高二数学上学期期末复习试卷 (2)
2021年高二数学上学期期末复习模拟六(选择性必修一、选择性必修第二册数列)

高二期末模拟试题六高二数学期末模拟六范围(选择性必修一+数列)一、单选题1.已知直线l :(3)(2)20m x m y m ++---=,点()21A --,,(22)B -,,若直线l 与线段AB 相交,则m 的取值范围为()A .(4][4)-∞-⋃+∞,,B .(22)-,C .3[8]2-,D .(4)+∞,2.已知等差数列{}n a 的公差为正数,且3712a a ⋅=-,464a a +=-,则20S 为()A .90-B .180-C .90D .1803.设O ABC -是正三棱锥,1G 是ABC 的重心,G 是1OG 上的一点,且13OG GG =,若OG xOA yOB zOC =++,则x y z ++=().A .14B .12C .34D .14.已知(123)A -,,、(211)B -,,两点,则直线AB 与空间直角坐标系中的yOz 平面的交点坐标为()A .(000),,B .(057)-,,C .51(0)33,D .71(0)44,5.已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为()A .22(1)(1)2x y ++-=B .22(1)(1)2x y -++=C .22(1)(1)2x y -+-=D .22(1)(1)2x y +++=6.已知椭圆22221(0)x y a b a b+=>>的左焦点1F ,过点1F 作倾斜角为030的直线与圆222x y b +=,则椭圆的离心率为()A .12B.2C .34D .327.已知数列{}n a 的前n 项和为11,2,4n n n n S a S a S +==+,则n a =()A .432n -B .212n -C .212n +D .42n8.已知双曲线22214x y b-=()0b >的左右焦点分别为1F 、2F ,过点2F 的直线交双曲线右支于A 、B 两点,若1ABF ∆是等腰三角形,且120A ∠=︒.则1ABF ∆的周长为()A.83+B.)41-C.83+D.)22-二、多选题9.(多选题)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知1匹4=丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为n a ,2n an b =,对于数列{}n a 、{}n b ,下列选项中正确的为()A .1058b b =B .{}n b 是等比数列C .130105a b =D .357246209193a a a a a a ++=++10.记数列{a n }的前n 项和为S n ,若存在实数H ,使得对任意的n ∈N +,都有n S <H ,则称数列{a n }为“和有界数列”.下列说法正确的是()A .若{a n }是等差数列,且公差d =0,则{a n }是“和有界数列”B .若{a n }是等差数列,且{a n }是“和有界数列”,则公差d =0C .若{a n }是等比数列,且公比q <l ,则{a n }是“和有界数列”D .若{a n }是等比数列,且{a n }是“和有界数列”,则{a n }的公比q <l11.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有()A .()()a b a bλλ⊗=⊗B .a b b a⊗=⊗ C .()()()a b c a c b c+⊗=⊗+⊗D .若()11,a x y =,()22,b x y = ,则122a b x y x y⊗=-12.已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :221(1)5x y ++=上的动点,则()A .CB .C 的离心率为6C .圆D 在C 的内部D .||PQ 的最小值为第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______.14.一条光线从点()2,1-射出,经x 轴反射后与圆()()22341x y -+-=相切,则反射光线所在直线的斜率为________.15.如图所示,在正四棱柱1111ABCD A B C D -中,12AA =,1AB BC ==,动点P 、Q 分别在线段1C D 、AC 上,则线段PQ 长度的最小值是______.16.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,n *∈N ,()()112122n n n n n n b a a +++=++,对任意的n *∈N ,n k T >恒成立,则k 的取值范围是______.四、解答题17.已知直线:3260l x y --=.(1)若直线1l 过点()1,2M -,且1l l ⊥,求直线1l 的方程;(2)若直线,且直线2l 与直线l2l 的方程.18.已知圆221:2610C x y x y +---=和222:1012450.C x y x y +--+=(1)求证:圆1C 和圆2C 相交;(2)求圆1C 和圆2C 的公共弦所在直线的方程和公共弦长.19.记n S 为等差数列{}n a 的前n 项和.已知95S a =-.(1)若34a =,求{}n a 的通项公式;(2)若10a >,求使得n n S a ≥的n 的取值范围.20.设等比数列{}n a 的公比为q ,n S 是{}n a 的前n 项和,已知12a +,22a ,31a +成等差数列,且3241S a =-,1q >.(1)求{}n a 的通项公式;(2)记数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若4(2)n n T n S -=+成立,求n .21.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在线段AB上.(1)求异面直线1D E 与1A D 所成的角;(2)若二面角1D EC D --的大小为45 ,求点B 到平面1D EC 的距离.22.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,且椭圆C的右顶点到直线0x y -=的距离为3.(1)求椭圆C 的方程;(2)过点(2,0)P 的直线l 与椭圆C 交于A ,B 两点,求OAB 面积的最大值(O 为坐标原点).参考答案1.C 【详解】直线l 方程变形得:(1)(322)0x y m x y +-+--=.由103220x y x y +-=⎧⎨--=⎩得4515x y ⎧=⎪⎪⎨⎪=⎪⎩,∴直线l 恒过点4155C ⎛⎫ ⎪⎝⎭,,11354725ACk +==+,121154625BC k +==--,由图可知直线l 的斜率k 的取值范围为:116k ≤-或37k ≥,又32m k m +=--,∴11263m m ≤--+-或3273m m -≥+-,即28m <≤或322m -≤<,又2m =时直线的方程为45x =,仍与线段AB 相交,∴m 的取值范围为382⎡⎤-⎢⎥⎣⎦,.故选:C.2.D解:由等差数列{}n a 的公差为正数可得等差数列{}n a 为递增数列,464a a +=- ,374a a ∴=-+,与3712a a ⋅=-联立,由于公差为正数,∴解方程组可得376,2a a =-=,73273a a d -∴==-,13262210a a d =-=--⨯=-,()20120192019202010218022S a d ⨯⨯∴=+=⨯-+⨯=.故选:D.【点睛】本题考查等差数列性质的应用,考查等差数列基本量的计算及前n 项和的计算,是基础题.3.C 【详解】如下图所示,连接1AG 并延长交BC 于点D ,则点D 为BC 的中点,1G 为ABC 的重心,可得123AG AD =,而()()111222OD OB BD OB BC OB OC OB OB OC =+=+=+-=+,()1122123333OG OA AG OA AD OA OD OA OA OD=+=+=+-=+()()12113323OA OB OC OA OB OC =+⋅+=++,所以,13311111144333444OG OG OA OB OC OA OB OC ⎛⎫==++=++ ⎪⎝⎭,所以,14x y z ===,因此,34x y z ++=.故选:C.4.B解:设直线AB 与平面yOz 的交点为11(0)P y z ,,,(方法一)∵A 、B 、1P 三点共线,则1//APAB,∵(123)A -,,、(211)B -,,,∴111(1,2),3AP y z +-=- ,(1,3,4)AB =- ,则11231134y z +--==-,解得1157y z =-⎧⎨=⎩,则(057)P -,,,(方法二)∵A 、B 、1P 三点共线,则1(1)OPOA OB λλ=⋅+-⋅ ,则11(0,)(1,2,3)(1)(2,1,1),y z λλ=⋅-+-⋅-,则11022221133141y z λλλλλλλλλ=+-=-⎧⎪=-+-=-⎨⎪=-+=-⎩,解得11257y z λ=⎧⎪=-⎨⎪=⎩,则(057)P -,,,故选:B .5.B 【详解】圆心在0x y +=上,圆心的纵横坐标值相反,显然能排除C 、D ;验证:A 中圆心(11)-,到两直线0x y -=的距离是=;圆心(11)-,到直线40x y --==≠A 错误.故选:B .6.B 【解析】过点1F 倾斜角为030的直线方程为:)3y x c =+,即0x c +=,则圆心()0,0到直线的距离:2c d ==,由弦长公式可得:=,整理可得:2222222,,2b c a c c a c =∴-==则:212,22e e ==.本题选择B 选项.7.B【详解】因为14n n n S a S +=+,所以14n n n S S a +-=,即14n n a a +=,且12a =,所以数列{}n a 是以2为首项,4为公比的等比数列,所以121242n n n a --=⨯=,故选:B.8.A【详解】双曲线的焦点在x 轴上,则2,24a a ==;设2||AF m =,由双曲线的定义可知:12||||24AF AF a m =+=+,由题意可得:1222||||||||||AF AB AF BF m BF ==+=+,据此可得:2||4BF =,又,∴12||2||8BF a BF =+=,1ABF 由正弦定理有:11||||sin120sin 30BF AF =︒︒,即11||||BF AF =所以8)m =+,解得:83123m -=,所以1ABF ∆的周长为:11||||||AF BF AB ++=83121632(4)8162833m -++=+⨯=+故选:A 9.BD【详解】由题意可知,数列{}n a 为等差数列,设数列{}n a 的公差为d ,15a =,由题意可得130********d a ⨯+=,解得1629d =,116129(1)29n n a a n d +∴=+-=,2n a n b =Q ,1112222n n n n a a a d n a n b b ++-+∴===(非零常数),则数列{}n b 是等比数列,B 选项正确;16805532929d =⨯=≠ ,()553105222d d b b ==≠,1058b b ∴≠,A 选项错误;3012951621a a d =+=+=,2113052105a b ∴=⨯>,C 选项错误;41161933532929a a d =+=+⨯=,51162094542929a a d =+=+⨯=,所以,357552464432093193a a a a a a a a a a ++===++,D 选项正确.