2019高中数学培优解析:基本不等式(二)

合集下载

2019年高考数学理科考点一遍过27基本不等式(含解析)

2019年高考数学理科考点一遍过27基本不等式(含解析)

基本不等式:(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.一、基本不等式1.基本不等式:(1)基本不等式成立的条件:.(2)等号成立的条件,当且仅当时取等号.2.算术平均数与几何平均数设,则a、b的算术平均数为,几何平均数为,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题(1)如果积y是定值P,那么当且仅当时,+y有最小值是.(简记:积定和最小)(2)如果和+y是定值P,那么当且仅当时,y有最大值是.(简记:和定积最大)4.常用结论(1)(2)(3)(4)(5)(6)(7)二、基本不等式在实际中的应用1.问题的背景是人们关心的社会热点问题,如物价、销售、税收等.题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解;2.经常建立的函数模型有正(反)比例函数、一次函数、二次函数、分段函数以及等.解答函数应用题中的最值问题时一般利用二次函数的性质,基本不等式,函数的单调性或导数求解.考向一利用基本不等式求最值利用基本不等式求最值的常用技巧:(1)若直接满足基本不等式条件,则直接应用基本不等式.(2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等.常见的变形手段有拆、并、配.①拆——裂项拆项对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件.②并——分组并项目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值.③配——配式配系数有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值.(3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致.注:若可用基本不等式,但等号不成立,则一般是利用函数单调性求解.典例1 若正数a,b满足,则的最小值为A.1 B.6C.9 D.16【答案】B【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.1.(1)已知,求函数的最大值;(2)已知(正实数集),且,求的最小值.考向二基本不等式的实际应用有关函数最值的实际问题的解题技巧:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)设变量时一般要把求最大值或最小值的变量定义为函数.(3)解应用题时,一定要注意变量的实际意义及其取值范围.(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.典例2 2017年,在国家创新驱动战略下,北斗系统作为一项国家高科技工程,一个开放型的创新平台,1400多个北斗基站遍布全国,上万台设备组成星地“一张网”,国内定位精度全部达到亚米级,部分地区达到分米级,最高精度甚至可以达到厘米或毫米级.最近北斗三号工程耗资元建成一大型设备,已知这台设备维修和消耗费用第一年为元,以后每年增加元(是常数),用表示设备使用的年数,记设备年平均维修和消耗费用为,即(设备单价设备维修和消耗费用)设备使用的年数.(1)求关于的函数关系式;(2)当,时,求这种设备的最佳更新年限.答:这种设备的最佳更新年限为15年.【名师点睛】利用基本不等式解决应用问题的关键是构建模型,一般说,都是从具体的问题背景,通过相关的关系建立关系式.在解题过程中尽量向模型上靠拢.2.要制作一个体积为,高为的有盖长方体容器,已知该容器的底面造价是每平方米10元,侧面造价是每平方米5元,盖的总造价为100元,求该容器长为多少时,容器的总造价最低为多少元?考向三基本不等式的综合应用基本不等式是高考考查的热点,常以选择题、填空题的形式出现.通常以不等式为载体综合考查函数、方程、三角函数、立体几何、解析几何等问题.主要有以下几种命题方式:(1)应用基本不等式判断不等式是否成立或比较大小.解决此类问题通常将所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式问题.通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围.观察题目特点,利用基本不等式确定相关成立条件,从而得到参数的值或范围.典例3 下列不等式一定成立的是A.B.C.D.【答案】C【解析】对于A:(当时,),A不正确;对于B:,,B不正确;对于C:,C正确;对于D:,D不正确.故选C.【思路点拨】利用基本不等式判断不等关系及比较大小的思路:基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.3.设正实数满足,不等式恒成立,则的最大值为A.B.C.8 D.16典例4 设正项等差数列的前项和为,若,则的最小值为______.【答案】【名师点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.4.已知函数恒过定点,其中且,均为正数,则的最小值是_____________.1.函数取得最小值时,的值为A.B.C.1 D.22.已知a,b∈R,且ab≠0,则下列结论恒成立的是A.a+b≥2B.+≥2C.|+|≥2 D.a2+b2>2ab3.()的最大值为A.B.C.D.4.已知为正实数,则的最大值为A.B.C. D.5.若正实数a,b满足,则A.有最大值4 B.有最大值C.ab有最小值D.有最小值6.高三学生在新的学期里,刚刚搬入新教室,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当教室在第层楼时,上下楼造成的不满意度为,但高处空气清新,嘈杂音较小,环境较为安静,因此随教室所在楼层升高,环境不满意度降低,设教室在第层楼时,环境不满意度为,则同学们认为最适宜的教室应在楼A.B.C.D.7.若关于的方程9+(4+a)·3+4=0有解,则实数a的取值范围是A.(-∞,-8]∪[0,+∞) B.(-∞,-4)C.[-8,4) D.(-∞,-8]8.若对任意正数,不等式恒成立,则实数的最小值为A.1 B.C.D.9.已知,,且,,成等比数列,则有A.最小值B.最小值C.最大值D.最大值10.如图,在中,点是线段上两个动点,且,则的最小值为A.B.C.D.11.已知正实数满足当取最小值时,的最大值为A.2 B.C.D.12.在锐角中,为角所对的边,且,若,则的最小值为A.4 B.5C.6 D.713.函数的图象恒过定点,若定点在直线上,则的最小值为A.13 B.14C.16 D.1214.已知满足,的最大值为,若正数满足,则的最小值为A.9 B.C.D.15.当>0时,的最大值为.16.已知函数==,当时,函数的最小值为.17.在公比为的正项等比数列中,,则当取得最小值时,_ .18.已知,,则的最小值为.19.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间(单位:年)的关系为,则当每台机器运转年时,年平均利润最大,最大值是________万元.20.某物流公司引进了一套无人智能配货系统,购买系统的费用为80万元,维持系统正常运行的费用包括保养费和维修费两部分.每年的保养费用为1万元.该系统的维修费为:第一年1.2万元,第二年1.6万元,第三年2万元,…,依等差数列逐年递增.(1)求该系统使用n年的总费用(包括购买设备的费用);(2)求该系统使用多少年报废最合算(即该系统使用多少年平均费用最少).21.已知函数).(1)若,求当时函数的最小值;(2)当时,函数有最大值-3,求实数的值.22.(1)设,y是正实数,且2+y=4,求lg +lg y的最大值.(2)若实数a,b满足ab-4a-b+1=0(a>1),求(a+1)(b+2)的最小值.23.已知在中,,,分别为角,,所对的边长,且.(1)求角的值;(2)若,求的取值范围.1.(2017山东理科)若,且,则下列不等式成立的是A.B.C.D.2.(2015陕西理科)设,若,,,则下列关系式中正确的是A.B.C.D.3.(2018天津理科)已知,且,则的最小值为.4.(2017江苏)某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元.要使一年的总运费与总存储费用之和最小,则的值是___________.5.(2018江苏)在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为___________.当时,.3.【答案】C【解析】==8,当且仅当,时等号成立.所以.故选C.4.【答案】【解析】由题意得:3﹣m﹣2n=1,故m+2n=2,即(m+1)+2n=3,故=(+)[(m+1)+2n]=(1+++1)≥+=,当且仅当m+1=2n时“=”成立,故填.1.【答案】B【解析】,当且仅当时取等号,此时,故选B.2.【答案】C【解析】当a,b都是负数时,A不成立;当a,b一正一负时,B不成立;当a=b时,D不成立,因此只有选项C是正确的.3.【答案】B【解析】∵,∴,∴,当且仅当,即时等号成立,∴()的最大值为.故选B.【方法点睛】分子、分母有一个一次、一个二次的分式结构的函数以及含有两个变量的函数,适合用基本不等式求最值.5.【答案】B【解析】∵正实数a,b满足,∴,当且仅当时取等号.故有最小值4,故A不正确;由于,∴⩽,故有最大值,故B正确;由基本不等式可得a+b=1⩾2,∴,故ab有最大值,故C不正确;∵,故有最小值,故D不正确.故选B.6.【答案】B7.【答案】D【解析】由9+(4+a)·3+4=0得4+a==-(3+)≤=-4,即a≤-8,当且仅当3=2时等号成立.8.【答案】D【解析】由题意可得恒成立.由于(当且仅当时取等号),故的最大值为,,即的最小值为,故选D.9.【答案】A【解析】∵>1,y>1,∴,又∵,,成等比数列,∴,由基本不等式可得,当且仅当,即时取等号,故,即,故y的最小值为.本题选择A选项.10.【答案】D【解析】易知,y均为正,设,共线,,,则,,当且仅当,即时等号成立.则的最小值为,故选D.11.【答案】C12.【答案】C【解析】由正弦定理及题中条件,可得,即. 因为,所以.又,所以,所以,则,所以选C.13.【答案】D【解析】时,函数的值恒为,函数的图象恒过定点,又点在直线上,,又,当且仅当时取“=”,则的最小值为,故选D.14.【答案】B当且仅当取等号,故选B.15.【答案】1【解析】∵>0,∴,当且仅当,即=1时取等号.16.【答案】【解析】由题意可得===(当且仅当,即时取等号).17.【答案】【解析】,当且仅当时取得最小值,则,故答案为.20.【解析】(1)设该系统使用年的总费用为依题意,每年的维修费成以为公差的等差数列,则年的维修费为则(2)设该系统使用的年平均费用为则,当且仅当即时等号成立.故该系统使用20年报废最合算.22.【解析】(1)因为>0,y>0,所以由基本不等式得≥,因为2+y=4,所以≤2,所以y≤2,当且仅当2=y时,等号成立,由,解得,所以当=1,y=2时,y取得最大值2,所以lg +lg y=lg(y)≤lg 2,当且仅当=1,y=2时,lg +lg y取得最大值lg 2.(2)因为ab-4a-b+1=0,所以b=,ab=4a+b-1.所以(a+1)(b+2)=ab+2a+b+2=6a+2b+1=6a+×2+1=6a++1=6a+8++1=6(a-1)++15.因为a>1,所以a-1>0.所以原式=6(a-1)++15≥2+15=27.当且仅当(a-1)2=1,即a=2时等号成立.故所求最小值为27.1.【答案】B【解析】因为,且,所以,所以选B.2.【答案】C【解析】,,,函数在上单调递增,因为,所以,所以,故选C.3.【答案】【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式:①,当且仅当时取等号;②,,当且仅当时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.4.【答案】30【解析】总费用为,当且仅当,即时等号成立.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.5.【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,。

