1992—2000年AIWA耳塞全记录
aes3-1992

AES3-1992 (r1997)Revision of AES3-1985Amendment 1-1997Amendment 2-1998Amendment 3-1999Amendment 4-1999 AES Recommended practicefor digital audio engineering —Serial transmission format for two-channel linearly represented digitalaudio dataPublished byAudio Engineering Society, Inc.Copyright © 1992-2000 by the Audio Engineering SocietyAbstractThe format provides for the serial digital transmission of two channels of periodically sampled and uniformly quantized audio signals on a single shielded twisted wire pair. The transmission rate is such that samples of audio data, one from each channel, are transmitted in time division multiplex in one sample period. Provision is made for the transmission of both user and interface related data as well as of timing related data, which may be used for editing and other purposes. It is expected that the format will be used to convey audio data that have been sampled at any of the sampling frequencies recognized by the AES5, Recommended Practice for Professional Digital Audio Applications Employing Pulse-Code Modulation — Preferred Sampling Frequencies.An AES standard implies a consensus of those directly and materially affected by its scope and provisions and is intended as a guide to aid the manufacturer, the consumer, and the general public. The existence of an AES standard does not in any respect preclude anyone, whether or not he or she has approved the document, from manufacturing, marketing, purchasing, or using products, processes, or procedures not in agreement with the Standard. Prior to approval, all parties were provided opportunities to comment or object to any provision. Approval does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the standards document. This document is subject to periodic review and users are cautioned to obtain the latest edition.Contents Foreword (4)Corrigendum 2000-10-11 (4)Amendment 1-1997 (5)Amendment 2-1998 (6)Amendment 3-1999 (7)Amendment 4-1999 (12)1 Scope (14)2 Interface format (15)2.1 Terminology (15)2.1.1 sampling frequency (15)2.1.2 audio sample word (15)2.1.3 auxiliary sample bits (15)2.1.4 validity bit (15)2.1.5 channel status (15)2.1.6 user data (15)2.1.7 parity bit (15)2.1.8 preambles (15)2.1.9 subframe (15)2.1.10 frame (15)2.1.11 block (15)2.1.12 channel coding (16)2.1.13 unit interval (UI) (16)2.1.14 interface jitter (16)2.1.15 intrinsic jitter (16)2.1.16 jitter gain (16)2.1.17 frame rate (16)2. 2 Structure of format (16)2.2.1 Subframe format (16)2.2.2 Frame format (17)2.3 Channel coding (18)2.4 Preambles (18)2.5 Validity bit (19)3 User data format (19)4 Channel status format (19)5 Interface format implementation (25)5.1 General (25)5.2 Transmitter (25)5.2.1 "Minimum" implementation of channel status (26)5.2.2 "Standard" implementation of channel status (26)5.2.3 "Enhanced" implementation of channel status (26)5.3 Receivers (26)6 Electrical requirements (26)6.1 General Characteristics (26)6.2 Line driver characteristics (27)6.2.1 Output impedance (27)6.2.2 Signal amplitude (27)6.2.3 Balance (27)6.2.4 Rise and fall times (27)6.2.5 Output interface jitter (27)6.2.5.1 Intrinsic jitter (27)6.2.5.2 Jitter gain (28)6.3 Line receiver characteristics (29)6.3.1 Terminating impedance (29)6.3.2 Maximum input signals (29)6.3.3 Minimum input signals (29)6.3.4 Receiver equalization (29)6.3.5 Common-mode rejection (30)6.3.6 Receiver jitter tolerance (30)6.4 Connectors (30)7 Normative References (31)ANNEX A Provision of additional, voice-quality channels via the digital audio interface (33)ANNEX B Generation of CRCC (byte 23) for channel status (34)Annex C Informative references (36)Foreword[This foreword is not a part of the AES Recommended practice for digital audio engineering — Serial transmission format for two-channel linearly represented digital audio data, AES3-1992.]This document discusses the format and line protocols for a revision of the AES recommendation, originally published in 1985, for the serial transmission format for linearly represented digital audio data over conventional shielded twisted-pair conductors, of up to at least 100 m in length, without equalization. The organization and style of the revised document are patterned after portions of International Electrotechnical Commission (IEC) Publication 958 and International Radio Consultative Committee (CCIR) Recommendation 647, which are well known in the international technical community.It has been six years since AES3-1985 was adopted as a standard, and much experience with equipment, installations, and applications in professional audio and broadcasting has been accumulated. AES3 has been widely accepted as the primary means of transmitting digital audio for two-channel and