故选:BD 10.BC【详解】{}n a 是等差数列,公差为d ,则1(1)2n n n S na d -=+,A .0d =,则1n S na =,若10a ≠,则n →+∞时,n S →+∞,{a n }不是“和有界数列”,A 错;B .若{a n }是“和有界数列”,则由21(22n d d S n a n H =+-<知10,022d da =-=,即10a d ==,B 正确;C .{a n }是等比数列,公比是q ,则1(1)1-=-nn a q S q,若1q <,则n →+∞时,11n a S q →-,根据极限的定义,一定存在0H >,使得n S H <,对于任意*n N ∈成立,C 正确;D.若1q =-,10a ≠,则1,21,(*)0,2n a n k S k N n k=-⎧=∈⎨=⎩,∴12n S a <,{a n }是“和有界数列”,D 错.故选:BC.11.BD解:对于A :()()sin ,a b a b a bλλ⊗=⋅,()sin ,a b a b a b λλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅ ,=sin ,b a b a b a ⊗⋅ ,故a b b a ⊗=⊗ 恒成立;对于C ,若λa b = ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立;对于D ,1212cos ,x x y y a b a b +=⋅,sin ,a b =即有a b a b a ⊗=⋅⋅==1221x y x y =-.则1221a b x y x y ⊗=-恒成立.故选:BD.12.BC 【详解】由2216x y +=可知,2226,1,5a bc ===,则焦距2c =,离心率6c e a ===;设(),P x y ,圆心()1,0D -,半径为55r =,则PD ===>,故圆D 在C的内部;当PD时,||PQ的最小值为5-=,综上所述,选项BC 正确,故选:BC 13.480x y +-=【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-.在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=.即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <,AOB 的面积为()1411111481688222AOBk S k k k k⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=.故答案为:480x y +-=.14.43或34【详解】点()2,1-关于x 轴的对称点为()2,1--,则反射光线过点()2,1--,设反射光线所在直线为()12y k x +=+,即210kx y k -+-=,∴圆心到直线距离1d ==,解得:43k =或34k =,∴反射光线所在直线的斜率为43或34.故答案为:43或34.15.13【详解】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =- ,()10,1,2= DC ,()1,0,0DA =,设向量(),,n x y z = 满足n AC ⊥ ,1⊥ n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,解得2x y y z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min23DA n PQn⋅== .故答案为:23.16.13k ≥【详解】因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+,两式相减得:22112n n n n n a a a a a --=+--,整理得,()()1101n n n n a a a a --+--=,由0n a >知,10n n a a -+≠,从而110n n a a ---=,即当2,n n N *≥∈时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列,则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则121111111 (36611221)n n n n T b b b n n +=+++=-+-++-+++11311213n n +=<++-所以13k ≥.故答案为:13k ≥.17.【详解】(1)因为直线l 的方程为3260x y --=,所以直线l 的斜率为32.因为1l l ⊥,所以直线1l 的斜率为23-.因为直线1l 过点()1,2M -,所以直线1l 的方程为()2213y x +=--,即2340x y ++=.(2)因为直线2l 与直线l,所以可设直线2l 的方程为320x y m -+=,=7m =或19m =-.故直线2l 的方程为3270x y -+=或32190x y --=.18.【详解】(1)圆1C 的圆心()113C ,,半径1r =,圆2C 的圆心()256C ,,半径24r =,两圆圆心距121212d 544C C r r r r ==+=-=-,,所以1212d r r r r -<<+,圆1C 和2C 相交;(2)圆1C 和圆2C 的方程相减,得43230x y +-=,所以两圆的公共弦所在直线的方程为43230x y +-=,圆心()256C ,到直线43230x y +-=的距离为:d 3==,故公共弦长为=19.【详解】(1)设{}n a 的公差为d .由()19955992a a S a a +===-得:50a =,5324d a a ∴=-=-,解得:2d =-,()()33423210n a a n d n n ∴=+-=--=-+;(2)由(1)知:50a =,即140a d +=,14a d ∴=-,又10a >,0d ∴<,()()()11415n a a n d d n d n d ∴=+-=-+-=-,()()1922n n n a a n n S d +-∴==,由n n S a ≥得:()()952n n d n d -≥-,由0d <得:211100n n -+≤,解得:110n ≤≤,又n *∈N ,n ∴的取值范围为{}110,n n n N *≤≤∈.20.【详解】因为12a +,22a ,31a +成等差数列,所以213134213a a a a a =+++=++,即211143a q a a q =++,①由3241S a =-可得2111141a a q a q a q ++=-,即2111310a a q a q -++=,②联立①②及1q >解得11a =,2q =,所以12n n a -=.(2)由(1)知12n n n n a -=,所以01211232222n n n T -=++++ ,121112122222n n n n n T --=++++ ,两式相减得012111111222222n n n n T -=++++- 所以111222122212n n n n n n T -+=-=--,所以1242n n n T -+=-.又因为122112nn n S -==--,所以4(2)n n T n S -=+可化为11212nn -=-,即()12211n n -⋅-=,可变形为()22220nn --=,整理得()()22210n n-+=,解得1n =.21.【详解】分别以DA 、DB 、1DD 为x 轴、y 轴、z轴,建立空间直角坐标系,(1)由()11,0,1A ,得()11,0,1DA =,设()1,,0E a ,又()10,0,1D ,则()11,,1D E a =-,111010DA D E ⋅=+-= ,11DA D E ∴⊥,则异面直线1D E 与1A D 所成的角为90 ;(2)平面DEC 的一个法向量为()0,0,1m = ,设平面1CED 的一个法向量为(),,n x y z = ,设点()1,,0E a ,其中02a ≤≤,则()0,2,0C ,()10,2,1CD =- ,()1,2,0CE a =- ,由()12020n CD y z n CE x a y ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,则2x a =-,2z =,()2,1,2n a ∴=- ,cos ,2m n m n m n ⋅<>===⋅ ,02a≤≤ ,解得2a =-,所以,平面1D EC 的一个法向量为)2n = ,又()1,0,0CB = ,所以,点B 到平面1D EC的距离64CB n d n⋅=== .22.【详解】(1)由椭圆的方程可得右顶点(,0)a ,所以右顶点到直线0x y -=的距离为3d ==,0a >可得:a=由离心率2c e a ===,可得c =,所以222862b a c =-=-=,所以椭圆C 的方程为:22182x y +=;(2)由题意显然直线l 的斜率不为0,设直线l 的方程为:2x my =+,设1(A x ,1)y ,2(B x ,2)y ,联立直线l 与椭圆的方程可得:222{182x my x y =++=,整理可得:22(4)440m y my ++-=,12244m y y m -+=+,12244y y m -=+所以122114··2·224OAB S OP y y m =-=+,设2t =,取等号时,0m =,即斜率不存在,这时24AOB S == ,当0m ≠,2t >,则2222t m =-,所以2442422AOB t S t t t ==++- 令2()f t t t =+,2t >,则22222()10t f t t t-=-+=>'恒成立,所以()f t 在2t >单调递增,无最小值,也无最大值,所以2442422AOB t S t t t ==++- 无最大值,综上所述当且仅当2t =,即0m =时,所以OAB 面积的最大值为2.。