基本不等式方法培优专题(精校版word)

基本不等式方法培优专题(精校版word)

基本不等式培优专题目录:培优点一:常规配凑法 培优点二:常量代换 培优点三:换元法培优点四:和、积、平方和三量减元 培优点五:轮换对称和万能k 法培优点六:消元法(必要构造函数求导) 培优点七:不等式算两次 培优点八:齐次化培优点九:待定与技巧性强的配凑 培优点十:多元变量的不等式最值问题 培优点十一:不等式综合问题一、常规配凑法1.已知242(,)aba b R +=∈,则2a b +的最大值为__________,02.已知实数,x y ,满足22116y x +=,则__________,943.已知不等式11()()9x my x y++≥对任意正实数,x y 恒成立,则正实数m 的最小值______,44.已知实数,x y ,满足1x ≠,则11x y y x ++-+的最小值为__________,15.已知实数0,0x y >>,满足23x y+=xy 的最小值为__________,6.已知实数0x y >>,满足1x y +=,则412x y y+-的最小值为__________,97.已知实数0,0x y >>,满足11111x y +=++,则2x y +的最小值为__________, 二、“1”的代换8.已知实数0,0>>y x ,满足1x y +=,则1y x y+的最小值为__________3,此时_____x =129.已知实数0x y >>,满足121x y +=,则2y x+的最小值为__________,9 10.已知实数0x y >>,满足2x y +=,则413x y x y ++-的最小值为__________,9411.记max{,,}x y z 表示,,x y z 中的最大数,若0,0x y >>,则13max{,,}x y x y+的最小值为______,212.已知实数0x y >>,满足2x y +=,则22221x y x y ++-+的最小值为13.已知正实数,x y ,满足121(2)(2)x y y x y x+=++,则xy 的最大值为__________,2三、换元法14.已知实数0x y >>,满足1x y +=,则11112x y+++的最小值为15.已知22log (2)log (1)1a b -+-≥,则2a b +取到最小值时________ab =916.已知实数20x y >>,满足11122x y x y+=-+,则x y +的最小值为17.已知实数0x y >>,满足1x y +=,则11x y x y +++的最大值为__________,2318.已知实数0,0x y >>,满足22x y +=,则224122x y y x +++的最小值为__________,4519.已知实数0,0x y >>,满足111x y +=,则1911x y +--的最小值为__________,6 20.已知实数,x y ,满足3x y xy +=-,且1x >,则(8)y x +的最小值为__________,2521.已知实数0,0x y >>,满足111x y +=,则4911x y x y +--的最小值为__________,2522.已知实数,x y ,满足491xy+=,则1123x y +++的取值范围为__________,23.已知实数,x y ,满足114422x y x y +++=+,则22xyS =+的取值范围为__________,(2,4] 四、和、积、平方和三量减元24.已知实数,x y ,满足4x y +=,则xy 的最大值为__________4,22(1)(1)x y ++的最小值为__________,1625.已知实数0,0x y >>,满足()4xy x y +=,则xy 的最大值为_,2x y +的最小值为__________,226.已知实数,x y ,满足2x y +=,则221111x y +++的最大值为27.已知正实数,x y ,满足22421x y x y +++=,则xy 的最大值为28.已知实数,x y ,满足412x y y x xy +=-,则221xyx y +-的最大值为__________,13+ 29.已知非负实数,x y ,满足222244432x y xy x y +++=,则2x y +的最小值为2)2x y xy ++的最大值为__________,16 30.已知正实数,x y ,满足42y x xy ++=,则221217xy x y xy +++的取值范围为______,13(,]172531.已知正实数,x y ,满足2342x y xy ++=,则54xy x y ++的最小值为__________,55 32.已知正实数,x y ,满足2(2)16x y xy +=+,则21xy x y ++的最大值为__________,16五、轮换对称与万能k 法33.已知实数,x y ,满足2241x y xy ++=,则2x y +的最大值为__________,534.已知正实数,x y ,满足22x y +=,则x __________,8535.已知正实数,x y ,满足2291x y +=,则3xyx y+的最大值为__________,1236.已知实数,,x y z ,满足0x y z ++=,2221x y z ++=则x 的最大值为__________,337.已知实数,x y ,满足229461x y xy ++=,则96x y +的最大值为__________,六、消元法(必要构造函数求导) 38.若存在正实数y ,使得154xy y x x y =-+,则x 的最大值为__________,1539.已知正实数,x y ,满足23x y +=,则12x y +的最小值为_________3_,2212x y+的最小值为_________3,40. 已知正实数,x y ,满足1x y +=,则222x yx y x y+++的最大值为1+ 41. 已知正实数,x y ,满足240x y -+≤,则23x y u x y +=+有最_小__值为________,14542. 已知正实数,x y ,满足113x y +=,则xy 的最小值为_________49_,1y xy +的最大值为__________,4七、不等式算两次43.已知实数0x y >>,则21()x y x y +-的最小值为__________,444.已知实数20x y >>,则29()(2)x y y x y -+-的最小值为__________,1245.已知实数0x y >>,则4441x y xy++的最小值为__________,446.已知实数0,0x y >>,则2211()()22x y y x+++的最小值为__________,4 47.已知正实数,,x y z ,则2222()52x y z yz xz++++的最小值为__________,448.已知实数0x y >>,则322x x y x y+++-的最小值为__________,49.已知实数2,0,0>>>z y x ,且2x y +=,则2xz z z y xy +-的最小值为_______,+八、齐次化50.若不等式222()x y cx y x -≤-对满足0x y >>的任意实数,x y 恒成立,则实数c 的最大值为____________.451.已知正实数,x y ,满足23x y +=,则23x y xy+的最小值为__________,152.已知正实数,x y ,若23x y +=,则2222629xy xyy x y x+++的最大值为53.已知实数,x y ,满足22222x xy y -+=,则222x y +的最小值为__________,73九、待定和技巧性强的配凑54.已知正实数,,x y z ,满足3456x y z ++=,则1422y z y z x z ++++的最小值为_______,7355.已知正实数,x y ,满足111x y+=,则2210x xy y -+的最小值为__________,-3656.已知正实数,x y ,满足1xy ≤,则11112x y+++的最小值为__________,2 57.已知实数,,x y z ,满足222144x y z ++=,则22xy yz xz ++的取值范围为_____,[2,4]-58.已知正实数,,x y z ,满足2221x y z ++=,则3xy yz +的最大值为__________,259.已知实数,,x y z ,满足2224x y z ++=+的最大值为__________,十、多元变量的不等式最值问题60.已知正实数,,,a b c d ,满足1a b +=,1c d +=则11abc d+的最小值为__________,961.已知实数,,x y z ,满足222215xy z x y z +=⎧⎨++=⎩,则xyz 的最小值为____32______,此时___z =262.已知正实数,,x y z ,满足()x x y z yz ++=,则xy z+的最大值为__________,1263.已知实数,,x y z ,满足0,x y z x y z ++=>>,则的取值范围为______,(55-64.已知实数,,x y z ,满足2221x y z ++=,则xy z +的最小值为__________,-165.已知实数,,x y z ,满足222231x y z ++=,则2x y +的最大值为66.已知正实数,,x y z ,满足2xy x y =+,2xyz x y z =++则z 的最大值为__________,8767.已知正实数,,x y z ,满足x y z +≥,则y x x y z ++的最小值为1268.已知正实数,,x y z ,满足111x y +=,111x y z +=+,则z 的取值范围为__________,4(1,]369.已知正实数,,x y z ,满足2221x y z xy yz ++--=,则z 的最大值为70.已知非负实数,,x y z ,满足1x y z ++=,则()()z x z y --的取值范围为___,1[,1]8- 十一、不等式综合应用71.已知正实数,x y ,满足4146x y x y ++=+,则41x y+的最小值为__________,8 72.已知正实数,x y ,满足148x y x y+=++,则x y +的最小值为__________,9 73.已知正实数,x y ,满足111924x y x y +++=,则3716x y -的最小值为__________,14- 74.已知实数,,(0,1)a b c ∈,设212121,,,111a b b c c a+++---这三个数的最大值为M ,则M 的最小值为_______3+75.已知实数,x y ,满足1,0x y >>,且114111x y x y +++=-则111x y+-的最大值为__,976.已知正实数,x y ,满足2(1)(32)(2)xy y y -=+-,则1x y+的最大值为______,1 77.已知正实数,x y ,满足2811x y+=,则x y +的最小值为__________,6。

专题18 基本不等式(解析版)