multichannel (by combinations of connections) professional and broadcast studio use. Another standard, AES10, has been recently adopted for multichannel use and will in the future provide a more efficient means of transmission for a large number of channels (56). AES10 is based on and designed to be compatible with AES3 for transmitted data, the terminology associated with the data, and the intended use of the data. Also AES11, Synchronization of digital audio equipment in studio operations, refers to a signal conforming to this revised form of AES3. Applications and uses of one or two channels of digital audio as supported by this revised version of AES3 will remain important and numerous.The revision is intended to simplify and clarify language, improve electrical performance, minimize confusion with the IEC Publication 958 "consumer use" specification, allocate certain previously reserved bits to new applications, and improve compatibility by improving uniformity of transmitter implementation in regard to validity, user, channel status, and parity bits. To further facilitate adoption of this standard for the diverse applications and conditions for which it is intended, a separate engineering guideline document — not part of this standard — is in preparation.AES3 has been under constant review since the standard was issued, and the present document reflects the collective experience and opinions of many users, manufacturers, and organizations familiar with equipment or systems employing AES3. Experience includes operation in locations such as large broadcast centers, small recording studios, and field operations. This revision was written in close cooperation with the European Broadcasting Union (EBU). At the time it was written, the AES Working Group on Digital Input/Output Interfacing included the following individuals who contributed to this standard: T. Attenborough, B. Bl K thgen, S. Busby, D. Bush, R. Cabot, R. Caine, C. Cellier, S. Culnane, A. Fasbender, R. Finger, B. Fletcher, B. Foster, N. Gilchrist, T. Griffiths, R. Hankinson, S. Herla, R. Hoffner, B. Hogan, T. Holman, Y. Ishida, C. Jenkins, T. Jensen, A. Jubb, A. Komly, R. Lagadec, P. Lidbetter, B. Locanthi, S. Lyman, L. Moller, A. Mornington-West, C. Musialik, J. Nunn, D. Queen, C. Sanchez, J. Schuster, T. Setogawa, T. Shelton, S. Shibata, A. Swanson, A. Viallevieille, D. Walstra, J. Wilkinson, and P. Wilton.Robert A. Finger, ChairmanWorking Group SC-2-2 Digital Input/Output Interfacing1991 MarchCorrigendum 2000-10-11in annex B, figure B.1, lower half marked CRCC, at the right start of the darted line annotated with x8, a missing zero was added;in clause 4, byte 1, bits 0-3, bit state 1111, “not be used” was corrected to “not to be used”;in clause 4, byte 1, bits 4-7, last line, “not be used” was corrected to “not to be used”;in annex C, SMPTE, “and television Engineers” was corrected to “and Television Engineers”in Amendment 4-1999, “and television Engineers” was corrected to “and Television Engineers”Corrigendum 2001-05-25in figure 6 the missing connection for the cable shield to the line driver has been replacedThis printing of AES3-1992 incorporates Amendment 1-1997, Amendment 2-1998, Amendment 3-1999, and Amendment 4-1999 as shown in the following text. It has been repaginated accordingly but has not been updated to current AES style. All clause, table, and figure numbering has been retained. The American National Standards Institute version of this standard has not been amended and remains available as S4.40-1992. Amendment 1-1997[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by adding new subclauses 2.1.13 to2.1.16. In the next revision of AES3, these subclauses will becomepart of clause 3, according to current AES style.]2.1.13unit interval(UI)Shortest nominal time interval in the coding scheme.NOTE – There are 128 UI in a sample frame.2.1.14interface jitterDeviation in timing of interface data transitions (zero crossings) when measured with respect to an ideal clock.2.1.15intrinsic jitterOutput interface jitter of a device that is either free-running or is synchronized to a jitter-free reference.2.1.16jitter gainRatio, expressed in decibels, of the amplitude of jitter at the synchronization input of a device to the resultant jitter at the output of the device.NOTE – This definition excludes the effect of intrinsic jitter.