山东日照实验高中高二上学期期末数学复习(必修5+选修2-1)理科练习三

山东日照实验高中高二上学期期末数学复习理科练习三数 学(理) 第Ⅰ卷 (选择题 共60分)一、选择题:本小题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把答案填涂在答题纸的相应位置. 1. △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B . 2 C. 3 D. 22. 已知平面α的法向量是()2,3,1-,平面β的法向量是()4,,2λ-,若//αβ, 则λ的值是( ) A .103-B .6-C .6D .1033.已知, , a b c 满足c b a <<,且0ac <,那么下列选项中一定成立的是( ) A. ab ac > B. ()0c b a -< C. 22cb ab < D. ()0ac a c ->4. 等差数列}{n a 中,已知前15项的和9015=S ,则8a 等于( ) A .245 B .12 C .445D .6 5. 下列有关命题的说法正确的是( )A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”. B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题6. (2010年浙江)设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .11B .5C .-8D .-117. 若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点)23,25(-,则椭圆方程是 ( )A .14822=+x y B .161022=+x y C .18422=+x y D .161022=+y x8. 若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则a b +的最小值为( )A B .C .43D .8-9. 已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与BC 所成角的余弦值为A. 0B.21 C. 32 D. 32- 10.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是( ) A .1 B .2 C .3 D .411.若双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过F 且倾斜角为︒60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率e 的取值范围是( ) A .[]2,1B .()2,1C .()+∞,2D . [)+∞,212.若抛物线24y x =的焦点是F ,准线是l ,则经过点F 、M (4,4)且与l 相切的圆共有( ).A.4个B.2个C.1个D.0个第2卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,满分16分.请把答案填在答题纸的相应位置. 13.等差数列{}n a 中,若34512,a a a ++=则71a a += .14. 已知向量)0,1,1(=→a ,)2,0,1(-=→b ,且→→+b a k 与→→-b a 2互相垂直,则k 的值是 15. 设0>x ,0>y ,且1116x y+=,则x y +的最小值为 . 16. 点P 是抛物线x y 42=上一动点,则点P 到点)1,0(-A 的距离与P 到直线1-=x 的距离和的最小值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知数列}{n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,⑴求12,a a 的值;⑵求数列{}n a 的通项公式。
高二第二学期期末数学复习试卷2

高二期末数学复习试卷一、选择题1.(理)点M(6,5π)关于极点并垂直于极轴的直线的对称点的极坐标(取ρ<0,-2π<θ<2π)是( )(A) (32,5π--) (B)( 65,5π--) (C)( 6,5π--) (D)( 34,5π--) (文)若)0,2(πθ-∈则方程θθ2sin )(sin 22=+y x 所表示的曲线是( )(A)焦点在X 轴上的椭圆 (B) 焦点在Y 轴上的椭圆(C)焦点在X 轴上的双曲线 (D) 焦点在Y 轴上的双曲线 2.ii 31)3(3+-+的值是( )(A)i 232+ (B) i 232- (C) i 232+- (D) i 232-- 3.(理)θρcos 8-=在极坐标系中,与圆相切的一条直线方程是( ) (A)4cos =θρ (B) 4cos -=θρ (C) 4sin =θρ (D) 4sin -=θρ(文)方程0||2=+x x 在复数集内的解集是( )(A){0} (B){0,i} (C){0,i,-i} (D){0,1,-1}4.(理)已知方程022=+-a ix x 有实根,则复数α在复平面内对应的点的轨迹是( )(A)一个点 (B)一条直线 (C)半个平面 (D)抛物线 (文)复数a+|b|i 和c+|d|i 相等的充要条件是( )(A)a=c,b=d (B)a=c,b=-d (C)a=c,b 2+d 2=0 (D) a=c,b 2=d 25.(理)椭圆⎩⎨⎧+-=+=θθsin 51cos 33y x (t 为参数)的两个焦点是( )(A)(-3,5),(-3,3) (B) (7,1),(-1,-1) (C)(1,1),(-7,1) (D) (3,3),(3,5)(文)五本不同的书分给4位同学每人至少1本不同的分法共有多少种( )(A)48 (B)60 (C)120 (D)2406. 设复平面内的点Z 1,Z 2分别对应复数z 1=1,z 2=3i ,将向量21Z Z 绕点Z 1逆时针方向旋转90°,得向量32Z Z ,则点Z 3对应的复数是( )(A)-3-i (B)3+i (C)-2-i (D)3+4i7.(理)以双曲线⎩⎨⎧==θθtg y x 3sec 4(θ为参数)的右焦点为顶点,左顶点为焦点的抛物线方程是( )(A) y 2= -36(x-5) (B) y 2= -36(x+5) (C) y 2= -18(x-5) (D) y 2= -4(x-5)(文)以双曲线13422=-y x 的右焦点为顶点,左顶点为焦点的抛物线方程是( )(A) y 2= -36(x-5) (B) y 2= -36(x+5) (C) y 2= -18(x-5) (D) y 2= -4(x-5) 8.已知|z|≤1则:arg(z-2i)的最大值是( )(A)34π (B) 35π (C) 611π (D) 32π 9.双曲线2mx 2-my 2=1的一条准线方程是y=1,则m 的值是( ) (A) 31- (B) 34- (C)31 (D) 55 10.某人射击8枪,命中4枪, 命中4枪恰有3枪连在一起的种数是( )(A) 20 (B) 224 (C) 480 (D) 72011.若动点P 到定点(0,-3)的距离比他到x 轴的距离多3则点P 的轨迹方程是( )(A) x 2= -12y (B) x 2=12y(C) y 2=-12x 或y=0(x ≥0) (D) x 2=-12y 或x=0(y ≥0)12.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数是( )(A)15 (B)84 (C)90 (D)54013.过双曲线2x 2-y 2-8x+6=0的右焦点作直线l 交双曲线于A,B 两点若|AB|=4,则这样的直线l 的条数是( )(A)1 (B)2 (C)3 (D)414. 3男2女5个小孩排在一排照像,儿女孩之间有且仅有1个男孩的不同排法种数是( )(A)36 (B)18 (C)12 (D)6高二期末数学复习试卷15.(理)若点是圆⎩⎨⎧==θθsin 3cos 3y x (θ为参数)上到直线的距离最小的点,则点的坐标是 .(文) 双曲线18422=-y x 的两渐近线的夹角的正切值是 .16.若抛物线的顶点在原点,焦点在y 轴上,抛物线上的一个点的纵坐标是–3,且该点与焦点的距离是5,则该抛物线的准线方程是 .17.若11+-z z 是纯虚数,则|z 2 – z+1|的最大值是 . 18.(1+5x )15展开式中系数最大的项是 .19.如果曲线x 2–y 2 – 2x –2y –1=0,平移坐标轴后的新方程是 ,1''22=-y x 那么新坐标系的原点在就坐标系下的坐标是 .三、 解答题20. 已知: | z 1|=| z 2|=2,arg z 1≠2π,arg(z 1-32)=65π,且221z z ⋅的对应点在虚轴的负半轴上,求z 1和z 2.21.设z 1,z 2为非0复数,且z 12 -k z 1z 2+z 22=0(k ∈R),21z z 为虚数 (1) 求证:| z 1|=| z 2|(2) 若 k ∈N, z 2=1+ai,arg(z 1+ z 2)=4π,求实数a 的值 22. 已知双曲线0)b 0,(a by a x >>=-12222的离心率e=332,过点A(0,-b),和B(a,0)的直线与原点间的距离为23,(1)求双曲线的方程(2)是否存在实数k,使直线y=kx+1使直线与双曲线的两个交点C,D 关于y=2x 对称?若存在求出k, 若不存在,说明理由.23.(理)已知抛物线4322+-=x x y ,过其焦点F 作抛物线交抛物线于A,B 两点,且满足AF:FB=1:2. (1) 求此直线方程.(2) 求弦AB 中点到抛物线准线的距离.(文) 点M 是抛物线y 2=x 上的一动点,定点A(0,a)关于点M 的对称点是P(a ≠0).(1) 求点P 的轨迹方程;(2) 设(1)中轨迹与抛物线y 2=x 交于B,C 两点,则当AB ⊥AC 时,求a 的值.。
(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)