专题18 基本不等式(解析版)

专题18 基本不等式(解析版)基本不等式(解析版)不等式是数学中一种常见的关系表达形式,通常用来描述数值之间的大小关系。

基本不等式是指一些在数学中常用的不等式,这些不等式经过解析和推导后,可以得到一些有用的性质和结论。

本文将介绍一些常见的基本不等式,并探讨它们在数学中的应用。

一、一元一次不等式首先我们来看一元一次不等式。

一元一次不等式是指只包含一个未知数的一次函数不等式。

其中最常见的类型是形如ax + b > 0的一元一次不等式。

解这类不等式的方法与求一元一次方程类似,需要对x的取值范围进行分析,得出不等式的解集。

二、一元二次不等式一元二次不等式是指包含一个未知数的二次函数不等式。

解决一元二次不等式时,一种常见的方法是将其转化为标准形式,并利用一元二次方程的性质来解决。

同时要注意一元二次不等式在两边乘以负数时,不等号需反向转换。

三、绝对值不等式绝对值不等式是指包含绝对值符号的不等式。

解绝对值不等式通常需要将不等式分为两种情况进行讨论,一种是当绝对值内的表达式大于等于0,另一种是当绝对值内的表达式小于0。

这样可以得到两个关于未知数x的不等式,再根据这两个不等式解出x的取值范围。

四、加减平均不等式加减平均不等式是数学中常见的一种基本不等式。

它表示若有若干个数a1、a2、……、an,则它们的算术平均数大于等于几何平均数,并等号在且仅在这些数全相等的情况下成立。

也就是说,对于非负数a1、a2、……、an,有(a1+a2+……+an)/n ≥ (a1⋅a2⋅……⋅an)^(1/n)。

五、柯西-施瓦茨不等式柯西-施瓦茨不等式是一种在数学分析和线性代数中常用的不等式。

对于两个n维向量a=(a1,a2,…,an)和b=(b1,b2,…,bn),柯西-施瓦茨不等式可以表示为|(a1b1+a2b2+…+anbn)|≤√(a1^2+a2^2+…+an^2)⋅√(b1^2+b2^2+…+bn^2)。

柯西-施瓦茨不等式的应用领域很广,包括向量空间中的内积、数列中的收敛性等。

高中数学:基本不等式(含答案)

高中数学:基本不等式(含答案)

高中数学:必修5 基本不等式一、基础知识1.重要不等式:a 2+b 2≥2ab (a ,b ∈R )一般地,对于任意实数a ,b ,有a 2+b 2≥2ab ,当且仅当______________时,等号成立.2.基本不等式如果a >0,b >0,那么2a bab +≤,当且仅当______________时,等号成立. 其中,2a b+叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 因此基本不等式也可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.基本不等式的证明(1)代数法:方法一 因为a >0,b >0,所以我们可以用a ,b 分别代替重要不等式中的a ,b ,得22()()2a b a b +≥⋅,当且仅当a b =时,等号成立.即2a bab +≥( a >0,b >0),当且仅当a =b 时,等号成立. 方法二 因为2222()()2()0a b ab a b ab a b +-=+-=-≥, 所以20a b ab +-≥,即2a b ab +≥,所以2a bab +≤. 方法三 要证2a bab +≥,只要证2a b ab +≥,即证20a b ab +-≥,即证2()0a b -≥,显然2()0a b -≥总是成立的,当且仅当a =b 时,等号成立.(2)几何法:如图,AB 是圆的直径,C 是AB 上一点,AC =a ,BC =b ,过点C 作垂直于AB 的弦DE ,连接AD ,BD .易证Rt Rt ACD DCB △∽△,则CD 2=CA ·CB ,即CD =______________.这个圆的半径为2a b +,显然它大于或等于CD ,即2a bab +≥,当且仅当点C 与圆心重合,即a =b 时,等号成立.2a bab +≤的几何意义:半径不小于半弦.4.重要不等式和均值不等式的常用变形公式及推广公式(1)2b a a b +≥(a ,b 同号);2b aa b +≤-(a ,b 异号). (2)12a a +≥(a >0);12a a+≤-(a <0). (3)114a b a b +≥+(a >0,b >0);22a a b b≥-(a >0,b >0).(4)222a b ab +≤,2()2a b ab +≤,4ab ≤a 2+b 2+2ab ,2(a 2+b 2)≥(a +b )2(,)a b ∈R . (5)12212(,,,,2)nn n a a a a a a a n n n+++≥∈≥∈R N ,.(6)2121212111()()(,,,n n na a a n a a a a a a ++++++≥为正实数,且2)n n ≥∈N ,.5.均值不等式链若a >0,b >0,则2112a b a b+≤≤≤+,当且仅当a =b 时,等号成立.其中211a b +分别叫做a ,b 的调和平均数和平方平均数.6.最值定理已知x >0,y >0,则若x+y 为定值s ,则当且仅当x =y 时,积xy 有最大值24s (简记:和定积最大); 若xy 为定值t ,则当且仅当x =y 时,和x +y有最小值简记:积定和最小).参考答案:重难易错点:一、利用基本不等式判断不等式是否成立要判断不等式是否成立,关键是把握其运用基本不等式时能否严格遵循“一正、二定、三相等”这三个条件.例1.(1)设f (x )=ln x ,0<a <b ,若p =f ),q =()2a b f +,r =12(f (a )+f (b )),则下列关系式中正确的是 A .q =r <pB .p =r <qC .q =r >pD .p =r >q(2)给出下列不等式:①12x x +≥;②1||2x x+≥;③21(0)4x x x +>>;④1sin 2sin x x +≥;⑤若0<a <1<b ,则log a b +log b a ≤-2.其中正确的是______________. 【答案】(1)B ;(2)②⑤.【点析】基本不等式常用于有条件的不等关系的判断、比较代数式的大小等.一般地,结合所给代数式的特征,将所给条件进行转换(利用基本不等式可将整式和根式相互转化),使其中的不等关系明晰即可解决问题.二、利用基本不等式证明不等式利用基本不等式证明不等式的一般思路:先观察题中要证明的不等式的结构特征,若不能直接使用基本不等式证明,则考虑对代数式进行拆项、变形、配凑等,使之达到能使用基本不等式的形式;若题目中还有其他条件,则先观察已知条件和所证不等式之间的联系,当已知条件中含有“1”时,要注意“1”的代换.另外,解题时要时刻注意等号能否取到.例2.(1)已知a >0,b >0,c >0,求证:222a b c a b c b c a++≥++;(2)已知a >b ,ab =2,求证:224a b a b+≥-.观察a-b,a2+b2,可联想到通过加减2ab的方法配凑出(a-b)2,从而化为可使用基本不等式的形式,结合ab =2可使问题得到解决.三、利用基本不等式求最值(1例3.(1)已知f(x)=x+1x+2(x<0),则f(x)有A.最大值为4B.最小值为4 C.最小值为0 D.最大值为0(2)已知0<x<4,则x(4-x)取得最大值时x的值为A.0 B.2 C.4 D.16(3)已知函数f(x)=2x(x>0),若f(a+b)=16,则f(ab)的最大值为_______________;(4)已知a,b∈R,且ab=8,则|a+2b|的最小值是_______________.【答案】(1)D;(2)C;(3)16;(4)8.【点析】利用基本不等式求最值要牢记三个关键词:一正、二定、三相等,即①一正:各项必须为正;②二定:各项之和或各项之积为定值;③三相等:必须验证取等号时条件是否具备.(2使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、凑项、凑系数等.例4.(1)已知x>0,则函数y=231x xx++的最小值为_______________;(2)若x>1,则函数y=11xx+-的最小值为_______________;(3)若0<x<125,则函数y=x(12-5x)的最大值为_______________.(31”的替换,或构造不等式求解.例5.(1)已知a>0,b>0,a+b=1,则11a b+的最小值为_______________;(2)已知a>0,b>0,11a b+=2,则a+b的最小值为_______________;(3)若正实数x,y满足x+y+3=xy,则xy的最小值是_______________;(4)已知x >0,y >0,x +y +xy =3,则x +y 的最小值是_______________. 【答案】(1)4;(2)2;(3)9;(4)2.【点析】在构造不等式求最值时,既要掌握公式的正用,也要注意公式的逆用.例如,当a >0,b >0时,a 2+b 2≥2ab 逆用就是ab ≤222a b +;2a b+≥ab 逆用就是ab ≤2()2a b +等.还要注意“添项、拆项、凑系数”的技巧和等号成立的条件等.四、基本不等式在实际中的应用利用基本不等式解决应用问题的关键是构建模型,一般来说,都是从具体的几何图形,通过相关的关系建立关系式.在解题过程中尽量向模型2bax ab x+≥(a >0,b >0,x >0)上靠拢. 例6.如图,要规划一个矩形休闲广场,该休闲广场含有大小相等的左右两个矩形草坪(如图中阴影部分所示),且草坪所占面积为18 000 m 2,四周道路的宽度为10 m ,两个草坪之间的道路的宽度为5 m .试问,怎样确定该矩形休闲广场的长与宽的尺寸(单位:m ),能使矩形休闲广场所占面积最小?【答案】当矩形休闲广场的长为140 m ,宽为175 m 时,可使休闲广场的面积最小.【点析】本题容易出现的思维误区:①未能理清草坪边长与休闲广场边长之间的关系;②求出目标函数后不会运用基本不等式求最值,缺乏必要的配凑、转化变形能力,从而无法利用基本不等式求最值,或者不会利用基本不等式等号成立的条件求变量的取值.五、忽略等号成立的条件导致错误例7、函数22()2f x x =+的最小值为_______________.【错解】2222223211()22222x x f x x x x x +++===++≥+++,所以函数()f x 的最小值为2.【错因分析】错解中使用基本不等式时,等号成立的条件为22122x x +=+,即22x +=1,显然x 2≠-1,即等号无法取到,函数()f x 的最小值为2是不正确的. 【正解】()21222+++=x x x f ,令()()t t t g t x t 1,2,22+=≥+=.易知函数()tt t g 1+=在[)∞+,2上六、忽略等号成立的一致性导致错误例8、若x>0,y>0,且x+2y=1,则11x y+的最小值为_______________.基本不等式:基础习题强化1.已知01x <<,则(1)x x -取最大值时x 的值为A B C D 2.若实数,a b 满足323a b +=,则84a b +的最小值是A .B .4C .D .3.若0,0,x y >>且22x y +=,则21x y+的最小值是A .3BC .3D .924.若1a >,则211a a a -+-的最小值是A .2B .4C .1D .35.已知2212,202b m a a n b a -=+>=≠-()(),则m ,n 之间的大小关系是 A .m >nB .m <nC .m =nD .不能确定6.己知,a b 均为正实数,且直线60ax by +-=与直线()3250b x y --+=互相垂直,则23a b +的最小值为 A .12B .13C .24D .257.已知0a >,0b >,11a b a b +=+,则12a b+的最小值为A .4B .C .8D .168.若正数a ,b 满足3ab a b =++,则ab 的取值范围为________________. 9.已知,,a b c +∈R ,且3a b c ++=,则111a b c++的最小值是________________.10.若实数a ,b 满足12a b+=ab 的最小值为________________. 11.设230<<x ,则函数4(32)y x x =-的最大值为________________. 12.已知a >0,b >0,ab =8,则当a 的值为________________时,22log log (2)a b ⋅取得最大值.能力提升13.已知a ,b 都是正实数,且满足2a b ab +=,则2a b +的最小值为A .12B .10C .8D .614.已知1,1a b >>,且11111a b +=--,则4a b +的最小值为 A .13B .14C .15D .1615.已知不等式1)()9ax y x y++≥(对任意正实数x ,y 恒成立,则正实数a 的最小值为 A .8B .6C .4D .216.若正实数,a b 满足1a b +=,则A .11a b+有最大值4 B .ab 有最小值14C .a b +有最大值2D .22a b +有最小值2217.已知0,0a b >>,若不等式3103m a b a b--≤+恒成立,则m 的最大值为 A .4B .16C .9D .318.设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为A .252B .492C .12D .1419.已知a >0,b >0,c >0,且a +b +c =1,则111a b c++的最小值为_________________. 20.在4×+9×=60的两个中,分别填入一个自然数,使它们的倒数之和最小,则中应分别填入____________和____________.21.若a ,b ,c >0且(a +c )(a +b )=423-,则2a +b +c 的最小值为________________. 22.已知正实数a ,b 满足:1a b +=,则222a ba b a b +++的最大值是________________.其他23.某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图所示).设矩形的长为x 米,钢筋网的总长度为y 米. (1)列出y 与x 的函数关系式,并写出其定义域;(2)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?24.(1)求函数2710(1)1x x y x x ++=>-+的最小值;(2)已知正数a ,b 和正数x ,y ,若a +b =10,1a bx y+=,且x +y 的最小值是18,求a ,b 的值.25.已知函数2()21,f x x ax a a =--+∈R .(1)若2a =,试求函数()(0)f x y x x=>的最小值; (2)对于任意的[0,2]x ∈,不等式()f x a ≤成立,试求a 的取值范围.26.(天津文理)已知a ,b ∈R ,且360a b -+=,则128ab+的最小值为_______________. 27.(江苏)在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为_______________.28.(山东理)若0a b >>,且1ab =,则下列不等式成立的是A .()21log 2aba ab b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a b a a b b +<+<D .()21log 2a ba b a b +<+< 29.(天津文理)若,a b ∈R ,0ab >,则4441a b ab++的最小值为________________.30.(江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________________. 31.(山东文)若直线1(0,0)x ya b a b+=>>过点(1,2),则2a b +的最小值为________________.【参考答案】1.【答案】B 2.【答案】C 3.【答案】D 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】B8.【答案】[)+∞,9 9.【答案】3 10.【答案】 11.【答案】9212.【答案】4 13.【答案】C 14.【答案】B 15.【答案】C 16.【答案】C 17.【答案】B 18.【答案】A19.【答案】9 20.【答案】6 4 21.【答案】2 22.23.【答案】(1)9003(0150)y x x x=+-<<;(2)长为30米,宽为15米时,所用的钢筋网的总长度最小. 24.【答案】(1)9;(2)28a b =⎧⎨=⎩或82a b =⎧⎨=⎩. 25.【答案】(1)2-;(2)3[,)4+∞.26.【答案】0.25 27.【答案】9 28.【答案】B 29.【答案】4 30.【答案】30 31.【答案】8。