[Further amend AES3-1992, AES Recommended practice for digitalaudio engineering — Serial transmission format for two-channellinearly represented digital audio data by deleting old subclause 6.2.5and adding new subclause 6.2.5 with figures 9 and 10. In the nextrevision of AES3, the subclauses and figures may be renumberedaccording to current AES style. Deletions are shown by strikethrough.]6.2.5 Data jitterData transitions shall occur within +- 20 ns of an ideal jitter-free clock measured at the half-voltage points.NOTE - This specification applies only to the signal after channel coding. Tighter specifications apply to the audio sample clock.6.2.5 Output interface jitterJitter at the output of a device shall be measured as the sum of the jitter intrinsic to the device and jitter being passed through from the timing reference of the device.6.2.5.1Intrinsic jitterThe peak value of the intrinsic jitter at the output of the interface, measured at all the transition zero crossings shall be less than 0.025 UI when measured with the intrinsic-jitter measurement filter.NOTE 1 – This requirement applies both when the equipment is locked to an effectively jitter-free timing reference (which may be a modulated digital audio signal) and when the equipment is free-running.NOTE 2 – The intrinsic-jitter measurement-filter characteristic is shown in figure 9. It shows a minimum-phase high-pass filter with 3 dB attenuation at 700 Hz, a first order roll-off to 70 Hz and with a pass-band gain of unity.Figure 9. Intrinsic-jitter measurement-filter characteristic6.2.5.2Jitter gainThe sinusoidal jitter gain from any timing reference input to the signal output shall be less than 2 dB at all frequencies.NOTE – If jitter attenuation is provided and it is such that the sinusoidal jitter gain falls below the jitter transfer function mask of figure 10 then the equipment specification should state that the equipment jitter attenuation is within this specification. The mask imposes no additional limit on low-frequency jitter gain. The limit starts at the input-jitter frequency of 500 Hz where it is 0 dB, and falls to –6 dB at and above 1 kHz.Figure 10. Jitter transfer-function mask[Further amend AES3-1992, AES Recommended practice for digitalaudio engineering — Serial transmission format for two-channellinearly represented digital audio data by adding new subclause 6.3.6and figure 11. In the next revision of AES3, this subclause and figuremay be renumbered according to current AES style.]6.3.6 Receiver jitter toleranceAn interface data receiver should correctly decode an incoming data stream with any sinusoidal jitter defined by the jitter tolerance template of figure 11.NOTE – The template requires a jitter tolerance of 0.25 UI peak-to-peak at high frequencies, increasing with the inverse of frequency below 8 kHz to level off at 10 UI peak-to-peak below 200 Hz.Figure 11. Jitter tolerance templateAmendment 2-1998[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by revising the byte 0 table of clause 4.In the next revision of AES3, this clause will become clause 5,according to current AES style and the table will be reformatted.Changes are underlined and deletions are shown by strikethrough.]bit 1 0 Normal audio mode.1 Nonaudio mode.bit 1 0 Audio sample word represents linear PCM samples.1 Audio sample word used for purposes other than linear PCM samples.bit 5 1 Source sampling frequency unlocked.0 Default and source sampling frequency locked.bit 5 0 Default. Lock condition not indicated.1 Source sampling frequency unlocked.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by adding a state to the bits 4-7{corrected 1998-06-12, was 0-3} listing in the byte 1 table of clause 4.In the next revision of AES3 this clause will become clause 5according to current AES style and the table will be reformatted. Theaddition is underlined.NOTE – This addition references a clause of an InternationalElectrotechnical Commission (IEC) standard at the stage of committeedraft for voting at the time of first publication of this amendment. Thisamendment is adopted pending approval of the revised IEC standard.Following IEC approval of 60958-3, this note will be deleted.]0 1 0 0 User data conforms to the general user data format defined in IEC 60958-3Amendment 3-1999[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying the second and thirdparagraphs of clause 1 Scope. Changes are underlined and deletionsare shown by strikethrough.]It is expected that the format will be used to convey audio data that have been sampled at any of the sampling frequencies recognized by the AES5 Recommended Practice for Professional Digital Audio Applications Employing Pulse-Code Modulation-Preferred Sampling Frequencies. Note that conformance with this interface specification does not require equipment to utilise these rates. Also the capability of the interface to indicate other sample rates does not imply that it is recommended that equipment supports these rates. To eliminate doubt equipment specifications should define supported sampling frequencies.The format is intended for use with shielded twisted-pair cable of conventional design over distances of up to 100 m without transmission equalization or any special equalization at the receiver and at frame rates of up to 50 kHz. Longer cable lengths and higher frame rates may be used, but with a rapidly increasing requirement for care in cable selection and possible receiver equalization or the use of active repeaters, or both.