(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)题号一二三四总分得分一、单选题(本大题共8小题,共40.0分)1.直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b满足的条件为()A. k>0,b>0B. k<0,b<0C. k>0,b<0D. k<0,b>02.已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为()A. 11B. 22C. 33D. 443.“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知抛物线x2=2py和-y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,),若|PQ|=|PF|,则抛物线的方程是()A. x2=4yB. x2=2yC. x2=6yD. x2=2y5.已知m,n是两条不重合的直线,α,β是不重合的平面,则下列说法正确的是()A. 若m⊥α,n∥β,α⊥β,则m⊥nB. 若m⊥n,m⊥α,n∥β,则α⊥βC. 若m∥n,m∥α,n∥β,则α∥βD. 若m⊥α,n⊥α,则m∥n6.直线l:y=x与圆x2+y2-2x-6y=0相交于A,B两点,则|AB|=()A. 2B. 4C. 4D. 87.椭圆5x2+ky2=5的一个焦点为(0,2),那么k的值为()A. B. 2 C. D. 18.直线y=-2x-3与曲线的公共点的个数为()A. 1B. 2C. 3D. 4二、多选题(本大题共4小题,共20.0分)9.矩形ABCD中,AB=4,BC=3,将△ABD沿BD折起,使A到A′的位置,A′在平面BCD的射影E恰落在CD上,则()A. 三棱锥A′-BCD的外接球直径为5B. 平面A′BD⊥平面A′BCC. 平面A′BD⊥平面A′CDD. A′D与BC所成角为60°10.设O为坐标原点,F1,F2是双曲线-=1(a>0,b>0)的左、右焦点.在双曲线的右支上存在点P满足∠F1PF2=60°,且线段PF1的中点B在y轴上,则()A. 双曲线的离心率为B. 双曲线的方程可以是-y2=1C. |OP|=aD. △PF1F2的面积为11.在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,∠A1AB=∠A1AD,则有()A. A1M∥B1QB. AA1⊥PQC. A1M∥面D1PQB1D. PQ⊥面A1ACC112.已知抛物线C:y2=4x的焦点为F,准线为l,过点F的直线与抛物线交于两点P(x1,y1),Q(x2,y2),点P在l上的射影为P1,则()A. |PQ|的最小值为4B. 已知曲线C上的两点S,T到点F的距离之和为10,则线段ST的中点横坐标是(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)4C. 设M(0,1),则|PM|+|PP1|≥D. 过M(0,1)与抛物线C有且仅有一个公共点的直线至多有2条三、单空题(本大题共4小题,共20.0分)13.已知A(0,1),B(1,0),C(t,0),点D在直线AC上,若|AD|≤|BD|恒成立,则t的取值范围是______.14.直线2x+y-1=0的倾斜角是______.15.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm,深为2cm的空穴,则该球的半径为______ cm,表面积是______ .16.已知双曲线C:的右焦点为F,O为坐标原点.过F的直线交双曲线右支于A,B两点,连结AO并延长交双曲线C于点P.若|AF|=2|BF|,且∠PFB=60°,则该双曲线的离心率为______ .四、解答题(本大题共6小题,共70.0分)17.已知圆的圆心在直线上,且与轴交于两点,.(I)求圆的方程;(II)过点的直线与圆交于两点,且,求直线的方程.18.已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m为何值时,直线l恒过定点;(2)求直线l被圆C截得的弦长最小时的方程.19.如图,为圆的直径,点.在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且,.(1)设的中点为,求证:平面;(2)求四棱锥的体积.20.在平面直角坐标系中,直线l与抛物线y2=2x相交于A,B两点.求证:“如果直线l过(3,0),那么=3”是真命题.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)21.如图,四棱锥中,底面是菱形,其对角线的交点为,且.(1)求证:平面;(2)设,,是侧棱上的一点,且∥平面,求三棱锥的体积.22.(本题满分16分)已知椭圆的两焦点分别为 , 是椭圆在第一象限内的一点,并满足,过作倾斜角互补的两条直线分别交椭圆于两点.(1)求点坐标;(2)当直线经过点时,求直线的方程;(3)求证直线的斜率为定值.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)1.【答案】B【解析】解:要使直线y=kx+b经过第二、三、四象限,则斜率k和在y轴上的截距b 满足的条件,故选:B.由题意利用确定直线的位置的几何要素,得出结论.本题主要考查确定直线的位置的几何要素,属于基础题.2.【答案】D【解析】由双曲线C的方程,知a=3,b=4,c=5,∴点A(5,0)是双曲线C的右焦点,且|PQ|=|QA|+|PA|=4b=16,由双曲线定义,|PF|-|PA|=6,|QF|-|QA|=6.∴|PF|+|QF|=12+|PA|+|QA|=28,因此△PQF的周长为|PF|+|QF|+|PQ|=28+16=44,选D.3.【答案】A【解析】解:若a=2.则两条直线的方程为2x+4y-1=0与x+2y+3=0满足两直线平行,即充分性成立.当a=0时,两直线等价为4y-1=0与x+3=0不满足两直线平行,故a≠0,若“l1:ax+4y-1=0与l2:x+ay+3=0平行”,则,解得a=2或a=-2,即必要性不成立.故“a=2”是“l1:ax+4y-1=0与l2:x+ay+3=0平行”的充分不必要条件,故选:A(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)根据直线平行的等价条件,利用充分条件和必要条件的定义即可得到结论.本题主要考查充分条件和必要条件的判断,根据直线平行的等价条件是解决本题的关键.4.【答案】B【解析】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF∵|PQ|=|PF|,在Rt△PQE中,sin,∴,即直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)由消去y得.则△1=8m2-24=0,解得m=-,即PQ:y=由得,△2=8p2-8p=0,得p=.则抛物线的方程是x2=2y.故选:B.如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF可得直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)再依据直线PQ与抛物线、双曲线相切求得p.本题考查了抛物线、双曲线的切线,充分利用圆锥曲线的定义及平面几何的知识是关键,属于中档题.5.【答案】D【解析】解:当m⊥α,n∥β,α⊥β时,直线m与n可能异面不垂直,故选项A错误;当m⊥n,m⊥α,n∥β时,比如n平行于α与β的交线,且满足m⊥n,m⊥α,但α与β可能不垂直,故选项B错误;当m∥n,m∥α,n∥β时,比如m与n都平行于α与β的交线,且满足m∥n,m∥α,但α与β不平行,故选项C错误;垂直于同一个平面的两条直线平行,故选项D正确.故选:D.直接利用空间中线、面之间的关系进行分析判断即可.本题考查了空间中线面位置关系的判断,此类问题一般都是从反例的角度进行考虑,属于基础题.6.【答案】C【解析】【分析】本题主要考查直线和圆的位置关系的应用,掌握直线和圆相交的弦长公式是解决本题的关键,属于基础题.根据直线和圆相交的弦长公式进行求解即可.【解答】解:圆的标准方程为(x-1)2+(y-3)2=10,圆心坐标为(1,3),半径R=,则圆心到直线x-y=0的距离d=,则|AB|===4.故选C.7.【答案】D【解析】【分析】本题考查椭圆的简单性质,是基础题.把椭圆化为标准方程后,找出a与b的值,然后根据a2=b2+c2,表示出c,并根据焦点坐标求出c的值,两者相等即可列出关于k的方程,求出方程的解即可得到k的值.【解答】解:把椭圆方程化为标准方程得:x2+=1,因为焦点坐标为(0,2),所以长半轴在y轴上,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则c==2,解得k=1.故选D.8.【答案】B【解析】解:当x≥0时,曲线的方程为,一条渐近线方程为:y=-x,当x<0时,曲线的方程为,∴曲线的图象为右图,在同一坐标系中作出直线y=-2x-3的图象,可得直线与曲线交点个数为2个.故选:B.分x大于等于0,和x小于0两种情况去绝对值符号,可得当x≥0时,曲线为焦点在y轴上的双曲线,当x<0时,曲线为焦点在y轴上的椭圆,在同一坐标系中作出直线y=-2x-3与曲线的图象,就可找到交点个数.本题主要考查图象法求直线与曲线交点个数,关键是去绝对值符号,化简曲线方程.9.【答案】AB【解析】解:对于A,取BD中点E,连接A′E,CE,则A′E=BE=DE=CE==.∴三棱锥A′-BCD的外接球直径为5,故A正确;对于B,∵DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,∴BC⊥A′F,又A′F∩CD=F,A′F、CD⊂平面A′CD,∴BC⊥平面A′CD,∵A′D⊂平面A′CD,∴DA′⊥BC,∵BC∩BA′=B,∴DA′⊥平面A′BC,∵DA′⊂平面A′BD,∴平面A′BD⊥平面A′BC,故B正确;对于C,BC⊥A′C,∴A′B与A′C不垂直,∴平面A′BD与平面A′CD不垂直,故C错误;对于D,∵DA∥BC,∴∠ADA′是A′D与BC所成角(或所成角的补角),∵A′C==,∴A′F=,DF==,AF==,AA′==3,∴cos∠ADA′==0,∴∠ADA′=90°,∴A′D与BC所成角为90°,故D错误.故选:AB.对于A,取BD中点E,连接A′E,CE,推导出A′E=BE=DE=CE=,从而三棱锥A′-BCD 的外接球直径为5;对于B,推导出DA′⊥BA′,BC⊥CD,A′F⊥平面BCD,BC⊥A′F,BC⊥平面A′CD,DA′⊥BC,DA′⊥平面A′BC,从而平面A′BD⊥平面A′BC;对于C,A′B与A′C不垂直,从而平面A′BD与平面A′CD不垂直;对于D,由DA∥BC,得∠ADA′是A′D与BC所成角(或所成角的补角),推导出A′D与BC所成角为90°.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力等数学核心素养,是中档题.10.