2019年高考数学(理科)考试大纲解读专题16不等式选讲(含解析)

2019年高考数学(理科)考试大纲解读专题16不等式选讲(含解析)

2019年考试大纲解读16 不等式选讲选考内容(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1).(2).(3)会利用绝对值的几何意义求解以下类型的不等式:.2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1)柯西不等式的向量形式:(2).(3).(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.6.会用数学归纳法证明伯努利不等式:了解当n为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.1.从考查题型来看,涉及本知识点的题目主要以选考的方式,在解答题中出现,考查解绝对值不等式、证明不等式等.2.从考查内容来看,主要考查绝对值不等式的解法、不等式的证明,求最值问题等.3.从考查热点来看,重点在于考查学生解不等式及利用不等式求解最值问题等,绝对值不等式与函数问题的综合是高考的趋势,值得关注.考向一 绝对值不等式的求解样题1 (2018新课标全国Ⅱ理科)设函数.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.样题2 (2018新课标全国Ⅲ理科)设函数.(1)画出()y f x =的图象;(2)当[)0x +∞∈,,,求a b +的最小值.【解析】(1)()y f x =的图象如图所示.。

第14讲 基本不等式 (解析版)

第14讲 基本不等式 (解析版)

【高中新知识预习篇】第14讲 基本不等式解析版一、基本知识及其典型例题知识点一 基本不等式1.基本不等式的概念:当a ,b > 0,ab ≤a +b2,当且仅当a =b 时,等号成立. 2.基本不等式的意义:一般地,对于正数a ,b ,a +b2为a ,b 的算术平均数,ab 为a ,b 的几何平均数. 两个正数的算术平均数不小于它们的几何平均数,即ab ≤ a +b2. 3.基本不等式的常见推论 :(1) (重要不等式) ∀a ,b ∀R ,有a 2+b 2 ≥ 2ab ,当且仅当a =b 时,等号成立.(2) ab ≤ 2)2(b a +≤ a 2+b 22 (R b a ∈、);(3) b a +ab≥ 2 (a ,b 同号);(4)a 2+b 2+c 2 ≥ ab +bc +ca (R c b a ∈、、). 4.利用基本不等式证明不等式(1)策略:从已证不等式和问题的已知条件出发,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后转化为所求问题,其特征是以“已知”看“可知”,逐步推向“未知”. (2) 注意事项:∀多次使用基本不等式时,要注意等号能否成立;∀累加法是不等式证明中的一种常用方法,证明不等式时注意使用;∀对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【例1】证明不等式: a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【证明】∀化简得:2)2(b a ab +≤.0)(,0224,422222222≥-≥+-++≤++≤b a b ab a b ab a ab b ab a ab 即,即即.时取等号当且仅)2(0)(2b a b a ab b a =+≤∴≥-当恒成立,恒成立, ∀)(22,2422)2(22222222222b a b ab a b a b ab a b a b a +≤+++≤+++≤+即化简得:.0)(,02222≥-≥+-b a b ab a 即即.2)2(222时等式成立恒成立,当且仅当同理,b a b a b a =+≤+综上, a ,b ∀R , ab ≤2)2(b a +≤a 2+b 22,当且仅当a=b 时取等号.【变式1】已知x ,y 都是正数. 求证:(1)y x +xy ≥2; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3;(3)已知a ,b ,c 为任意的实数,求证:a 2+b 2+c 2≥ab +bc +ca . 【证明】 (1)∀x ,y 都是正数,∀x y > 0,yx > 0,∀y x +xy≥ 2y x ·x y = 2, 即 y x +xy≥ 2, 当且仅当x =y 时,等号成立.(2)∀x ,y 都是正数,∀x +y ≥ 2xy > 0, x 2+y 2 ≥ 2x 2y 2 > 0,x 3+y 3 ≥ 2x 3y 3 > 0.∀(x +y )(x 2+y 2)(x 3+y 3) ≥ 2xy ·2x 2y 2·2x 3y 3=8x 3y 3,即 (x +y )(x 2+y 2)(x 3+y 3) ≥ 8x 3y 3,当且仅当x =y 时,等号成立. (3)∀a 2+b 2≥2ab ;b 2+c 2≥2bc ;c 2+a 2≥2ca , ∀2(a 2+b 2+c 2)≥2(ab +bc +ca ), 即a 2+b 2+c 2≥ab +bc +ca , 当且仅当a =b =c 时,等号成立..1.a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式.“当且仅当…时,取等号”这句话的含义是:当a =b 时,a +b2=ab ;当a +b2=ab 时,也有a =b .2.在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或把恒等式变形配凑成适当的数、式,以便于利用基本不等式.【例2】(多选题)设a >0,b >0,下列不等式中恒成立的有( ) A.a 2+1>a B.4)1)(1(≥++bb a a C.4)11)((≥++ba b a D.a 2+9>6a .【解析】由于a 2+1-a =2)21(-a +34>0,故A 恒成立;由于a +1a ≥2,b +1b≥2,∀4)1)(1(≥++bb a a ,当且仅当a =b =1时,等号成立,故B 恒成立; 由于a +b ≥2ab ,1a +1b≥21ab, 故4)11)((≥++ba b a ,当且仅当a =b 时,等号成立,故C 恒成立; 当a =3时,a 2+9=6a ,故D 不恒成立. 综上,恒成立的是ABC.【变式2】下列各式中,对任何实数x 都成立的一个式子是( ). A.x y +≥B .21x x +>2C .2111x ≤+ D .12x x+≥ 【答案】C【分析】取特殊值可得a,b,D 不恒成立,由211x +≥可得C 对应的不等式2111x ≤+恒成立,得解. 【解析】对于A ,当0x <时,根式无意义,故A 不恒成立; 对于B ,当1x =时,212x x +=,故B 不恒成立; 对于C ,211x +≥,所以2111x ≤+成立,故C 成立; 对于D ,当0x <时,12x x+<,故D 恒不成立, 即对任何实数x 都成立的一个式子是2111x ≤+ 【例3】已知,,若,证明:。