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by adding new subclause 2.1.17. In thenext revision of AES3, this subclause will become part of clause 3,according to current AES style.]2.1.17 frame rateRate of transmission of frames on the interface.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data subclause 2.2.2. In the next revision ofAES3, this subclause will be renumbered according to current AESstyle]2.2.2 Frame formatA frame is uniquely composed of two subframes (see figure 2). Except where otherwise specified the rate of transmission of frames corresponds exactly to the source sampling frequency.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by adding two notes to clause 4 at theend of the specification for byte 0. In the next revision of AES3, thisclause will be renumbered according to current AES style]NOTE 1 – The significance of byte 0, bit 0 is…NOTE 2 – The indication of sampling frequency, or the use of one of the sampling frequencies that can be indicated in this byte, is not a requirement for operation of the interface. The 00 state of bits 6-7 may be used if the transmitter does not support the indication of sampling frequency, the sampling frequency is unknown, or the sample frequency is not one of those that can be indicated in this byte. In the latter case for some sampling frequencies byte 4 may be used to indicate the correct value.NOTE 3 – When byte 1, bits 1-3 indicate single channel double sampling frequency mode then the sampling frequency of the audio signal is twice that indicated by bits 6-7 of byte 0.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying the state coding for byte 1bits 0-3 in clause 4. In the next revision of AES3, this clause will berenumbered according to current AES style]Byte 1bits 0-3Encoded channel modebit0 1 2 3state0 0 0 0Mode not indicated. Receiver default to two-channel mode. Manual override is enabled.0 0 0 1Two channel mode. Manual override is disabled.0 0 1 0Single channel mode. (Monophonic). Manual override is disabled.0 0 1 1 Primary/secondary mode. (subframe 1 is primary). Manual override is disabled.0 1 0 0Stereophonic mode. (channel 1 is left channel). Manual override is disabled.0 1 0 1 Reserved for user defined applications.0 1 1 0 Reserved for user defined applications.0 1 1 1 S ingle channel double sampling frequency mode. Sub-frames 1 and 2 carry successivesamples of the same signal. The sampling frequency of the signal is double the frame rate,and is double the sampling frequency indicated in byte 0 (but not double the rate indicated inbyte 4, if that is used). Manual override is disabled. Vector to byte 3 for channelidentification.1 0 0 0 S ingle channel double sampling frequency mode - stereo mode left. Sub-frames 1 and2 carrysuccessive samples of the same signal. The sampling frequency of the signal is double theframe rate, and is double the sampling frequency indicated in byte 0 (but not double the rateindicated in byte 4, if that is used). Manual override is disabled.1 0 0 1 S ingle channel double sampling frequency mode - stereo mode right. Sub-frames 1 and 2carry successive samples of the same signal. The sampling frequency of the signal is doublethe frame rate, and is double the sampling frequency indicated in byte 0 (but not double therate indicated in byte 4, if that is used). Manual override is disabled.1 1 1 1 Multichannel mode. Vector to byte 3 for channel identification. Reserved for futureapplications.All other states of bits 0-3 are reserved and are not to be used until further defined.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying the state coding and notesfor byte 3 in clause 4. In the next revision of AES3, this clause will berenumbered according to current AES style.]Bytebits 0-7 V ectored target byte from byte 1bit Reserved for future use as multichannel function description. These bits are set to logic 0 at present statebit 7 0 Undefined multichannel mode (default).1 Defined multichannel modes.The definition of the remaining bit states depends on the state of bit 7bits 0-6 C hannel number (when byte 3 bit 7 is 0).The channel number is the value of the byte (with bit 0 as the least significant bit) plus one.bits 4-6 M ultichannel mode (when byte 3 bit 7 is 1).bit 4 5 60 0 0 Multichannel mode 0. The channel number is defined by bits 