【答案】AC【解析】解:如图,F1(-c,0),F2(c,0),∵B为线段PF1的中点,O为F1F2的中点,∴OB∥PF2,∴∠PF2F1=90°,由双曲线定义可得,|PF1|-|PF2|=2a,设|PF1|=2m(m>0),则|PF2|=m,,∴2m-m=2a,即a=,又,∴c=,则e=,故A正确;,则b=,双曲线的渐近线方程为y=,选项B的渐近线方程为y=,故B错误;对于C,∵O为F1F2的中点,∴,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)则,即=,即,①而|PF1|-|PF2|=2a,两边平方并整理得,,②联立①②可得,,,即|PO|=,故C正确;=,故D错误.故选:AC.由已知可得∠PF2F1=90°,设|PF1|=2m(m>0),再由已知结合双曲线定义可得a,b,c 与m的关系,即可求得双曲线的离心率及渐近线方程,从而判断A与B;由O为F1F2的中点,得,两边平方后结合双曲线定义联立求得|PO|判断C;进一步求出△PF1F2的面积判断D.本题考查双曲线的几何性质,考查运算求解能力,是中档题.11.【答案】BCD【解析】解:连接MP,可得MP AD A1D1,可得四边形MPA1D1是平行四边形∴A1M∥D1P,又A1M⊄平面DCC1D1,D1P⊂平面DCC1D1,A1M∥平面DCC1D1,连接DB,由三角形中位线定理可得:PQ DB,DB D1B1,可得四边形PQB1D1为梯形,QB1与PD1不平行,因此A1M与B1Q不平行,又A1M∥D1P,A1M⊄平面D1PQB1,D1P⊂平面D1PQB1,∴A1M∥平面D1PQB1.故A不正确,C正确;连接AC,由题意四边形ABCD是菱形,∴AC⊥BD,∵P,Q分别为棱CD,BC的中点,∴PQ∥BD,∴PQ⊥AC,∵平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,∴直线AA1在平面ABCD内的射影是AC,且BD⊥AC,∴AA1⊥BD,∴AA1⊥PQ,故B正确;∵AA1∩AC=A,∴PQ⊥面A1ACC1,故D正确.故选:BCD.连接MP,推导出四边形MPA1D1是平行四边形,从而A1M∥D1P,连接DB,推导出四边形PQB1D1为梯形,A1M与B1Q不平行,推民出A1M∥平面D1PQB1;连接AC,推导出四边形ABCD是菱形,AC⊥BD,从而PQ⊥AC,由平行六面体的所有棱长都相等,且∠A1AB=∠A1AD,推志出AA1⊥PQ,从而PQ⊥面A1ACC1.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12.【答案】ABC【解析】解:对于A,设直线PQ的方程为x=ty+1,联立解方程组,可得y2-4ty-4=0,x1x2==1,|PQ|=x1+x2+p=x1+x2+2+2=4,故A正确;对于B,根据抛物线的定义可得,|SF|+|TF'|=x S+x T+p=10,则x S+x T=8,则线段ST的中点横坐标是=4,故B成立;对于C,M(0,1),|PM|+|PP1|=|MP|+|PF|≥|MF|=,所以C正确;对于D,过M(0,1)相切的直线有2条,与x轴平行且与抛物线相交且有一个交点的直线有一条,所以最多有三条.所以D不正确;故选:ABC.设出直线方程与抛物线联立,利用弦长公式判断A,结合抛物线的定义,判断B;利用抛物线的性质判断C;直线与抛物线的切线情况判断D.考查抛物线的性质,抛物线与直线的位置关系的应用,是中档题.13.【答案】(-∞,0]【解析】解:设D(x,y),由D在AC上,得+y=1,即x+ty-t=0,由|AD|≤|BD|得≤•,化为(x-2)2+(y+1)2≥4,依题意,线段AD与圆(x-2)2+(y+1)2=4至多有一个公共点,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)∴≥2,解得:t≤0,则t的取值范围为(-∞,0],故答案为:(-∞,0].先设出D(x,y),得到AD的方程为:x+ty-t=0,由|AD|≤|BD|得到圆的方程,结合点到直线的距离公式,解不等式即可得到所求范围.本题考查直线与圆的方程,考查点到直线距离公式的运用,考查学生分析解决问题的能力,属于中档题.14.【答案】π-arctan【解析】解:直线2x+y-1=0的斜率为,设直线2x+y-1=0的倾斜角为θ(0≤θ<π),则tan,∴θ=.故答案为:π-arctan.由直线方程求直线的斜率,再由斜率等于倾斜角的正切值求解.本题考查由直线方程求直线的斜率,考查直线的斜率与倾斜角的关系,是基础题.15.【答案】10;400π【解析】解:设球的半径为r,依题意可知36+(r-2)2=r2,解得r=10,∴球的表面积为4πr2=400π故答案为10,400π先设出球的半径,进而根据球的半径,球面上的弦构成的直角三角形,根据勾股定理建立等式,求得r,最后根据球的表面积公式求得球的表面积.本题主要考查了球面上的勾股定理和球的面积公式.属基础题.16.【答案】【解析】【分析】本题考查双曲线的定义以及几何性质的应用,余弦定理的应用,考查转化思想以及计算能力.属于中档题.设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,推出∠F'AB=60°.在△F'AB 中,由余弦定理求解.结合双曲线的定义,求出,.在△F'AF中,由余弦定理推出a,c关系,得到离心率即可.【解答】解:设双曲线C的左焦点为F',连结AF',BF',设|BF|=t,则|AF|=2t,所以|AF'|=2a+2t,|BF'|=2a+t.由对称性可知,四边形AF'PF为平行四边形,故∠F'AB=60°.在△F'AB中,由余弦定理得(2a+t)2=(2a+2t)2+(3t)2-2×(2a+2t)×3t×cos60°,解得.故,.在△F'AF中,由余弦定理得,,解得:.故答案为:.17.【答案】解:(I)因为圆与轴交于两点,,所以圆心在直线上,由,得,即圆心的坐标为.半径,所以圆的方程为;(II)若直线的斜率不存在,则直线的方程为,此时可得,不符合题意;(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)当直线的斜率存在时,设直线的方程为:,即,过点作于点,则D为线段MN中点,∴,∴,即点C到直线l的距离,解得或k=-3;综上,直线的方程为x-3y+3=0或3x+y-11=0.【解析】本题考查圆的标准方程,直线与圆的位置关系,属于中档题.(I)根据题意,即可得解;(II)分类讨论,进行求解即可.18.【答案】(1)证明:将直线化为直线束方程:x+y-4+(2x+y-7)=0.联立方程x+y-4=0与2x+y-7=0,得点(3,1);将点(3,1)代入直线方程,不论m为何值时都满足方程,所以直线l恒过定点(3,1);(2)解:当直线l过圆心与定点(3,1)时,弦长最大,代入圆心坐标得m=.当直线l垂直于圆心与定点(3,1)所在直线时弦长最短,斜率为2,代入方程得m=此时直线l方程为2x-y-5=0,圆心到直线的距离为,所以最短弦长为.【解析】(1)通过直线l转化为直线系,求出直线恒过的定点;(2)说明直线l被圆C截得的弦长最小时,圆心与定点连线与直线l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦长.本题考查直线系方程的应用,考查直线与圆的位置关系,考查平面几何知识的运用,考查计算能力,属于中档题.19.【答案】(1)证明详见解析;(2).【解析】试题分析:(1)要证平面,根据直线与平面平行的判定定理可知只需证与平面内一直线平行即可,设的中点为,则为平行四边形,则,又平面,不在平面内,满足定理所需条件;(2)过点作于,根据面面垂直的性质可知平面,即正的高,然后根据三棱锥的体积公式进行求解即可.试题解析:(1)设的中点为,则又,∴∴为平行四边形∴又平面,平面∴平面(2)过点作于平面平面,∴平面,即正的高∴∴∴.考点:1.空间中的平行关系;2.空间中的垂直关系;3.棱锥的体积计算.20.【答案】证明:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).当直线l的钭率不存在时,直线l的方程为x=3,(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)此时,直线l与抛物线相交于点A(3,)、B(3,-).∴=3当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0,由得ky2-2y-6k=0⇒y1y2=-6,又∵x1=y12,x2=y22,∴x1x2=9,∴=x1x2+y1y2=3,综上所述,命题“如果直线l过点T(3,0),那么=3”是真命题;综上,命题成立.【解析】设出A,B两点的坐标根据向量的点乘运算求证即可得到:“如果直线l过(3,0),那么=3”是真命题.本题考查了真假命题的证明,抛物线的简单性质,向量数量积,是抛物线与平面向量的综合应用,难度中档.21.【答案】(1)证明:∵底面是菱形,∴.又平面.又又平面.(2)连接,∵SB平面,平面,平面平面,SB∥平面APC,∴SB∥OP.又∵是的中点,∴是的中点.由题意知△ABD为正三角形..由(1)知平面,∴.又,∴在Rt△SOD中,.∴到面的距离为.【解析】主要考查了线面垂直的判定和三棱锥的体积.(1)要证明线面垂直,证明SO与平面ABCD中两条相交直线垂直即可,应用已知条件与等腰三角形的三线合一即可得到证明;(2)由SB∥平面APC的性质定理证明得SB∥OP,由(1)得高为PO,利用三棱锥的体积公式即可求出结果.22.【答案】(1)(2)(3),证明略.【解析】解:(1)设P((x,y),由题意可得,解得,∴P.(某某市区中学)高二(上学期)数学(理)期末复习质量监测模拟考试试题卷(附答案解析)(2)∵,两条直线PA,PB倾斜角互补,∴k PA+k PB=0,解得k PB=1.因此直线PA,PB,的方程分别为,,化为,.联立,解得(舍去),,即A.同理解得B.∴k AB= = ,∴直线AB的方程为,化为.(3)S设A(x 1,y 1),B(x 2,y 2),设直线PA的方程为:,则直线PB 的方程为.联立,解得A.同理B,∴k AB= = .即直线AB的斜率为定值.。
2018-2019学年上海市曹杨第二中学高二上学期期末复习(二)数学试题(解析版)

上海市曹杨第二中学高二上学期期末复习数学试题一、单选题1.下面是关于三棱锥的四个命题:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③底面是等边三角形,侧面的面积都相等的三棱锥是正三棱锥;④侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥。