专题1 培优点2 基本不等式的综合问题(教师版)

专题1 培优点2 基本不等式的综合问题(教师版)

培优点2 基本不等式的综合问题【要点提炼】利用基本不等式求最值时,要坚持“一正、二定、三相等”原则,解题时可以对条件灵活变形,满足求最值的条件要求.【典例】1 (1)已知x 2+y 2+xy =1,则x +y 的最大值是_________________________.(2)设x ≥0,y ≥0,x 2+y 22=1,则x ·1+y 2的最大值为________. (3)已知x>0,y>0,1x +2y +1=2,则2x +y 的最小值为________. 【答案】 (1)233 (2)324(3)3 【解析】 (1)由(x +y)2=xy +1,得(x +y)2≤⎝ ⎛⎭⎪⎫x +y 22+1, 则x +y ≤233(当且仅当x =y =33时取等号), 故x +y 的最大值为233. (2)x ·1+y 2=2x ·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122 =324⎝ ⎛⎭⎪⎫当且仅当x =32,y =22时取等号,故x ·1+y 2的最大值为324. (3)∵2x +(y +1)=12⎝ ⎛⎭⎪⎫1x +2y +1[2x +(y +1)] =12⎝ ⎛⎭⎪⎫2+y +1x +4x y +1+2≥4, ∴2x +y =2x +(y +1)-1≥3(当且仅当x =1,y =1时取等号),故2x +y 的最小值为3.【典例】2 记max{a ,b}为a ,b 两数的最大值,则当正数x ,y(x>y)变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为________. 【答案】 10【解析】 方法一 由题意知t ≥x 2,t ≥25y x -y, ∴2t ≥x 2+25yx -y , 又∵x 2+25y x -y ≥x 2+25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2+100x 2 ≥20,∴2t ≥20,即t ≥10.∴当正数x ,y(x>y)变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 方法二 由题意知t ≥x 2>0,t ≥25yx -y >0, ∴t 2≥x 2·25y x -y , 又∵x 2·25y x -y ≥x 2·25⎣⎢⎡⎦⎥⎤y +x -y 22=x 2·100x 2 =100,∴t 2≥100,即t ≥10.∴当正数x ,y(x>y)变化时,t =max ⎩⎨⎧⎭⎬⎫x 2,25y x -y 的最小值为10. 【方法总结】 (1)运用基本不等式求最值时,可通过配凑变量的系数或加减常数项出现定值,满足基本不等式求最值的条件.(2)将目标函数式中的常数用已知式进行等量代换,或者将目标函数式与已知代数式相乘,然后通过化简变形,求得目标函数的最值.【拓展训练】1.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是( ) A .1 B .6 C .9 D .16【答案】 B【解析】 ∵正数a ,b 满足1a +1b=1, ∴b =a a -1>0,解得a>1.同理可得b>1, ∴1a -1+9b -1=1a -1+9a a -1-1 =1a -1+9(a -1)≥21a -1·9a -1=6,当且仅当1a -1=9(a -1),即a =43时等号成立, ∴所求最小值为6.2.(2020·厦门模拟)函数y =2x -1+5-2x ⎝ ⎛⎭⎪⎫12<x<52 的最大值是________.【答案】 2 2 【解析】 y 2=(2x -1+5-2x)2=4+22x -15-2x ≤4+(2x -1)+(5-2x)=8,又y>0,所以0<y ≤22,当且仅当2x -1=5-2x ,即x =32时取等号.故函数的最大值是2 2. 3.(2020·天津)已知a>0,b>0,且ab =1,则12a +12b +8a +b的最小值为________. 【答案】 4【解析】 因为a>0,b>0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b =4, 当且仅当a +b 2=8a +b, 即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 4.设a +b =2,b>0,则当a =________时,12|a|+|a|b取得最小值. 【答案】 -2【解析】12|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥-14+2b 4|a|·|a|b =34,当且仅当b 4|a|=|a|b 且a<0,即a =-2,b =4时取等号.故当a =-2时,12|a|+|a|b取得最小值.。