0-3 of this byte.1 0 0 Multichannel mode 1. The channel number is defined by bits 0-3 of this byte.0 1 0 Multichannel mode 2. The channel number is defined by bits 0-3 of this byte.1 1 0 Multichannel mode 3. The channel number is defined by bits 0-3 of this byte.1 1 1 User defined multichannel mode. The channel number is defined by bits 0-3 of this byte.All other states of bits 4-6 are reserved and are not to be used until further defined.bits 0-3 C hannel number (when byte 3 bit 7 is 1).The channel number is one plus the numeric value of value of these bits taken as a binary number (with bit 3 as the most significant bit).NOTE 1 - The defined multichannel modes identify mappings between channel numbers and function. (The standard mappings are under consideration. Some mappings may involve groupings of up to 32 channels by combining two modes.)NOTE 2 - For compatibility with equipment that is only sensitive to the channel status data in one subframe the channel carried by subframe 2 may indicate the same channel number as channel 1. In that case it is implicit that the second channel has a number one higher than the channel of subframe 1 except in single channel double sampling frequency mode.NOTE 3 - When bit 7 is 1 the 4 bit channel number can be mapped to the channel numbering in bits 20-23 of the consumer mode channel status defined in IEC 60958-3. In this case channel A of consumer mode maps to channel 2, channel B maps to channel 3 and so on.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying the state coding for byte 4bits 2-7 in clause 4. In the next revision of AES3, this clause will berenumbered according to current AES style.]bits 2-7 R eserved and set to logic 0 until further defined.bit 2 Reserved.bits 3-6 S ampling frequency.bit 6 5 4 3state 0 0 0 0 Not indicated (default).0 0 0 1 24 kHz0 0 1 0 96 kHz0 0 1 1 192 kHz0 1 0 0 Reserved.0 1 0 1 Reserved.0 1 1 0 Reserved.0 1 1 1 Reserved.1 0 0 0 reserved (for vectoring).1 0 0 1 22.05 kHz1 0 1 0 88.2 kHz1 0 1 1 176.4 kHz1 1 0 0 Reserved.1 1 0 1 Reserved.1 1 1 0 Reserved.1 1 1 1 User defined .bit 7 Sampling frequency scaling flag.0 No scaling (default).1 S ampling frequency is 1/1.001 times that indicated by byte 4 bits 3-6, or by byte 0bits 6-7.NOTE 1 - The sampling frequency indicated in byte 4 is not dependent on the channel mode indicated in byte 1.NOTE 2 – The indication of sampling frequency, or the use of one of the sampling frequencies that can be indicated in this byte, is not a requirement for operation of the interface. The '0000' state of bits 3-6 may be used if the transmitter does not support the indication of sampling frequency in this byte, the sampling frequency is unknown, or the sample frequency is not one of those that can be indicated in this byte. In the later case for some sampling frequencies byte 0 may be used to indicate the correct value.NOTE 3 – The reserved states of bits 3-6 of byte 4 are intended for later definition such that bit 6 is set to define rates related to 44.1 kHz (except for state 1000) and clear to defined rates related to 48 kHz. They should not be used until further defined.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by adding a sentence to the firstparagraph and modifying the final paragraph of subclause 6.1. In thenext revision of AES3, this subclause will be renumbered according tocurrent AES style]The frequency range used to qualify the interface electrical parameters is dependent on the maximum data rate supported. The upper frequency is 128 times the maximum frame rate.The interconnecting cable shall be balanced and screened (shielded) with a nominal characteristic impedance of 110 Ω at frequencies from 0.1 100 kHz to 6.0 MHz 128 times the maximum frame rate.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying subclause 6.2.1. In thenext revision of AES3, this subclause will be renumbered according tocurrent AES style.]6.2.1 Output impedanceThe line driver shall have a balanced output with an internal impedance of 110 Ω± 20%, at frequencies from 0.1 100 kHz to 6.0 MHz 128 times the maximum frame rate.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying subclause 6.2.3. In thenext revision of AES3, this subclause will be renumbered according tocurrent AES style.]6.2.3 BalanceAny common-mode component at the output terminals shall be more than 30 dB below the signal at frequencies from dc to 6 MHz 128 times the maximum frame rate.