其中真命题的编号是()A.③④B.①②C.①③④D.①④【答案】D【解析】根据正三棱锥的定义,结合二面角判断①的正误;侧棱与底面所成的角判断④的正误;找出反例否定②,找出反例对选项③否定可得正确结论.【详解】解:①底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.可推出底面中心是棱锥顶点在底面的射影,所以是正确的.②显然不对,比如三条侧棱中仅有一条不与底面边长相等的情况,侧面都是等腰三角形的三棱锥但不是正三棱锥.③底面是等边三角形,侧面的面积都相等,说明顶点到底面三边的距离(斜高)相等,根据射影长的关系,可以得到顶点在底面的射影(垂足)到底面三边所在直线的距离也相等,由于在底面所在的平面内,到底面三边所在直线的距离相等的点有4个:内心(本题的中心)1个、旁心3个,因此不能保证三棱锥是正三棱锥.④侧棱与底面所成的角相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.是正确的.正确的为:①④故选:D【点睛】本题考查棱锥的结构特征,二面角及其度量,考查作图能力,是基础题.2.下列命题中,错误的是 ( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两个不同平面平行C .如果平面不垂直平面,那么平面内一定不存在直线垂直于平面D .若直线不平行平面,则在平面内不存在与平行的直线 【答案】D【解析】若直线与另外一个平面不相交,则直线与该平面平行,由此可得直线与该平面平行的平面也平行,矛盾,所以命题A 正确; 命题B 显然正确; 若存在有,则根据面面垂直判定可得,矛盾,所以命题C 正确;不平行于平面,则相交或。
高二数学上学期期末复习题2(理科)答案

高二数学上学期期末复习题二(理科)(2013.12)1.命题“存在0x ∈R ,02x ≤0”的否定是( )A.不存在0x ∈R, 02x >0B.存在0x ∈R, 02x ≥0C.对任意的x ∈R, 2x≤0 D.对任意的x ∈R, 2x>0 【答案】D2.如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则A .k 1<k 2<k 3B .k 3<k 1<k 2 C.k 3<k 2<k 1 D.k 1<k 3<k 2 【答案】B3.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C ;4.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 等于( )A .1B .2C .-12D .2或-12解析:当2m 2+m -3≠0时,在x 轴上截距为4m -12m 2+m -3=1,即2m 2-3m -2=0,∴m =2或m =-12.答案:D5.已知椭圆C 的左、右焦点坐标分别是(-2,0),(2,0),离心率是63,则椭圆C 的方程为 ( ).A.x 23+y 2=1 B .x 2+y 23=1 C.x 23+y 22=1 D.x 22+y23=1 解析 因为c a =63,且c =2,所以a =3,b =a 2-c 2=1.所以椭圆C 的方程为x 23+y2 =1. 答案 A6.如图,在正方体1111D C B A ABCD -,若11AA z AB y AD x BD ++=,则x y z ++的值为 ( )A .3 B .1 C .-1 D .-3【答案】B7.设a R ∈,则“1a =”是“直线1:210l ax y +-=与直线2:(1)40l x a y +++=平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A8.给出下列互不相同的直线l 、m 、n 和平面α、β、γ的三个命题: ①若l 与m 为异面直线,l ⊂α,m ⊂β,则α∥β. ②若α∥β,l ⊂α,m ⊂β,则l ∥m .③若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n . 其中真命题的个数为( ) A .3 B .2 C .1 D .0解析:①中α与β也可能相交,∴①错;在②中l 与m 也可能异面,∴②错,③正确. 答案:C9.设m ,n 为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是( ) A .若m ⊂α,n ⊂α,且m ∥β,n ∥β,则α∥β B .若m ∥α,m ∥n ,则n ∥α C .若m ∥α,n ∥α,则m ∥nD .若m ,n 为两条异面直线,且m ∥α,n ∥α,m ∥β,n ∥β,则α∥β答案:D10.长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( ) A.1010 B.3010 C.21510 D.31010答案:B11.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x轴的交点为K ,点A在抛物线上且||||AK AF =,则△AFK 的面积为 (A )4 (B )8 (C )16 (D )32 【答案】D【解析】双曲线的右焦点为(4,0),抛物线的焦点为(,0)2p ,所以42p=,即8p =。
数学高二上期末经典复习题(含答案解析)(1)

一、选择题1.(0分)[ID :13328]在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49D .292.(0分)[ID :13318]某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等 3.(0分)[ID :13311]我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .94.(0分)[ID :13310]如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?5.(0分)[ID :13305]执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .86.(0分)[ID :13295]如果数据12,,,n x x x 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( )A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯7.(0分)[ID :13294]随着人民生活水平的提高,对城市空气质量的关注度也逐步增大,下图是某城市1月至8月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面四种说法正确的是( ).①1月至8月空气合格天数超过20天的月份有5个②第二季度与第一季度相比,空气合格天数的比重下降了 ③8月是空气质量最好的一个月 ④6月的空气质量最差 A .①②③B .①②④C .①③④D .②③④8.(0分)[ID :13290]从区间0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为 A .4n mB .2n mC .4mnD .2mn9.(0分)[ID :13288]执行如图的程序框图,那么输出的S 的值是( )A .﹣1B .12C .2D .110.(0分)[ID :13278]执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261B.425C.179D.54411.(0分)[ID:13277]在某地的奥运火炬传递活动中,有编号为1,2,3,,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A.151B.168C.1306D.140812.(0分)[ID:13259]运行如图所示的程序框图,若输出的S的值为480,则判断框中可以填()A.60i>B.70i>C.80i>D.90i>13.(0分)[ID :13245]定义运算a b ⊗为执行如图所示的程序框图输出的S 值,则式子π2πtan cos 43⎛⎫⎛⎫⊗ ⎪ ⎪⎝⎭⎝⎭的值是A .-1B .12C .1D .3214.(0分)[ID :13243]执行如图所示的程序框图,若输入2x =-,则输出的y =( )A .8-B .4-C .4D .815.(0分)[ID :13320]一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是( ) A .127B .29C .49D .827二、填空题16.(0分)[ID :13412]执行如图所示的程序框图若输人x 的值为3,则输出y 的值为______.17.(0分)[ID :13395]一个算法的伪代码如下图所示,执行此算法,若输出的y 值为1,则输入的实数x 的值为________.18.(0分)[ID :13388]某单位有职工900人,其中青年职工450人,中年职工270人,老年职工180人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为10人,则样本容量为________.19.(0分)[ID :13376]某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
山东日照实验高中高二上学期期末数学复习(必修5+选修2-1)理科练习二