2019版高考数学理高分计划一轮高分讲义:第6章 不等式 6-3 基本不等式 含解析 精品

2019版高考数学理高分计划一轮高分讲义:第6章 不等式 6-3 基本不等式 含解析 精品

6.3 基本不等式[知识梳理] 1.基本不等式设a >0,b >0,则a 、b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.2.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24(简记:和定积最大).注:应用基本不等式求最值时,必须考察“一正、二定、三相等”,忽略某个条件,就会出现错误.3.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号).(3)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R ), 2(a 2+b 2)≥(a +b )2(a ,b ∈R ). (5)a 2+b 22≥(a +b )24≥ab (a ,b ∈R ). (6)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0).[诊断自测] 1.概念思辨(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x 的最小值是2.( ) (3)函数f (x )=sin x +4sin x 的最小值为2.( ) (4)x >0且y >0是x y +yx ≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×2.教材衍化(1)(必修A5P 99例1(2))设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82答案 C解析 由基本不等式18=x +y ≥2xy ⇔9≥xy ⇔xy ≤81,当且仅当x =y 时,xy 有最大值81,故选C.(2)(必修A5P 100A 组T 2)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大.答案 15 152解析 设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.3.小题热身(1)下列不等式一定成立的是( ) A .lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z ) C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 取x =12,则lg ⎝⎛⎭⎪⎫x 2+14=lg x ,故排除A ;取x =32π,则sin x=-1,故排除B ;取x =0,则1x 2+1=1,故排除D.应选C.(2)已知x >0,y >0,2x +y =1,则xy 的最大值为________. 答案 18解析 ∵2xy ≤⎝⎛⎭⎪⎫2x +y 22=14, ∴xy ≤18⎝⎛⎭⎪⎫当且仅当2x =y ,即x =14,y =12时取“=”号.∴xy 的最大值为18.题型1 利用基本不等式求最值角度1 直接应用典例 (2018·沈阳模拟)已知a >b >0,求a 2+1b (a -b )的最小值. 直接应用基本不等式.解 ∵a >b >0,∴a -b >0. ∴a 2+1b (a -b )≥a 2+1⎝⎛⎭⎪⎫b +a -b 22=a 2+4a 2≥2a 2·4a 2=4,当且仅当b =a -b ,a 2=2,a >b >0,即a =2,b =22时取等号.∴a 2+1b (a -b )的最小值是4.角度2 变号应用典例 求f (x )=lg x +1lg x的值域. 注意分类讨论.解 f (x )的定义域为(0,1)∪(1,+∞). 当0<x <1时,lg x <0,∴-f (x )=-lg x +1-lg x ≥2⎝ ⎛⎭⎪⎫当且仅当x =110时等号成立,即f (x )≤-2.当x >1时,lg x >0,f (x )=lg x +1lg x ≥2(当且仅当x =10时等号成立). 综上f (x )的值域为(-∞,-2]∪[2,+∞). 角度3 寻求定值应用典例 求f (x )=4x -2+14x -5⎝ ⎛⎭⎪⎫x <54的最大值. 配凑成积定的式子.解 因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1,当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.角度4 常量代换法求最值(多维探究)典例 (2015·福建高考)若直线x a +y b =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5注意巧用1的代换.答案 C解析 因为直线x a +yb =1(a >0,b >0)过点(1,1), 所以1a +1b =1.所以a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +b a ≥2+2a b ·ba =4,当且仅当a =b =2时取“=”,故选C.[条件探究] 将典例条件变为“x >0,y >0且1x +9y =1”,求x +y 的最小值.解 ∵x >0,y >0,∴y >9且x =y y -9. ∴x +y =yy -9+y =y +y -9+9y -9=y +9y -9+1=(y -9)+9y -9+10.∵y >9,∴y -9>0. ∴y -9+9y -9+10≥2(y -9)·9y -9+10=16.当且仅当y -9=9y -9,即y =12时取等号.又1x +9y =1,则x =4.∴当x =4,y =12时,x +y 取最小值16. 方法技巧利用基本不等式求最值的方法1.知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.2.知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.3.构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.见角度4典例.冲关针对训练1.已知a >0>b >-1,且a +b =1,则a 2+2a +b 2b +1的最小值为( )A.3124B.3112C.3+22D.3+222答案 D解析 a 2+2a +b 2b +1=a +2a +(b +1)2-2(b +1)+1b +1=a +2a +b +1-2+1b +1,又a +b =1,a >0,b +1>0,所以a +2a +b +1-2+1b +1=2a +1b +1=⎝ ⎛⎭⎪⎫2a +1b +1·⎝ ⎛⎭⎪⎫a 2+b +12=32+b +1a +a 2(b +1)≥32+2b +1a ·a 2(b +1)=3+222,当且仅当b +1a =a2(b +1),即a =4-22,b =22-3时取等号,所以a 2+2a +b 2b +1的最小值为3+222,故选D.2.(2018·广西三市调研)已知m ,n 为正实数,向量a =(m,1),b =(1-n,1),若a ∥b ,则1m +2n 的最小值为________.答案 3+2 2解析 ∵a ∥b ,∴m -(1-n )=0,即m +n =1,又m ,n 为正实数,∴1m +2n =⎝ ⎛⎭⎪⎫1m +2n (m +n )=n m +2mn +3≥2n m ·2mn +3=3+22,当且仅当⎩⎨⎧n m =2m n,m +n =1,即⎩⎪⎨⎪⎧m =2-1,n =2-2时,取等号. 题型2 基本不等式的综合应用角度1 利用基本不等式比较大小典例 已知函数f (x )=ln (x +1)-x ,若0<a <b ,P =f ⎝ ⎛⎭⎪⎫a +b 2,Q =f (ab ),R =f ⎝⎛⎭⎪⎫a 2+b 22,则( )A .P <Q <RB .P <R <QC .R <Q <PD .R <P <Q 用导数法.答案 D解析 f ′(x )=1x +1-1=-x x +1(x >-1),由f ′(x )>0解得-1<x <0,由f ′(x )<0解得x >0,所以f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减.当0<a <b 时,0<ab <a +b2<a 2+b 22,∴Q =f (ab )>P =f ⎝⎛⎭⎪⎫a +b 2>R =f ⎝⎛⎭⎪⎫a 2+b 22.故选D. 角度2 利用基本不等式证明不等式典例已知x ,y ,z 是互不相等的正数,且x +y +z =1,求证:⎝ ⎛⎭⎪⎫1x -1⎝ ⎛⎭⎪⎫1y -1⎝ ⎛⎭⎪⎫1z -1>8. 左边因式分别使用基本不等式.证明 因为x ,y ,z 是互不相等的正数,且x +y +z =1,所以 1x -1=1-x x =y +z x >2yz x ,① 1y -1=1-y y =x +z y >2xz y ,② 1z -1=1-z z =x +y z >2xy z ,③又x ,y ,z 为正数,由①×②×③,得⎝ ⎛⎭⎪⎫1x -1⎝ ⎛⎭⎪⎫1y -1·⎝ ⎛⎭⎪⎫1z -1>8. 角度3 基本不等式中的恒成立问题典例(2018·太原模拟)正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(-∞,6]D .[6,+∞) 用转化法.答案 D 解析a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9ab≥16⎝ ⎛⎭⎪⎪⎫当且仅当⎩⎪⎨⎪⎧a =4,b =12时取“=”,故只需-x 2+4x +18-m ≤16,得x 2-4x +m -2≥0恒成立,即Δ=16-4(m -2)≤0,解得m ≥6.故选D.角度4 基本不等式与其他知识的综合问题典例 已知直线l :x =my +2(m ∈R )与x 轴的交点是椭圆C :x 2a 2+y 2=1(a >0)的一个焦点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于A 、B 两点,椭圆C 的左焦点为F 1,是否存在m 使得△ABF 1的面积最大?若存在,求出值;若不存在,请说明理由.根据题意得出三角形面积表达式,求最值时,用基本不等式法.解 (1)易知直线l :x =my +2与x 轴的交点坐标为(2,0),∴椭圆C :x 2a 2+y 2=1(a >0)的一个焦点坐标为(2,0),∴c =2,∴a 2=c 2+1=4+1=5. 故椭圆C 的方程为x 25+y 2=1. (2)存在.将x =my +2代入x 25+y 2=1并整理得(m 2+5)y 2+4my -1=0, Δ=(4m )2-4(m 2+5)×(-1)=20m 2+20>0, 设点A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-4mm 2+5,y 1y 2=-1m 2+5,∴|AB |=1+m 2·⎝ ⎛⎭⎪⎫-4m m 2+52--4m 2+5=1+m 2·20m 2+20(m 2+5)2,∵椭圆C 的左焦点为F 1(-2,0),∴F 1到直线l 的距离d =|-2-2|1+m 2=41+m 2, ∴S △ABF 1=12·1+m 2·20m 2+20(m 2+5)2·41+m 2=45·m 2+1(m 2+5)2=45·m 2+1(m 2+1)2+8(m 2+1)+16=45·1m 2+1+16m 2+1+8≤45·12(m 2+1)·16m 2+1+8= 5.当且仅当m 2+1=16m 2+1,即m =±3时,S △ABF 1取得最大值.∴存在m =±3使得△ABF 1的面积最大. 方法技巧基本不等式的综合运用常见题型及求解策略1.应用基本不等式判断不等式的成立性或比较大小,有时也与其他知识进行综合命题,如角度1典例,结合函数的单调性进行大小的比较.2.证明不等式的成立性,如角度2典例.3.利用基本不等式研究恒成立问题,以求参数的取值范围为主,如角度3典例.4.与其他知识综合考查求最值问题,此时基本不等式作为求最值时的一个工具,常出现于解三角形求最值、解析几何求最值问题等.如角度4典例中利用基本不等式求三角形面积的最大值时参数的取值.冲关针对训练(2017·广西模拟)已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8;(2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 证明 (1)1a +1b +1ab =1a +1b +a +b ab =2⎝ ⎛⎭⎪⎫1a +1b .∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4, ∴1a +1b +1ab ≥8⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立. (2)∵a >0,b >0,a +b =1, ∴1+1a =1+a +b a =2+ba , 同理,1+1b =2+ab , ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9.∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9⎝ ⎛⎭⎪⎫当且仅当a =b =12时等号成立. 题型3 基本不等式在实际问题中的应用典例某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,那么该产品的年销售量只能是1万件.已知生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2017年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?由题意得出函数解析式,求最值时用基本不等式法.解 (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ,∴k =2,∴x =3-2m +1.由题意可知每件产品的销售价格为1.5×8+16xx (元),∴2017年的利润y =1.5x ·8+16xx -8-16x -m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)∵当m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1,即m =3(万元)时,y max =21(万元).故该厂家2017年的促销费用投入3(万元)时,厂家的利润最大为21万元.方法技巧利用基本不等式求解实际问题的求解策略1.根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.2.设变量时一般要把求最大值或最小值的变量定义为函数. 3.解应用题时,一定要注意变量的实际意义及其取值范围. 4.在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.提醒:利用基本不等式求最值时,一定要结合变量的实际意义验证等号是否成立.冲关针对训练某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210吨时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.解 (1)设该厂应每隔x 天购买一次面粉,则其购买量为6x 吨,由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x (x +1).设每天所支付的总费用为y 1元,则 y 1=1x [9x (x +1)+900]+6×1800 =900x +9x +10809≥2900x ·9x +10809=10989, 当且仅当9x =900x ,即x =10时取等号.所以该厂每隔10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂家接受此优惠条件,则至少每隔35天购买一次面粉.设该厂接受此优惠条件后,每隔x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2,则y 2=1x [9x (x +1)+900]+6×1800×0.90=900x +9x +9729(x ≥35). 由对勾函数的性质易知f (x )=x +100x 在[10,+∞)上单调递增,故当x =35时,y 2取得最小值,约为10069.7,此时y 1>y 2,所以该厂可以考虑接受此优惠条件.1.(2017·广东清远一中一模)若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值为( ) A .16 B .9 C .6 D .1答案 C解析 ∵正数a ,b 满足1a +1b =1, ∴a +b =ab ,1a =1-1b >0,1b =1-1a >0, ∴b >1,a >1, 则1a -1+9b -1≥29(a -1)(b -1)=29ab -(a +b )+1=6⎝ ⎛⎭⎪⎫当且仅当a =43,b =4时等号成立, ∴1a -1+9b -1的最小值为6.故选C. 2.(2017·河北衡水中学调研)若a >0,b >0,lg a +lg b =lg (a +b ),则a +b 的最小值为( )A .8B .6C .4D .2答案 C解析 由lg a +lg b =lg (a +b )得lg (ab )=lg (a +b ),即ab =a +b ,则有1a +1b =1,所以a +b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +ab ≥2+2b a ·ab =4,当且仅当a =b =2时等号成立,所以a +b 的最小值为4.故选C.3.(2017·江苏高考)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案 30解析 一年的总运费为6×600x =3600x (万元). 一年的总存储费用为4x 万元.总运费与总存储费用的和为⎝ ⎛⎭⎪⎫3600x +4x 万元. 因为3600x +4x ≥23600x ·4x =240,当且仅当3600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小. 4.(2017·天津高考)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥2 4ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎨⎧a 2=22,b 2=24时取得等号.故a 4+4b 4+1ab的最小值为4.[基础送分 提速狂刷练]一、选择题1.若x >0,则x +2x 的最小值是( ) A .2 B .4 C. 2 D .2 2答案 D解析 由基本不等式可得x +2x ≥2x ·2x =22,当且仅当x =2x 即x =2时取等号,故最小值是2 2.故选D.2.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3.故选C.3.(2018·河南平顶山一模)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是( )A .a ≥15 B .a >15 C .a <15 D .a ≤15答案 A解析 因为对任意x >0,xx 2+3x +1≤a 恒成立,所以对x ∈(0,+∞),a ≥⎝ ⎛⎭⎪⎫x x 2+3x +1max , 而对x ∈(0,+∞),xx 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1时等号成立,∴a ≥15.故选A.4.在方程|x |+|y |=1表示的曲线所围成的区域内(包括边界)任取一点P (x ,y ),则z =xy 的最大值为 ( )A.12B.13C.14D.18答案 C解析 根据题意如图所示,要保证z 最大,则P 应落在第一或第三象限内,不妨设P 点落在线段AB 上,故z =xy =x (1-x )≤⎝⎛⎭⎪⎫x +1-x 22=14,当且仅当x =12时,等号成立,故z 的最大值为14.故选C.5.(2018·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a 的值是( )A.12B.32 C .1 D .2答案 C解析 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax +2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎪⎨⎪⎧2-2a =0,2a +2=4,解得a =1.故选C.6.(2017·浙江考试院抽测)若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是( )A.23 B.223 C.33 D.233答案 B解析 对于x 2+3xy -1=0可得y =13⎝⎛⎭⎪⎫1x -x ,∴x +y =2x 3+13x ≥229=223(当且仅当x =22时等号成立).故选B.7.已知实数a >0,b >0,且ab =1,若不等式(x +y )·⎝ ⎛⎭⎪⎫a x +b y >m ,对任意的正实数x ,y 恒成立,则实数m 的取值范围是( )A .[4,+∞)B .(-∞,1]C .(-∞,4]D .(-∞,4)答案 D解析 因为a ,b ,x ,y 为正实数,所以(x +y )·⎝ ⎛⎭⎪⎫a x +b y =a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bxy ,即a =b ,x =y 时等号成立,故只要m <4即可.故选D.8.(2017·忻州一中联考)设等差数列{a n }的公差是d ,其前n 项和是S n ,若a 1=d =1,则S n +8a n的最小值是( )A.92B.72C .22+12 D .22-12答案 A解析 a n =a 1+(n -1)d =n ,S n =n (1+n )2, ∴S n +8a n =n (n +1)2+8n =12⎝ ⎛⎭⎪⎫n +16n +1 ≥12⎝⎛⎭⎪⎫2n ·16n +1=92, 当且仅当n =4时取等号. ∴S n +8a n的最小值是92.故选A.9.(2018·东北育才学校模拟)设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0)(a >0,b >0,O 为坐标原点),若A ,B ,C 三点共线,则2a +1b 的最小值是( )A .4 B.92 C .8 D .9答案 D解析 ∵AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2), 若A ,B ,C 三点共线,则有AB→∥AC →, ∴(a -1)×2-1×(-b -1)=0,∴2a +b =1, 又a >0,b >0, ∴2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2ab ≥5+22b a ·2ab =9,当且仅当⎩⎨⎧2b a=2a b ,2a +b =1,即a =b =13时等号成立.故选D.10.(2018·河南洛阳统考)设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( )A.6+2B.6-2 C .22+2 D .22-2答案 B解析 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝ ⎛⎭⎪⎫c a -12⎝ ⎛⎭⎪⎫c a 2+1,且4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =ca -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t2t 2+4t +3=42t +3t +4≤426+4=6-2⎝ ⎛⎭⎪⎫当且仅当t =62时等号成立,当t =0时,b 2a +2c =0,故b 2a +2c 的最大值为6-2.故选B.二、填空题11.(2014·福建高考)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案 160解析 设底面的相邻两边长分别为x m ,y m ,总造价为T 元,则V =xy ·1=4⇒xy =4.T =4×20+(2x +2y )×1×10=80+20(x +y )≥80+20×2xy =80+20×4=160.(当且仅当x =y 时取等号)故该容器的最低总造价是160元.12.(2018·河南百校联盟模拟)已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.答案 12解析 ∵a +b =4,∴a +1+b +3=8,∴1a +1+1b +3=18[(a +1)+(b +3)]⎝ ⎛⎭⎪⎫1a +1+1b +3=18⎝ ⎛⎭⎪⎫2+b +3a +1+a +1b +3≥18(2+2)=12,当且仅当a +1=b +3,即a =3,b =1时取等号,∴1a +1+1b +3的最小值为12.13.(2018·泰安模拟)正实数a 、b 满足2a +2b +12a +b =6,则4a+5b 的最小值是________.答案 32解析 正实数a 、b 满足2a +2b +12a +b =6,令a +2b =m,2a +b =n ,则正数m ,n 满足2m +1n =6,则4a +5b =2m +n =16(2m +n )·⎝ ⎛⎭⎪⎫2m +1n=16⎝ ⎛⎭⎪⎫5+2n m +2m n ≥16⎝ ⎛⎭⎪⎫5+22n m ·2m n =32,当且仅当2n m =2m n 即m =n =12时取等号,此时a =b =16,故4a +5b 的最小值为32.14.已知x ,y 满足约束条件⎩⎪⎨⎪⎧ x -y ≥0,x +2y ≥0,2x -y -2≤0,且目标函数z =ax +by (a ,b >0)的最大值为4,则4a +2b 的最小值为________.答案 3+2 2解析 画区域如图,易知目标函数在点A 处取得最大值,由⎩⎪⎨⎪⎧ x -y =0,2x -y -2=0,解得⎩⎪⎨⎪⎧x =2,y =2,所以2a +2b =4,即a +b =2, 所以4a +2b =2(a +b )a +a +b b =2+2b a +a b +1=3+2b a +a b ≥3+22b a ·ab =3+22, 当且仅当2b a =a b ,即⎩⎪⎨⎪⎧a =4-22,b =22-2时,取等号. 故4a +2b 的最小值为3+2 2.三、解答题15.(2017·太原期末)如图,围建一个面积为100 m 2的矩形场地,要求矩形场地的一面利用旧墙(旧墙需维修),其余三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,已知旧墙的维修费用为56元/米,新墙的造价为200元/米,设利用的旧墙长度为x (单位:米),修建此矩形场地围墙的总费用y (单位:元).(1)将y 表示为x 的函数;(2)求当x 为何值时,y 取得最小值,并求出此最小值.解 (1)由题意得矩形场地的另一边长为100x 米,∴y =56x +⎝ ⎛⎭⎪⎫x +2·100x -2×200=256x +40000x -400(x >0). (2)由(1)得y =256x +40000x -400 ≥2256x ·40000x -400=6000, 当且仅当256x =40000x 时,等号成立,即当x =252米时,y 取得最小值6000元.16.(2018·南昌模拟)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan A ,tan B 是关于x 的方程x 2+(1+p )x +p +2=0的两个实根,c =4.(1)求角C 的大小;(2)求△ABC 面积的取值范围.解 (1)由题意得tan A +tan B =-1-p ,tan A ·tan B =p +2,所以tan(A +B )=tan A +tan B 1-tan A tan B =-1-p 1-(p +2)=1, 故△ABC 中,A +B =π4,所以C =3π4.(2)由C =3π4,c =4及c 2=a 2+b 2-2ab cos C ,可得42=a 2+b 2-2ab ×⎝ ⎛⎭⎪⎫-22, 整理得16=a 2+b 2+2ab ,即16-2ab =a 2+b 2, 又a >0,b >0,所以16-2ab =a 2+b 2≥2ab ,得ab ≤162+2,当且仅当a =b 时取等号, 所以△ABC 的面积S =12ab sin C =12×ab ×22≤12×162+2×22=422+2=42-4, 所以△ABC 面积的取值范围为(0,42-4].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高中数学培优解析:基本不等式(二)一、选择题1.已知函数2()(,,)f x ax bx c a b c R =++∈,当[1,1]x ∈-时|()|1f x ≤则b 1( ) A. ≤ B. ≥ C. < D. >【答案】A【思路】本题中所给条件并不足以确定参数a,b,c 的值,但应该注意到:所要求的结论不是()b g x 或的确定值,而是与条件相对应的“取值范围”,因此,我们可以用()1-f 、(0)f 、()1f 来表示b a ,,c 。