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying subclause 6.3.1. In thenext revision of AES3, this subclause will be renumbered according tocurrent AES style.]6.3.1 Terminating impedanceThe receiver shall present an essentially resistive impedance of 110 Ω± 20% to the interconnecting cable over the frequency band from 0.1 MHz to 6.0 MHz 128 times the maximum frame rate when measured across the input terminals. The application …[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying subclause 6.3.4. In thenext revision of AES3, this subclause will be renumbered according tocurrent AES style.]6.3.4 Receiver equalizationOptional equalization can be applied in the receiver to enable an interconnecting cable longer than 100 m to be used. A suggested frequency equalization characteristic for operation at frame rates of 48 kHz is shown in figure 8. The receiver shall meet the characteristics specified in 6.3.2 and 6.3.3.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by modifying the caption for Figure 8.]Figure 8. Suggested equalizing characteristic for a receiver operating at 48 kHz frame rate.Amendment 4-1999[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by revising the byte 2 table of clause 4. Inthe next revision of AES3, this clause will become clause 5, accordingto current AES style and the table will be reformatted.Changes andadditions are underlined and deletions are shown by strikethrough.]Byte 2bits 6-7 Reserved and are set to logic 0 until further defined.bits 6-7 Indication of alignment level.bit 6 70 0 Alignment level not indicated0 1 Alignment to SMPTE RP155 (alignment level is 20 dB below maximum code).1 0 Alignment to EBU R68 (alignment level is 18.06 dB below maximum code).1 1 Reserved for future use.[Amend AES3-1992, AES Recommended practice for digital audioengineering — Serial transmission format for two-channel linearlyrepresented digital audio data by adding two references to a newinformative annex C]。
1992-2001年AIWA经典CD机型回顾

1992-2001年AIWA经典CD机型回顾1992-2001年AIWA经典机型回顾2008年08月05日星期二12:50AIWA是一个世界知名的随身听生产大厂,其产品线设置非常齐全,除了作为主打产品的磁带随身听外,其他重要产品还包括CD随身听、MD随身听、DAT随身听、VCD随身听(看)等。
依靠AIWA的雄厚实力,独到的技术和设计支持,造就了这其中也不乏精品。
在1992年为了体现创新精神,AIWA把公司的LOGO由大写的AIWA改为小写的aiwa,并希望这个新LOGO能把运动、创新的AIWA精神充分体现出来。
下面就在这里为大家把1992-2001年间的AIWA经典机型做个简要的介绍,以期对AIWA这十年间的发展能有个更全面的了解。
一、CD随身听或许是将过多的精力都投入到磁带随身听的研发上了,在CD随身听领域里,与在磁带随身听的地盘里的风光无限形成巨大反差的是,AIWA无论是在数量上,还是质量上都在与SONY的竞争中处于完全的下风。
但如果因此而说AIWA的CD随身听就没有上得了台面的机型的话,未免就有失偏颇了。
在AIWA的精品CD随身听里,XP-7无疑是最杰出的代表。
1992年出品的XP-7是AIWA CD随身听的领军机型。
它采用1BIT双数码模拟转换器,更有高达8倍超取样数码滤波器,从而保证了高品质音乐的还原再现。
主机有耐热设计,30分钟快速充电,2段DSL动态超线性低音系统,24曲音乐编程播放,1曲/全部/A-B区间重复播放,随机播放,电池电量检查显示(LCD)等,在当时就已经装备了方口的光纤输出,能够连接MD、DAT等数码音频产品进行数字录音。
附送的配件也很丰富:有卡片式遥控器,能够进行10键直接播放;连线控器的耳塞是金条V14;PB-50铅酸充电电池;使用2只5号电池的电池架;型号为AC-A98的9V电源。
主机的上盖设计很有特色,边缘为透明设计,播放时能清楚的看到碟片的转动,最别出心裁的是在使用电源时,透明上盖的边缘有一圈红色的背光,非常的漂亮,同时液晶显示屏也有橘黄色的背光。
aiwa随身听十大特有技巧[精华]
![aiwa随身听十大特有技巧[精华]](https://img.taocdn.com/s3/m/9bdd7fccb04e852458fb770bf78a6529647d3576.png)
AIWA的杀手锏——AIWA随身听十大特有技术[推荐]转来AIWA的杀手锏——AIWA随身听十大特有技术[推荐]一、 BBE高清晰度声音还原系统(BBE High Definition Sound System)这一声音系统是由美国BBE sound, Inc.持有专利。
基于扬声器内在的特性,所有音乐经过声音放大时都会产生失真,BBE系统针对此问题,在声波的相位及波幅变形上作出补偿,令传达到扬声器的信号更加完整、真实,高音更加清晰细致......这一系统被广泛应用在影音各个领域,如功放(中国天逸)、电视(SONY大屏幕彩电)等,但在随身听领域加以应用的则是AIWA独此一家。
BBE的标志也成了AIWA 随身听的独家技术。
最初搭载BBE系统的机种是1989年10月21日正式发售的HS-PL50/RL50。
最后一款“绝唱”机种则是 1996年发售的HS-JX959/859。
在1996年后,BBE系统在随身听世界消失。
二、 DSL动态超线性低音系统(Dynamic super linear bass)这一低音系统由AIWA独创,主要根据声音低频的线性特征,对声音加以合理的增强,保证自然、生动的超响度低音再生。
在90年代初,DSL系统主要搭载在中高档机型上,其低音效果极佳,下潜得很深而且富有弹性;在90年代后期出品的机器上,DSL 的效果与日本原装机器比要差很多,具体原因还有待考证。
代表机型有HS-PL777、WR707、JX899等。
三、M.S.P多重音乐效果处理器(Multi Sound Processor)这一系统实际上是一种声音均衡器,一般而言预设了四种声音模式以供选择:FLAT/POP/ROCK/JAZZ(平音/流行/摇滚/爵士)以欣赏不同音乐的风格。
其中:FLAT 嘹亮,均衡混合高、低频范围的声音,适用于古典艺术歌曲;POP加强了歌曲中的歌声部分和中频范围的声音;ROCK加强了高、低频范围的声音;JAZZ加强了高、低频范围的声音,尤其强调了低频音。
SONY耳塞王朝大阅兵

SONY⽿塞王朝⼤阅兵1982年,SONY推出了其⽿塞产品的开⼭之作,MDR-E252,时⾄今⽇20余载,建⽴了⽆⼈能⽐的⽿塞王朝,型号多得让⼈眼花缭乱,其中当然不乏为⼈津津乐道的经典之作,虽然SONY如今的⽿塞造诣已不如从前,但是SONY的⽿塞⽂化着实影响了不少⼈,不论是以前2系列,4系列,5系列,还是现在的9系列,EX系列,SONY都在继续书写着⽿塞的历史。
在随⾝听⽿塞产品的发展历史上,能够与SONY⽿塞数量和质量相媲美的品牌⼏乎没有,其⽿塞产品型号通常以MDR-E开头,MDR是SONY⽿机产品通⽤型号字头,E则代表EARPHONE(但是也有另外,⽐如MDR-B114,NC系列,ED系列)。
MDR-E后⾯仅跟三位数字,第⼀个如果是数字的话则⼤致代表⽿塞出⼚年代的早晚,2为最早,9为最新;第⼆位数字则代表该型号⽿塞产品体系中的地位,越⼤越⾼档(但是并⾮绝对,⽐如MDR-E757);最后⼀个字母若与第⼀个相同表明这款⽿塞为主流⽿塞,若不相同则属于旁系⽿塞。
另外还有其他⽐如ED,EX,NC系列等等众多⽿塞,鉴于⾄今没有见到⼀篇⽐较全⾯的对全线产品介绍的⽂章,笔者就对SONY的⽿塞产品做⼀次⽐较全⾯的介绍......2系列MDR-E212/214/215/222:⽇本制造,2系列最低端型号,造型结构和声⾳风格⼤同⼩异,13.5MM单元,21*和222的区别仅仅在于线材⽅⾯,21*使⽤廉价单股线,222则采⽤成本较⾼的双股线,⽽215则是212的防⽔版,214则是早期⼀些内藏⽿塞机器的配机⽿塞(⽐如1987年2⽉发售的WM-51),由于线材的关系,222会⽐21*略好⼀些,这⼏款⽿塞价格⽐较便宜,尤其是215,现在常常能见到。
虽然价格低廉,但是表现却很不错,属于廉价却不低档的⽿塞,中⾼频出⾊清亮,声场⾮常⼴,凝听⼈声更会让您体会到这⼏款⽿塞的超值之处,但是从21*/222开始到如今的930,⼏乎所有使⽤⼩⼝径单元的⽿塞都有⼀个缺点,低频不强,⽋缺量感。
爱华AIWA磁带随身听年鉴

ﻫ收放:TX,RX,T,RL,TA。RX是收方的轻触电控机器收音是数字,属高档机器,T是机械铁机器比较老,TX是一般带数字收音机,RL非常老,而且是超博的电控机器,但是收音是机械的,TA是非常抵挡的收方ﻫ收录放:JX,J,JL,JS,EX(只有个EX50,EX3000都是针对日本的纪念)。JX是收录放的轻触电控机器收音一般是数字,也少的是机械的,但是都不能看到磁带,J是机械铁机心,JS是J的接班,但是只有厚机器,JL也非常老,收音机械,轻触电控,能看到带子。
1983年推出HS-P5。是一款很顶级的机器,当时世界上最轻最小的磁带随身听,使用两节7号电池。具有真实且华丽的强大解析力和浑厚有味妙不可言的音色能够轻易打败同时期的所有SONYWALKMAN。几乎是那时甚至后来的大部分机型所无法比拟的梦幻机型。