山东日照实验高中高二上学期期末数学复习理科练习二本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至8页.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.一.选择题:本大题共12个小题. 每小题5分;共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.x>2是24x >的 A. 充分不必要条件 B.必要不充分条件 C. 既充分也必要条件 D.既不充分也不必要条件2.(理)在平行六面体ABCD -A 1B 1C 1D 1中,用向量1,,AB AD AA 来表示向量1AC A. 11AC AB AD AA =-+B. 11AC AB AD AA =++C. 11AC AB AD AA =+-D. 11AC AB AD AA =--(文)若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程 A.450x y +-= B.430x y --= C.430x y -+= D.430x y ++= 3.已知“220a b +≠”,则下列命题正确的是 A .a 、b 都不为0 B .a 、b 至少有一个为0 C .a 、b 至少有一个不为0 D .a 不为0且b 为0,或b 不为0且a 为0A1第2题图4.若不等式022>++bx ax的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则a -b 的值是A.-10B.-14C.10D.145.(理)四面体ABCD 中,设M 是CD 的中点,则1()2AB BD BC ++化简的结果是A .AMB .BMC .CMD .DM(文)若()x x f 1=,则()=2'f ( ) A.4 B.41 C.4- D.41- 6.在3和9之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个正数之和为 A.227 B. 445 C. 225 D. 4477.若01a <<,01b <<,b a ≠,则a b +,2ab ,22a b +,2ab 中最大的一个是 A .a b + B .2ab C .22ab + D . 2ab8.在双曲线822=-y x 的右支上过右焦点F 2有一条弦PQ ,|PQ|=7,F 1是左焦点,那么 △F 1PQ 的周长为A . 28B .2814-C . 2814+D . 28 9.等比数列{}n a 的各项均为正数,且965=a a ,则1032313log log log a a a +++ 的值为A . 12B . 10C . 8D .5log 23+10.在同一坐标系中,方程12222=+y b x a 与02=+by ax )0(>>b a 的图象大致是11.在△ABC 中1,60==∠b A,其面积为3,则角A 的对边的长为A.57 B.37 C.21 D.1312.一艘船向正北方向航行,看见正西方有两个灯塔恰好与它在一条直线上,两塔相距10海里,继续航行半小时后,看见一塔在船的南偏西60°,另一塔在船的南偏西45°,则船速(海里/小时)是A .5B .53C .10D .103+10第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4个小题. 每小题4分;共16分.将答案填 在题中横线上.13. (理)已知向量()1,2,k OA =,()1,5,4=OB5=则k= . (文)曲线2)(3-+=x x x f 在点P 0处的切线平行于直线14-=x y ,则P 0点的坐标为 .14.已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 求22y x +的最小值_____________.15.过抛物线px y 22=(p >0)的焦点F 作一直线l 与抛物线交于P 、Q 两点,作PP 1、QQ 1垂直于抛物线的准线,垂足分别是P 1、Q 1,已知线段PF 、QF 的长度分别是4,9,那么|P 1Q 1|= .16.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设,i j a (i 、j ∈*N )是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如4,2a =8.则4,11a为 .12 34 5 67 8 9 10……………………………………三.解答题:本大题共6个小题. 共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知102:≤≤-x p ;22:210(0)q x x m m -+-≤> ,若p ⌝是q ⌝的必要非充分条件,求实数m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年七宝中学高二上期末复习卷一. 填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分). 1.若42021x x=,则x =___________.2.已知一个关于x y 、的二元一次方程组的增广矩阵是,则+=x y ___________. 3.若数列{}n a 的前n 项和2321n S n n =-++*(N )n ∈,则lim 3n n an→∞=___________.4.已知圆22:1O x y +=与圆'O 关于直线5x y +=对称,则圆'O 的方程是___________.5.在坐标平面xOy 内,O为坐标原点,已知点1(2A -,将OA 绕原点按顺时针方向 旋转2π,得到'OA ,则'OA 的坐标为___________. 6.抛物线的焦点与双曲线的左焦点重合,则这条双曲线的两条渐近线的夹角为___________.7.若公差为d 的等差数列(){}n a n N *∈满足0143=+a a ,则公差d 的取值范围是___________.8.设P 是抛物线x y 82=上的点,F 为焦点,若5=PF ,则P 点坐标是 ___________.9.著名的斐波那契数列{}:1,1,2,3,5,8,n a …,满足()12211,n n n a a a a a n N *++===+∈,那么357920171a a a a a ++++++…是斐波那契数列中的第___________项.10.若不等式1)1(3)1(1+-+<⋅-+n a n n对任意正整数n 恒成立,则实数a 的取值范围是___________.11.在ABC ∆中,90A ∠=︒,ABC ∆的面积为1.若BM MC =,4BN NC =,则AM AN ⋅的最小值为___________.12.已知数列}{n a 的前n 项和为n S ,且11=a ,12+=n n n a a S (*N ∈n ),若112)1(++-=n n nn a a n b ,则数列}{n b 的前n 项和=n T ___________. 二、选择题(本大题满分20分) 13.下列命题中,假命题的是( ) (A) 若z 为实数,则z z =(B)若z z =,则z 实数 (C) 若z 为实数,则z z ⋅为实数(D)若z z ⋅为实数,则z 为实数⎪⎪⎭⎫ ⎝⎛-21021128y x =-2221x y a-=14、已知椭圆12222=+b y a x ,b a >,和双曲线12222=-ny m x 有相同的焦点21,F F ,若P 是两曲线的一个交点,则21PF PF ⋅等于( )A.22m a -B.22a m - C.b a - D.)(2122m a - 15.直线2x =与双曲线22:14x C y -=的渐近线交于,A B 两点,设P 为双曲线上任一点,若OP aOA bOB =+(,,a b R O ∈为坐标原点),则下列不等式恒成立的是( )A .221a b +≥B .1ab ≥C .1a b +≥D .2a b -≥16. 已知曲线1:2C y x -=与曲线222:4C x y λ+=恰好有两个不同的公共点,则实数的取值范围是( ) A. (,1][0,1)-∞-B. (1,1]-C. [1,1)-D. [1,0](1,)-+∞三、解答题(本大题共有5题,满分76分)17(14分).求过点A )1,0(-,且和双曲线122=-y x 只有一个公共点的直线l 的方程。
18、(14分)设虚数21,z z 满足221z z =(1)若21,z z 是一个实系数一元二次方程的两个根,求21,z z ; (2)若)0(11>+=m mi z 且21≤z ,复数32+=z ω,求ω的取值范围。
λ19. (14分)在平面直角坐标系xOy 中,已知点(0,0)(2,0)(2,1)A B C --、、.设k 为非零实数,矩阵001,0110k M N ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,点A B C 、、在矩阵MN 对应的变换下得到点分别为1A 、1B 、1C ,111A B C ∆的面积是ABC ∆面积的2倍,求k 的值.20. (16分)已知椭圆2222:1x y a bΓ+=(0>>b a )的左、右焦点分别为1F 、2F ,且1F 、2F 与短轴的一个端点Q 构成一个等腰直角三角形,点)23,22(P 在椭圆Γ上,过点2F 作互相垂直且与x 轴不重合的两直线AB 、CD 分别交椭圆Γ于A 、B 、C 、D ,且M 、N 分别是弦AB 、CD 的中点. (1)求椭圆Γ的标准方程;(2)求证:直线MN 过定点2,03R ⎛⎫ ⎪⎝⎭; (3)求2MNF ∆面积的最大值.21. (18分)设等差数列}{n a 的公差为1d ,等差数列}{n b 的公差为2d ,记},,,max{2211n a b n a b n a b c n n n ---= ( ,3,2,1=n ),其中},,,max{21s x x x 表示s x x x ,,,21 这s 个数中最大的数.(1)若2n a n =,42n b n =-,求321,,c c c 的值,并猜想数列{}n c 的通项公式(不必证明);(2)设n a n -=,2+-=n b n ,若不等式nc c c n n 221212132⋅<-++-+-λ 对不小于2的一切自然数n 都成立,求λ的取值范围;(3)试探究当无穷数列}{n c 为等差数列时,1d 、2d 应满足的条件并证明你的结论.2017学年七宝中学高二上期末复习卷二. 填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分). 1.若42021x x=,则x =________1_____.2.已知一个关于x y 、的二元一次方程组的增广矩阵是,则+=x y 6 . 3.若数列{}n a 的前n 项和2321n S n n =-++*(N )n ∈,则lim 3n n an→∞= _ .4.已知圆22:1O x y +=与圆'O 关于直线5x y +=对称,则圆'O 的方程是__22(5)(5)1x y -+-=_____.5.在坐标平面xOy 内,O为坐标原点,已知点1(2A -,将OA 绕原点按顺时针方向 旋转2π,得到'OA ,则'OA 的坐标为___1)2____. 6.抛物线的焦点与双曲线的左焦点重合,则这条双曲线的两条渐近线的夹角为3π. 7.若公差为d 的等差数列(){}n a n N *∈满足0143=+a a ,则公差d 的取值范围是______(][),2 2.-∞-+∞_.8.设P 是抛物线x y 82=上的点,F 为焦点,若5=PF ,则P 点坐标是 )62,3(±9.著名的斐波那契数列{}:1,1,2,3,5,8,n a …,满足()12211,n n n a a a a a n N *++===+∈,那么357920171a a a a a ++++++…是斐波那契数列中的第___2008__项.10.若不等式1)1(3)1(1+-+<⋅-+n a n n对任意正整数n 恒成立,则实数a 的取值范围是_83,3⎡⎫-⎪⎢⎣⎭_____.11.在ABC ∆中,90A ∠=︒,ABC ∆的面积为1.若=,4=,则⋅的最小值为 45.12.