因为由已知条件得|(1)|1f -≤,|(0)|1f ≤,|(1)|1f ≤。

【解析】由()()()()11,1[11]2f a b c f a b c b f f =++-=-+⇒=--,从而有 11||[(1)(1)](|(1)||(1)|),|(1)|1,|(1)|1,221||(|(1)||(1)|) 1.2b f f f f f f b f f =--≤+-≤-≤∴≤+-≤【收获】二次函数的一般式c bx ax y ++=2)0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数。

2.函数()()120,1x f x aa a -=->≠的图象恒过定点A ,若点A 在直线10mx ny --=上,其中0m >, 0n >,则12m n+的最小值为( ) A. 4 B. 5 C. 7D. 3+【答案】D【解析】由题可知()1,1A -,代入直线得:1m n +=,所以()121223n m m n m n m n m n ⎛⎫+=++=++ ⎪⎝⎭,因为0,0m n >>,所以2n m m n +≥=2{ 1n mm n m n =+=时等号成立,所以12m n +的最小值为3+ D.3.设()ln ,0f x x a b =<<,若p f =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C【解析】p f ==()ln22a b a b q f ++==,11(()())ln 22r f a f b ab =+==()ln f x x =在()0,+∞上单调递增,因为2a b +>,所以()2a bf f +>,所以q p r >=, 故选C . 4.已知正数x 、y 满足811x y+=,则2x y +的最小值是( )。