1985年推出HS-R8。其线控跟耳塞是分开设计的。是世界上第一款使用线控的随身听。
1991年推出HS-JX707/70。107.5×77×23.3mm。155g。10mw。2V。使用HX磁头,3段BBE,2段DSL,DOLBY BNR,全功能线控,10分钟快速充电,三方式自动反转,磁带选择器,防滚机构,12小时播放。声音清爽干脆,犹如少女细语般清秀。是爱华经典机型。
何利特(Howard Leight)由蜜蜂华利(Honeywell)生产的单用次品耳塞说明书

Europe / AfricaIndustry Administration Agriculture Army - Defence ATEX environmentAutomotive and Part ManufacturerAviation Building and Construction Catering Chemical Industries Energy or Electricity Fire Protection brigades Fishing Food Industries Foundry Glass Industries Green Spaces Homeland defense Industrial CleaningIron and steel industry Laboratory Logistics Maintenance Medical and Pharmaceutical Metal steel Minning and Quarrying Offshore Paper Industries Petro-chemicalPrinting Industries Services Ship Building Telecoms Textile Industries Transportation Utilities Water treatment Welding Wood IndustriesReference Number3301105Product TypeHearing ProtectionRangeEarplugsLineDisposable EarplugsBrandHoward Leight by HoneywellIndustryProduct UseSingle-Use EarplugOverviewFeatureVIBRANT COLOURS Makes protection fun – and highly visible. SELF-ADJUSTING FOAM Polyurethane foam adjusts to fit virtually every wearer. CONTOURED T-SHAPE Aids in easy insertion, removal from ear canal.BenefitThe bright idea in hearing protection, Laser Lite’s low-pressure foam expands gently inside the ear canal for comfortable long-term wear, while its contoured T-shape delivers easy handling. Its high visibility magenta and yellow colors make compliance checks quick and easy. Plus, Laser Lite is available with special packaging and dispenser options, ideal for process industries with low tolerances for packaging waste.Features & BenefitsLaser Lite Single-Use Earplug(Uncorded)Learn more about our products at >PRODUCT NUMBER: 330110535H (dB)34M (dB)32L (dB)31Attenuation Data631252505001000200040008000 Frequency (Hz) Frequenz (Hz) Fréquence(Hz)33.434.135.537.634.935.742.544.1 Mean Attenuation (dB) Mittlere Dämmung(dB) Atténuation moyenne (dB)4.6 6.7 4.6 4.15.0 2.8 2.9 4.2 Standard Deviation (dB)Standardabweichung (dB) Déviationstandard (dB)28.829.430.933.529.932.939.639.9 Assumed Protection (dB) Angenommener(dB) Protection suppossé (dB)SizeFits AllColorMagenta and YellowShapetCordedNoWeight (grs)0.48E.C. Declaration of ConformityEC Category PPE2Quality AssuranceISO 9001 / 2000EC Certificate Number951095EC AttestationEC AttestationEC Attestation Number9503632User ManualInstruction Manual - Laser Lite (global)These plugs must be disposed of and replaced after each wearing.Storage InformationAll earplugs should be stored before and between usages in a way that protects them from dirt, grease, and other contaminants.Care InstructionsDisposable earplugs are made of either TPE (Thermoplastic elastomers) or polyurethane foam. Washing and cleaning of disposable earplugs are not recommended. These plugs must be disposed of and replaced after each wearing.Excessive moisture reduces the attenuation and slows down the foam recovery which may lead to improper fit.EAN Code************© Honeywell International Inc.。
随身听、HIFI耳机选购完全指南

随身听、HIFI耳机选购完全指南在选购耳塞、耳机时要注意:不同的品牌基本上都有其鲜明的声音特色,并不能单纯地说谁比谁好。
例如:如果你喜欢奥地利AKG的声音特色而讨厌日本SONY,那么即使是后者1000元的耳塞/耳机产品与前者500元的产品相比较,你也会选择AKG的。
很简单的一个挑选方法便是看耳机品牌的所属国家。
因为这种音频产品的声音特色在产品设计阶段都是由工程师仔细调教,音乐/音响艺术作为人文文化的一个重要枝干,是由具体民族文化特质决定。
——所以我们就看到:德国森海赛尔耳机的理性、严谨而堂皇大气风格,在卡拉扬指挥的交响乐中可以充分体验;维也纳AKG耳机的唯美蕴涵平淡而包容广阔;美国高斯的热烈奔放、充满自由气息;日本SONY/铁三角的冷色偏狭而细致……你喜欢哪个国家/民族的文化风格呢?——便挑选那个国家的耳机品牌吧!(很遗憾中国的耳机产品目前仍处于高速发展阶段,尚未形成特色)大家看过《音乐之声》的电影吗?我是深深被那唯美的风景和人文气质所感动,因而选择了维也纳的AKG耳机;森海赛尔和高斯的耳机也很常用,希望自己能多一些德国式的理性、严谨,以及欣赏美国的自由气息,当然我并不喜欢日系音频设备的声音风格。
一、随身听耳机选购指南首先明确一个概念,在随身听上使用的耳机应该称作耳塞,虽然它也是耳机的一个种类,但是还是应该按照使用方式划分为头戴式、耳塞式和挂耳式。
既然很多朋友都将他们笼统称为耳机,所以我想在这篇耳机选购完全指南里就把它们统称起来,全面的给朋友们做个介绍。
如何选购配用随身听的耳机恐怕是很多刚刚买了随身听但是又知道原配的耳塞水平有限,或者是经过一段时间的使用已经不满意原配耳塞的音色、音质,但是又不了解其他产品特点的朋友们最最关心的问题,常常在BBS耳塞耳机版面看到最多的问题就是:询问某某某耳塞耳机好不好?其实这样子的问题挺不好回答的,因为根据每个人的机器声音不同和个人听音乐的喜好不同,没有一个统一的标准。
1984年~2005年全系列索尼Discman+CD_WALKMAN资料+图鉴

1984年爱迪生发明电声技术之后的100多年里,唱片技术每隔25年就有一次大的技术革新。
从圆筒方式进入圆盘唱片,到电气式唱盘的登场,再进入LP唱片,再从单音进入立体声。
在第100年里,数字音频技术产生了。
1982年8月31日傍晚,日本各大媒体都争相报导“引发音频之梦的数字Player终于上市”、“数字音频时代开幕”等消息。
原来,当天SONY、CBS/SONY、荷兰飞利浦与POLYGRAM四家公司共同举办了CD这个数字录音格式的发布会,并决定从秋季起开始在日本发售。
直径仅仅12cm,利用数字信号录音,只要一个按钮就可执行选曲,能够半永久的使用,CD实现了许多乐迷的梦想。
是年10月1日,SONY推出了第一台CD机CDP‐101。
168,000日元的价格,对一般消费者而言是很难接受的。
不过只要想到里面的技术与开发时间,能做成商品的确是一个奇迹。
进入1983年后,其它公司的CD 机也相继上市,销售形势一片大好。
但是,接下来的一年里CD市场却陷于停滞状态。
原来,当时购买CD系统的人是以Hi‐Fi发烧友为主,大部分的人依旧偏好已融入生活的LP。
为了拯救这种颓势,SONY公司通用音响事业部的大曾根幸三,拿了一个边长13.4cm的四方型、约4张CD盒厚度的木盒对属下说:“接下来就尝试做这种CD Player吧。
”每个人听到大曾根的目标后,都不禁的怀疑自己的耳朵是不是听错了,不过他的做事风格就是如此,因此没有人感觉到这是一个艰难的任务。
对于SONY的产品开发人员来说,这个木盒就代表着使用者的需求,就象他们自己说的,“将技术汇总起来后,不知道可不可以做成这种尺寸?看来是不行的。
不过只有这个尺寸,才是能让每个人都欣喜的产品”。
为了让CD达到普及化阶段,SONY公司订定出了这样的方针:“价格不可超过5万日元,最初虽然会出现赤字,不过日后一定会赚钱的。
