0内有且仅有一个零点进而得到结论。
(3 即()x x x x m ln 2212+<-恒成立, 又012>-x ,则当(]e x ,1∈时,分离参数法构造新函数利用求解的最小值得到参数m 的范围。
(1)2=m 时,,切点坐标为()0,1, ∴切线方程为44-=x y(2)1=m 时,令 ,()x h ∴在()+∞,0上为增函数∴()x h y =在()+∞,0内有且仅有一个零点 ∴在()+∞,0内)()(x g x f =有且仅有一个实数根(或说明0)1(=h 也可以)(3 即()x x x x m ln 2212+<-恒成立, 又012>-x ,则当(]e x ,1∈时, ,只需m 小于()xG 的最小值,e x ≤<1 ,0ln >∴x ,∴ 当(]e x ,1∈时()0'<x G ,()x G ∴在(]e ,1上单调递减,()x G ∴在(]e ,1的最小值为 则m 的取值范围是20,()ln g x a x a =+.(Ⅰ)1a =时,求()()()F x f x g x =-的单调区间; (Ⅱ)若1x >时,函数()y f x =的图象总在函数()y g x =的图象的上方,求实数a 的取值范围..解:(1)()F x 的单增区间为[)1,+∞;单减区间为(]0,1. (2)实数a21.已知函数x a ax x x f )2(ln )(2-+-=.(1)讨论)(x f 的单调性;(2)设0>a ,证明:当(3)若函数)(x f y =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0. 解:(1)()(0,),f x +∞的定义域为…………………………………………1分…………………………2分 (i )若0,()0,()(0,)a f x f x '≤>+∞则所以在单调增加.…………………3分……………………5分 (…………………………………7分单调递增,()()00=>g x g ……………………………9分(3)由(I )可得,当0,()a y f x ≤=时函数的图像与x 轴至多有一个交点,由(I )知,0()0.f x '< …………………………………………………14分 22.已知函数)0(3ln )(≠∈--=a R a ax x a x f 且.(Ⅰ) 求函数)(x f 的单调区间;(Ⅱ)若函数)(x f y =的图像在点))2(,2(f 处的切线的倾斜角为︒45,问:m 在什么范围取值时,对于任意的[]2,1∈t ,函数在区间)3,(t 上总存在极值? (Ⅲ)当2=a 时,设函数,若在区间[]e ,1上至少存在一个0x ,使得)()(00x f x h >成立,试求实数p 的取值范围.解:(Ⅰ)当0>a 时,函数)(x f 的单调增区间是)1,0(,单调减区间是),1(+∞; 当0<a 时,函数)(x f 的单调增区间是),1(+∞,单调减区间是)1,0(.(II )根据可得2a =-,从而可求出,进而得到那么本小题就转化为0)('=x g 有两个不等实根且至少有一个在区间)3,(t 内,然后结合二次函数的图像及性质求解即可. (III)当a=2时,令()()()F x h x f x =-,则然后对p 分0p ≤和0p >两种情况利用导数进行求解即可.当0>a 时,函数)(x f 的单调增区间是)1,0(,单调减区间是),1(+∞; 当0<a 时,函数)(x f 的单调增区间是),1(+∞,单调减区间是)1,0(.∴()223f x ln x x =-+-,∴2'()3(4)2g x x m x =++-.∵ 函数)(x g 在区间)3,(t 上总存在极值,∴0)('=x g 有两个不等实根且至少有一个在区间)3,(t 内 又∵函数)('x g 是开口向上的二次函数,且02)0('<-=g ,∴ ⎩⎨⎧><0)3('0)('g t g 由在[]2,1上单调递减,所以9)1()(min -==H t H ; ∴9-<m ,由023)4(27)3('>-⨯++=m g ,解得所以当m 在内取值时,对于任意的[]2,1∈t ,函数在区间)3,(t 上总存在极值. (Ⅲ).32ln 2)(,2--=∴=x x x f a 令()()()F x h x f x =-,则①当0≤p 时,由[]e x ,1∈得,从而()0F x <, 所以,在[]e ,1上不存在0x 使得)()(00x f x h >;②当0p >时,,[]1,,220x e e x ∈∴-≥ , 20,'()0px p F x +>>在[]1,e 上恒成立, 故()F x 在[]1,e 上单调递增.综上所述, p 的取值范围是。