A .8B .9C .16D .18 【答案】D【解析】解法一:(利用基本不等式)2x y +8116()(2)10x y x y x y y x =++=++1018≥+=,当且仅当81116x y x y yx ⎧+=⎪⎪⎨⎪=⎪⎩即12,3x y ==时“=”号成立,故此函数最小值是18.故选D .解法二:(消元法)由811x y+=得8x y x =-,由00088xy x x x >⇒>>⇒>-又则2x y +22(8)1616162(8)108888x x x x x x x x x x -+=+=+=++=-++----1018≥=,当且仅当1688x x -=-即12,x =此时3y =时""=号成立,故此函数最小值是18. 故选D .5.已知0,0,1a b a b ≥≥+=的范围是( )。

A.[]1,2 B.⎤⎥⎣⎦ C.⎤⎥⎣⎦ D.⎣⎦【答案】C【解析】令y =22y =+104ab ≤≤,所以224,y ≤≤22y ≤≤. 故选C . 6.若0,2y x π<≤<且tan 3tan ,x y =则x y -的最大值为( ).A.6π B .4π C .3π D .2π 【答案】A【解析】2tan tan 2tan 2tan()11tan tan 13tan 3tan tan x y yx y x y yy y--===≤=+++ 而0,022y x x y ππ<≤<<-<,tan()36x y x y π-≤⇒-≤ 故选A .7.设正实数,,x y z 满足22340x xy y z -+-=,当xyz最大值时,212x y z +-的最大值为( )A .0B .1C .49D .3 【答案】B 【解析】2222340,34x xy y z z x xy y -+-=∴=-+,又,,x y z 均为正实数,22114343xy xy x y z x xy y y x ∴==≤=-++-, 当且仅当2x y =时等号成立.max ()1xyz∴=,此时2x y =. 222234(2)3(2)4,z x xy y y y y y ∴=-+=-⋅⋅+22y = 222121111(1)11x y z y y y y ∴+-=+-=--+≤. 212x y z∴+-的最大值为1. 故选B .8.如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为( )(A )16 (B )18 (C )25 (D )812【答案】B【解析】2m ≠时,二次函数的对称轴为82n x m -=--.据题意,当2m >时,822n m --≥-即212m n +≤.226,182m nm n mn +⋅≤≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,二次函数开口向下,据题意得,8122n m --≤-即218m n +≤.28129,22n m n m mn +⋅≤≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以(182)(1828)816mn n n =-<-⨯⨯=,所以最大值为18.选B.二、填空题9.已知0,0x y >>,若2282y x m m x y+>+恒成立,则实数m 的取值范围是________. 【答案】42m -<< 【解析】由于2282y xm m x y +>+恒成立,需2min 282y x m m xy ⎛⎫+>+ ⎪⎝⎭,由基本不等式得288y x x y +≥≥,因此282m m >+, ∴ 42m -<<. 10.已知正数,a b 满足111a b +=,则1411a b +--的最小值为 . 【答案】4【解析】由111a b +=,可得1ab a =-,即有()14141414111111a a a b a a a +=+=+-≥=------当且仅当()211a -=,即有3,32a b ==等号成立.故1411a b +--的最小值为4.11.已知,x y 满足方程210xy --=,当x >353712x y x y m x y +-+-=+--的最小值为 .【答案】8【解析】由()()()222315317353712112x x x x x y x y m x y x x +--+--+-+-=+=+-----()()()()22222331331316681313x x x x x x x x x x -+--+---=+=++≥+=----当且仅当221331x x x x --=--,即有231x x -=-,可解得当2x =时等号成立. 故m 的最小值为8.12.已知正数,x y 满足11410x y x y +++=,则11x y+的最大值为__________. 【答案】9 【解析】11410x y x y +++=,令11m x y+=, 410x y m ∴+=-, ()()11410x y m m x y ⎛⎫∴++=- ⎪⎝⎭,4559y x x y ++≥+=, 2x y = 时等号成立,可得()109,19,m m m m -≥≤≤的最大值为9,故答案为9.13.已知圆1C : 224x y +=和圆2C : ()()22224x y -+-=,若点(),P a b (0a >,0b >)在两圆的公共弦上,则19a b+的最小值为__________.【答案】8【解析】由题意得,圆1C : 224x y +=和圆2C : ()()22224x y -+-=两个方程相减即可得到两圆的公共弦,即2x y +=,又点(),P a b (0a >, 0b >)在两圆的公共弦上,即2a b +=,则19ab + ()11919191105582222b a b a a b a b a b a b ⎛⎫⎛⎫⎛⎫=++=++=++≥+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(当且仅当3,b a =即13,22a b ==,等号成立),即19a b+的最小值为8.三、解答题14.在ABC ∆中,设C B A ∠∠∠,,所对的边长分别为c b a ,,,如果c a b +=2, 求证:.30π≤<B证明:因为c a b +=2, 所以,=-+=acbc a B 2cos 222.83)(32)2(22222acac c a ac c a c a -+=+-+由基本不等式,得ac c a 222≥+,所以042)(322>≥-+ac ac c a ,所以.218483)(3cos 22=≥-+=ac ac ac ac c a B 又),0(,cos π∈=x x y 是减函数,所以.30π≤<B15.过点()2,1P 作直线l 分别交,x y 轴正半轴于,A B 两点 (1)当AOB ∆面积最小时,求直线l 的方程; (2)当PA PB ⨯取最小值时,求直线l 的方程 【解析】(1)设所求的直线l 方程为1x ya b+= (0,0)a b >>, 由已知于是221212a b a b ⎛⎫+⎪⨯≤ ⎪ ⎪⎝⎭=14,∴AOB S ∆= 12ab ≥4,当且仅当2112a b ==,即4,2a b ==时取等号, 此时直线l 的方程为142x y+=,即240x y +-=(2)设直线l : ()12y k x -=-, 分别令0,0,y x ==得A(2─1k,0), B(0,1─2k ) 则|PA|⨯|PB|=≥4,当且仅当21k =即1k =±时,取最小值,又k<0,∴k=─1, 此时直线l 的方程为x+y─3=0.16.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/时)的平方成正比,比例系数为b ;固定部分为a 元.(Ⅰ)把全程运输成本y (元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶? 【解析】(Ⅰ)依题意知汽车从甲地匀速行驶到乙地所用时间为vs,全程运输成本为)(2bv vaS v S bv v S a y +=⋅+⋅= 故所求函数及其定义域为],0(),(c v bv vaS y ∈+=(Ⅱ)依题意知,,,S a b v 都为正数,故有ab S bv v a S 2)(≥+,当且仅当,bv v a =.即ba v =时上式中等号成立 若c b a ≤,则当b av =时,全程运输成本y 最小, 若c ba>,则当],0(c v ∈时,有 )()(bc c a S bv v a S +-+)]()[(bc bv c a v a S -+-==))((bcv a v c vcS-- 因为0c v -≥,且2a bc >,故有20a bcv a bc -≥->,所以)()(bc caS bv v a S +≥+,且仅当v =c 时等号成立,也即当v c =时,全程运输成本y 最小.综上知,为使全程运输成本y 最小,当c b ab ≤时行驶速度应为babv =;当c bab>时行驶速度应为v c =. 17、已知二次函数,当时,有,求证:当时,有. 分析:研究)(x f 的性质,最好能够得出其解析式,从这个意义上说,应该尽量用已知条件来表达参数c b a ,,. 确定三个参数,只需三个独立条件,本题可以考虑)1(f ,)1(-f ,)0(f ,这样做的好处有两个:一是c b a ,,的表达较为简洁,二是由于01和±正好是所给条件的区间端点和中点,这样做能够较好地利用条件来达到控制二次函数范围的目的.要考虑()x f 在区间[]7,7-上函数值的取值范围,只需考虑其最大值,也即考虑()x f 在区间端点和顶点处的函数值.证明:由题意知:c b a f c f c b a f ++==+-=-)1(,)0(,)1(,∴)0()),1()1((21)),0(2)1()1((21f c f f b f f f a =--=--+=,∴ ()2221)0(2)1(2)1(x f x x f x x f -+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛+=.由时,有,可得,1)1(≤f (),11≤-f ()10≤f .∴()()()()7)0(3)1(1303113)2(≤+-+≤--+=f f f f f f f ,()()()()7)0(3)1(3103131)2(≤+-+≤--+=-f f f f f f f .(1)若[]2,22-∉-a b,则()x f 在[]2,2-上单调,故当[]2,2-∈x 时,))2(,)2(m a x ()(m a x f f x f -=∴ 此时问题获证.(2)若[]2,22-∈-ab,则当[]2,2-∈x 时,)2,)2(,)2(ma x ()(m a x⎪⎭⎫⎝⎛--=a b f f f x f又()72411214)1()1(2022422<=+⋅+≤--⋅+=⋅+≤-=⎪⎭⎫⎝⎛-f f a b f b a b c a b c a b f ,∴ 此时问题获证. 综上可知:当时,有.评析:因为二次函数()0)(2≠++=a c bx ax x f 在区间]2,(a b--∞和区间),2[+∞-a b上分别单调,所以函数()x f 在闭区间上的最大值、最小值必在区间端点或顶点处取得;函数)(x f 在闭区间上的最大值必在区间端点或顶点处取得.。

相关文档
最新文档