”这样的价格是CDP‐101那168,000日元的1/3左右。
实际上,5万日元的价格,赤字率高达200%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1992—2000年AIWA耳塞全记录1992——2000年AIWA耳塞全记录AIWA随身听能与SONY一争高低,并在90年代初期几乎占领了整个市场,固然与那一时期AIWA机器的优秀品质分不开,但AIWA耳机的出色表现也是其中的一个重要因素。
说“耳机是一台随身听的灵魂”是决不过分的,而且这句话用在AIWA身上更是再贴切不过的了。
以下就是1992年以来的AIWA 耳塞简介(耳塞的排序不单纯依照型号的高低,而是将同一系列的型号排在一起,使大家一看到代表型号就能知道那一系列耳塞的大致情况,代表型号也不一定是该系列的最高型号):一. J系列:本系列是AIWA最高档的垂直入耳式耳塞,款款都是AIWA耳塞中的精华。
1、HP-J9 全新设计垂直式入耳,低音笛管式耳机,完美配合耳道加强深厚有力的低音,颈项型无氧铜软线,24K镀金立体声小型插头,15毫米薄形振膜,耳机卷线盒。
频率响应8HZ-25KHZ,阻抗16欧姆,音量感105DB/毫瓦,净重5 克(不含线),92-95年出品。
2、HP-J8 垂直式入耳,U型低音笛管耳机,表现深厚的低音响应,颈项型无氧铜软线,耳机线上附音量控制,24K镀金立体声小型插头,耳机卷线盒。
频率响应8HZ-25KHZ,阻抗16欧姆,音量感105DB/毫瓦,净重5克(不含线),92-95 年出品。
3、HP-J7 垂直式入耳,U型低音笛管耳机,表现深厚的低音响应,颈项型无氧铜软线, 24K镀金立体声小型插头,耳机卷线盒。
频率响应8HZ-25KHZ,阻抗16欧姆,音量感105DB/毫瓦,净重6克(不含线),92-94年出品。
其中,J8和J7为同系列产品。
二. D 系列:D 系列是AIWA的顶级耳塞,仅有的两款就充分说明了D系列在AIWA耳塞产品线中的极品地位,旗舰型号D9更是被誉为AIWA耳塞中的王者。
1、HP-D9 60毫米U型低音笛管耳机,表现深厚的低音响应,4U薄型非晶质振膜,软式耳塞,线性晶体无氧铜软线,强力SA-CO驱动磁铁,24K镀金立体声接头,耳机卷线盒。
频率响应5HZ-30KHZ,阻抗16欧姆,音量感108DB/毫瓦,净重9克(不含线),92-94年出品。
2、HP-D8 60毫米U型低音笛管耳机,表现深厚的低音响应,4U薄型非晶质振膜,软式耳塞,线性晶体无氧铜软线,强力SA-CO(钐-钴)驱动磁铁,24K镀金立体声接头,耳机卷线盒。
频率响应8HZ-25KHZ,阻抗16欧姆,音量感108DB/ 毫瓦,净重9克(不含线),92-94年出品。
D9和D8为同系列产品。
三、 V系列1、 V743系列,是V系列中的最高型号,也是装备、指标最好的一个系列,在D、J 系列淡出后,越发突出其在AIWA耳塞中的领袖地位。
需要说明的一点是,现在论坛上不少人使用的V743是广东东莞生产的,无论从外观、做工还是实际听感来看,都与日本原装的有不少差距(甚至连外观都有不少区别),AIWA早期MD机曾使用其作为配机耳塞:(1)HP-V743 蓝宝石蒸发震动膜产生高素质声音,提供舒适佩带感的超低音耳部逻辑设计,防漏音及防菌耳机设计,永保耳机清洁,大型16毫米驱动单元,梦幻低音笛管耳机,防缠结颈项型线性晶体无氧铜软线,24K镀金立体声小型插头,高级外型,耳机线上附音量控制,耳机卷线盒。
95-98年出品。
(2)HP-V543 提供舒适佩带感的超低音耳部逻辑设计,防漏音及防菌耳机设计,永保耳机清洁,大型16毫米驱动单元,梦幻低音笛管耳机产生深沉低音,防缠结颈项型无氧铜软线,24K镀金立体声小型插头,高级外型,耳机线上附音量控制,耳机卷线盒。
95-98年出品。
(3)HP-V541 提供舒适佩带感的超低音耳部逻辑设计防漏音耳机设计,大型16毫米驱动单元,梦幻低音笛管耳机产生深沉低音,防缠结颈项型无氧铜软线,24K镀金立体声小型插头,高级外型,耳机卷线盒。
96-98年出品。
2、 V553系列,现在最广为人知的AIWA V系列耳塞,也是不少随身听“烧友”所极力追寻的目标,外观漂亮,音质不俗,但要命的是基本上买不到真货,中后期的AIWA MD机曾广泛使用其作为配机耳塞:(1)HP-V553(HP-ED700)空气配合科技式设计防止漏音发生,垂直式入耳耳机,橡胶硅制气垫耳塞,15毫米磁石驱动单元,提高双重低音的笛管式低音增强装置,CCAW声音线圈,防缠结颈项型无氧铜软线,镀金立体声小型插头。
频率响应5HZ-25KHZ,阻抗16欧姆,音量感108DB/毫瓦,99-00年出品。
均为配机耳塞,有金条黑柄、银条黑柄、银条银柄(全银色)三种,未单独发售,也并未见于任何AIWA产品宣传。
2001年起其日版型号改为HP-ED700。
(2)HP-V552 空气配合科技式设计防止漏音发生,垂直式入耳耳机,橡胶硅制气垫耳塞,15毫米磁石驱动单元,提高双重低音的笛管式低音增强装置,CCAW声音线圈,防缠结颈项型无氧铜软线,镀金立体声小型插头,耳机线上音量控制。
98年出品。
(3)HP-V550 空气配合科技式设计防止漏音发生,垂直式入耳耳机,橡胶硅制气垫耳塞,15毫米磁石驱动单元,提高双重低音的笛管式低音增强装置,CCAW声音线圈,防缠结颈项型无氧铜软线,镀金立体声小型插头。
98年出品。
3、 V161系列,最近AIWA高档磁带机、MD机的标准配机耳塞,设计和原理上基本模仿V553,但除了佩带舒适外的优点,还远达不到V553的音质,因此受欢迎程度也大不如V553:(1)HP-V164 空气配合科技式设计防止漏音发生,提高双重低音的笛管式低音增强装置,13.5毫米大型磁石驱动单元,CCAW声音线圈,防缠结颈项型无氧铜软线,耳机线上附音量控制,镀金立体声小型插头,耳机卷线盒。
99-00年出品。
(2)HP-V163 空气配合科技式设计防止漏音发生,提高双重低音的笛管式低音增强装置, 13.5 毫米大型磁石驱动单元,CCAW声音线圈,防缠结颈项型无氧铜软线,镀金立体声小型插头,耳机卷线盒。
99年出品。
(3) HP-V161 空气配合科技式设计防止漏音发生,提高双重低音的笛管式低音增强装置,13.5毫米大型磁石驱动单元,CCAW声音线圈,防缠结颈项型无氧铜软线,镀金立体声小型插头。
99-00年出品。
2001年起,其日版型号改为HP-ED100。
4、V157系列,AIWA耳塞产品线中最没有特色,也是产量最少,最不为大家所熟悉的一个系列:(1)HP-V157 大型16毫米驱动单元,梦幻低音笛管耳塞产生深沉低音,防缠结颈项型无氧铜软线,防漏音设计,45毫米特长低音导管,耳机线上附音量控制。
96-98年出品。
(2)HP-V155 大型16毫米驱动单元,梦幻低音笛管耳机产生深沉低音,防缠结颈项型无氧铜软线,防漏音设计,45毫米特长低音导管,耳机卷线盒。
96年出品。
(3)HP-V153 大型16毫米驱动单元,梦幻低音笛管耳机产生深沉低音,防缠结颈项型无氧铜软线,防漏音设计,45毫米特长低音导管,附单声道/立体声切换开关。
96-98年出品。
(4)HP-V151 大型16毫米驱动单元,梦幻低音笛管耳机产生深沉低音,防缠结颈项型无氧铜软线,防漏音设计,45毫米特长低音导管。
96-98年出品。
5、V141系列,俗称95金小孔,是1995年以来大量配机,并受到普遍好评的一个系列,但个人使用多年的感觉,低音不如V16,高音又比不上V14,只能算是“矮子里面找高人”了:(1)HP-V147 防漏音改良型耳机设计,30毫米U型低笛管耳机,14.8毫米强力SA-CO(钐-钴)驱动磁铁,颈项型无氧铜软线,耳机线上附音量控制,94-95年出品。
(2)HP-V145 防漏音改良型耳机设计,30毫米U型低音笛管耳机,14.8毫米强力SA-CO(钐-钴)驱动磁铁,颈项型无氧铜软线,耳机卷线盒。
94-95年出品。
(3)HP-V143 防漏音改良型耳机设计,30毫米U型低音笛管耳机,14.8毫米强力SA-CO(钐-钴)驱动磁铁,颈项型无氧铜软线,附单声道/立体声切换开关。
94-95年出品。
(4)HP-V141 防漏音改良型耳机设计,30毫米U型低音笛管耳机,14.8毫米强力SA-CO(钐-钴)驱动磁铁,颈项型无氧铜软线。
94-95年出品。
6、 V70系列,AIWA早期的高档耳塞系列之一,虽然知道的人较少,但无论从装备、指标等各方面考察,V70都是让人满意的,其造型也是非常特别的,令人过目难忘:(1) HP-V70 30毫米U型低音笛管耳机,防漏音及防菌耳机设计,永保耳机清洁,大型16毫米驱动单元表现强有力的低音,颈项型无氧铜软线,24K镀金立体声小型插头,耳机线上附音量控制,附单声道/立体声切换开关,耳机卷线盒。
频率响应7HZ-25KHZ,阻抗16欧姆,音量感109DB/毫瓦,净重5克(不含线),92-94年出品。
(2)HP-V68 30毫米U型低音笛管耳机,防漏音及防菌耳机设计,永保耳机清洁,大型16毫米驱动单元表现强有力的低音,颈项型无氧铜软线,24K镀金立体声小型插头,耳机线上附音量控制,耳机卷线盒。
频率响应7HZ-25KHZ,阻抗16欧姆,音量感109DB/毫瓦,净重5克(不含线),92-94年出品。
(3)HP-V65 30毫米U型低音笛管耳机,防漏音及防菌耳机设计,永保耳机清洁,大型16毫米驱动单元表现强有力的低音,颈项型无氧铜软线,24K镀金立体声小型插头,耳机卷线盒。
频率响应7HZ-25KHZ,阻抗16欧姆,音量感109DB/ 毫瓦,净重5克(不含线),92-94年出品。
7、V60系列,在早期的AIWA耳塞中型号也不算低,但实际使用的效果只能说差强人意,而且外观看上去就象低档货:(1) HP-V60 30毫米U型低音笛管耳机,强力SA-CO(钐-钴)驱动磁铁,表现深厚的低音响应,颈项型无氧铜软线,耳机线上附音量控制,附单声道/立体声切换开关,24K镀金立体声小型插头,耳机卷线盒。
频率响应10HZ-25KHZ,阻抗16欧姆,音量感104DB/毫瓦,净重6克(不含线),92-93 年出品。
(2)HP-V58 30毫米U型低音笛管耳机,强力SA-CO(钐-钴)驱动磁铁,表现深厚的低音响应,颈项型无氧铜软线,耳机线上附音量控制,24K镀金立体声小型插头,耳机卷线盒。
频率响应10HZ-25KHZ,阻抗16欧姆,音量感104DB/毫瓦,净重6克(不含线),92-93年出品。
(3) HP-V56 30毫米U型低音笛管耳机,强力SA-CO(钐-钴)驱动磁铁,表现深厚的低音响应,颈项型无氧铜软线,24K镀金立体声小型插头,耳机卷线盒。
频率响应10HZ-25KHZ,阻抗16欧姆,音量感104DB/毫瓦,净重6克(不含线),93年出品。
8、V16系列,俗称大金条AIWA,这一系列是与AIWA的黄金时期紧密联系在一起的,是90年代初期AIWA磁带机纵横天下时的主打配机耳塞,光凭这一点就够大家品味品味了:(1)HP-V28 30毫米U型低音笛管耳机,大型16毫米驱动单元表现强有力的低音,防漏音改良型耳机设计,颈项型无氧铜软线,24K镀金立体声小型插头,耳机线上附音量控制,附单声道/立体声切换开关。