已知数列}{n a 的前n 项和为n S ,且11=a ,12+=n n n a a S (*N ∈n ),若112)1(++-=n n nn a a n b ,则数列}{n b 的前n 项和=n T __ 1)1(1+-+-n n 或⎪⎪⎩⎪⎪⎨⎧+-++-为偶数,为奇数n n nn n n ,1,12_____________.⎪⎪⎭⎫ ⎝⎛-21021128y x =-2221x y a-=二、选择题(本大题满分20分)13.下列命题中,假命题的是--------------------------------------------------------( D ) (A) 若z 为实数,则z z =(B)若z z =,则z 实数 (C) 若z 为实数,则z z ⋅为实数(D)若z z ⋅为实数,则z 为实数14、已知椭圆12222=+b y a x ,b a >,和双曲线12222=-ny m x 有相同的焦点21,F F ,若P 是两曲线的一个交点,则21PF PF ⋅等于( A )A.22m a -B.22a m -C.b a -D.)(2122m a - 15.直线2x =与双曲线22:14x C y -=的渐近线交于,A B 两点,设P 为双曲线上任一点,若OP aOA bOB =+(,,a b R O ∈为坐标原点),则下列不等式恒成立的是 CA .221a b +≥B .1ab ≥C .1a b +≥D .2a b -≥16. 已知曲线1:2C y x -=与曲线222:4C x y λ+=恰好有两个不同的公共点,则实数的取值范围是CA. (,1][0,1)-∞-B. (1,1]-C. [1,1)-D. [1,0](1,)-+∞三、解答题(本大题共有5题,满分76分)17(14分).求过点A )1,0(-,且和双曲线122=-y x 只有一个公共点的直线l 的方程。
解:当直线l 斜率不存在时,直线l 方程为0=x ,和双曲线没有公共点。
当直线l 斜率存在时,设斜率为k ,则直线l 方程为1-=kx y022)1(112222=-+-⇒⎩⎨⎧-==-kx x k kx y y x 当1±=k 时,直线l 和双曲线的渐近线平行,和双曲线只有一个公共点, 方程为1-±=x y当1±≠k 时,由0=∆得2±=k ,直线方程为12-±=x y 综上所述,所求直线方程为1-±=x y 或12-±=x y18、(14分)设虚数21,z z 满足221z z =(1)若21,z z 是一个实系数一元二次方程的两个根,求21,z z ;(2)若)0(11>+=m mi z 且21≤z ,复数32+=z ω,求ω的取值范围。
λ解:(1)⎪⎪⎩⎪⎪⎨⎧--=+-=i z i z 2321232121或⎪⎪⎩⎪⎪⎨⎧+-=--=i z iz 2321232121 (2))4,13[ 19. (14分)在平面直角坐标系xOy 中,已知点(0,0)(2,0)(2,1)A B C --、、.设k 为非零实数,矩阵001,0110k M N ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,点A B C 、、在矩阵MN 对应的变换下得到点分别为1A 、1B 、1C ,111A B C ∆的面积是ABC ∆面积的2倍,求k 的值. 解:由题设得0010011010k k MN ⎛⎫⎛⎫⎛⎫==⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 由00220010001022k k --⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,可知111(0,0)(0,-2)(,2)A B C k -、、.计算得ABC ∆面积的面积是1,111A B C ∆的面积是||k ,则由题设知:||212k =⨯=. 所以k 的值为2或2-.20. (16分)已知椭圆2222:1x y a bΓ+=(0>>b a )的左、右焦点分别为1F 、2F ,且1F 、2F 与短轴的一个端点Q 构成一个等腰直角三角形,点)23,22(P 在椭圆Γ上,过点2F 作互相垂直且与x 轴不重合的两直线AB 、CD 分别交椭圆Γ于A 、B 、C 、D ,且M 、N 分别是弦AB 、CD 的中点. (1)求椭圆Γ的标准方程;(2)求证:直线MN 过定点2,03R ⎛⎫ ⎪⎝⎭; (3)求2MNF ∆面积的最大值.【解】(1)因为21F QF ∆是等腰直角三角形,所以c b =,则b a 2=,把点)23,22(P 代入椭圆方程,得2=a ,1=b ,故椭圆C 的标准方程为1222=+y x ------------------4分 (2)设直线AB 的方程为1+=my x ,不妨设0>m ,点),(11y x A 、),(22y x B由⎪⎩⎪⎨⎧+==+11222my x y x ,得12)2(22=-++my y m ,则22221+-=+m my y ,242)(22121+=++=+m y y m x x ,则)2,22(22+-+m mm M ------------------7分 解法一、()()22222130332,,22212112123MR NR m m m m m k k m m m m ⎛⎫--- ⎪⎝⎭+====⎡⎤--⎛⎫---⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦所以MR NR k k =,故直线MN 恒过定点2(,0)3R . ----------------------------------10分解法二、同理,可得)21,212(222mmm m N ++, 所以直线MN 的方程为2)22()1(23222+-+--=m mm x m m y 即)23)(2()2(2324-+=-+x m m y m m ,故直线MN 恒过定点2(,0)3R . 10分(3)22222)2()122(||++-+=m m m MF 2224++=m m m ,同理2)1()1()1(||2242+--+-=mm m NF 2MNF ∆面积||||2122NF MF S ==2)1(412+++mm mm ,设21≥+=m m t , 9141242≤+=+=tt t t S ,当且仅当2=t 即1=m 时,2MNF ∆面积取最大值91. 16分21. (18分)设等差数列}{n a 的公差为1d ,等差数列}{n b 的公差为2d ,记},,,m a x {2211n a b n a b n a b c n n n ---= ( ,3,2,1=n ),其中},,,max{21s x x x 表示s x x x ,,,21 这s 个数中最大的数.(1)若2n a n =,42n b n =-,求321,,c c c 的值,并猜想数列{}n c 的通项公式(不必证明);(2)设n a n -=,2+-=n b n ,若不等式nc c c n n 221212132⋅<-++-+-λ 对不小于2的一切自然数n 都成立,求λ的取值范围;(3)试探究当无穷数列}{n c 为等差数列时,1d 、2d 应满足的条件并证明你的结论. 【解】(1)1231232,4,6,2,6,10a a a b b b ====== 当1n =时,{}{}111max max 00c b a =-==当2n =时,{}{}21122max 2,2max 2,22c b a b a =--=--=-当3n =时,{}{}3112233max 3,3,3max 4,6,84c b a b a b a =---=---=-1230,2,4c c c ∴==-=-,猜想()22n c n n N *=-+∈. ----------------4分(2) 当k N *∈,且2k n ≤≤时,()1110k k k k b na b na n -----=->所以},,,max{2211n a b n a b n a b c n n n ---= n a b n n -==2)1(+-n n 故nn c c c n )1(132121121212132-++⋅+⋅=-++-+- n 11-=----7分 由题意得n n n 211⋅<-λ即n n 21->λ对不小于2的一切自然数n 都成立.设n n n p 21-=,则022212111≤-=--=-+++n nn n n nn n p p 故max 231()4n p p p ===,所以λ的取值范围为14λ>. ----------------10分(3) 当k N *∈,且2k n ≤≤时,()()111121k k k k k k k k b na b na b b n a a d nd -------=---=-.下面分1110,0,0d d d =><三种情况进行讨论, ① 若10d =,则()112k k k k b na b na d -----= 于是当20d ≤时,()1120k k k k b na b na d -----=≤,则对于任意给定的正整数n ,()11111,1n n c b na c b n a +=-=-+,此时11n n c c a +-=-,∴数列{}n c 是等差数列--------11分;当20d >时,()1120k k k k b na b na d -----=>则对于任意给定的正整数n ,()1111,1n n n n n n c b na b na c b n a ++=-=-=-+,此时121n n c c d a +-=-,∴数列{}n c 是等差数列;----------------------12分② 若10d >,若212d d ≤,则必有21d nd ≤对任意()2n n N *≥∈成立.此时()11111,1n n c b na c b n a -=-=--,11n n c c a --=-,∴{}n c 是等差数列;14分若212d d >,则当213d d ≥时,111222333,2,3c b a c b a c b a =-=-=- 于是()2131220c c c d -+=≠,∴数列{}n c 不是等差数列;----------15分 当12123d d d <<时,111222311,2,3c b a c b a c b a =-=-=-于是()()213212220c c c d d -+=-≠,∴数列{}n c 不是等差数列;-------16分③ 若10d <,则必存在s N *∈,使得当n s ≥时,21d n d >,此时就有21d nd >, 即210d nd ->,此时()()121111n n n c b a n b n d a n d n =-⋅=+--+-⋅⎡⎤⎣⎦()()112111n c b nd a nd n +=+-+⋅+,所以11212n n c c n d d a +-=-⋅+-与正整数n 有关, ∴数列{}n c 不是等差数列.综合得,若}{n c 为等差数列,则有01>d 且212d d ≤或01=d . -----18分。