桁架结构分析

合集下载

结构力学5平面桁架讲解课件

结构力学5平面桁架讲解课件

桁架在动力荷载作用下的响应
瞬态响应
当桁架受到突然施加的动荷载 时,它会表现出瞬态响应。这 种响应通常包括一个短暂的过 渡过程,随后达到一个稳定的 振动状态。
频域响应
在周期性动荷载作用下,桁架 会表现出频域响应。通过频域 分析,可以研究桁架在不同频 率下的振动行为,并确定其振 幅和相位响应。
阻尼效应
高效的经济性
平面桁架能以较少的材料 用量承受较大的荷载,具 有较高的经济性。
平面桁架的应用场景
桥梁工程
在桥梁工程中,平面桁架常被用 作桥面板的支撑结构,能提供稳
定的支撑和承载能力。
建筑工程
在建筑工程中,平面桁架常被用于 楼层和屋盖的承重结构,以及建筑 物的支撑体系。
机械工程
平面桁架也被广泛应用于机械工程 领域,如起重机的梁架、设备的支 架等,其优良的受力性能使其在这 些场景中发挥重要作用。
桁架内力计算:轴力、剪力与弯矩
轴力计算
轴力是杆件沿轴线方向的拉力或压力。通过截面法可以得到杆件的轴力分布情况。根据杆 件的轴力和截面积,可以进一步计算杆件的应力状态,以评估其承载能力。
剪力计算
剪力是杆件横截面上的切向力。通过截面法可以得到杆件的剪力分布情况。剪力的大小和 方向决定了杆件的剪切变形和剪切应力,对于桁架的剪切稳定性分析至关重要。
05 平面桁架的数值模拟与实验验证
基于有限元的数值模拟方法
有限元法基本原理
有限元法将连续体离散为一系列小单元,通过节点连接,利用变分 原理建立节点力与位移的关系,进而求解整个结构的响应。
线性弹性有限元法
对于线弹性材料,采用线性弹性有限元法,通过刚度矩阵和载荷向 量的组装,求解节点位移。
非线性有限元法
02 平面桁架的静力学分析

绗架受力分析

绗架受力分析

对称结构受对称荷载作用, 内力和反 力均为对称:
E 点无荷载,红色杆不受力
FAy
FBy
对称结构受反对称荷载作用, 内力和 反力均为反对称:
垂直对称轴的杆不受力
FAy
FBy
对称轴处的杆不受力
2.5.4



截取桁架的某一局部作为隔离体,由 平面任意力系的平衡方程即可求得未知的 轴力。 对于平面桁架,由于平面任意力系的 独立平衡方程数为3,因此所截断的杆件数 一般不宜超过3
2.5.5
组合结构的计算
8 kN
I
组合结构——由链杆和受弯杆件混合组成的结构。 12 G E 4m
I
A FN图(kN) 5 kN
4 -6 F 6 12
M图(kN . m)
B 2m 4m
C -6
D 4m 2m 2m
3 kN
一般情况下应先计算链杆的轴力 取隔离体时宜尽量避免截断受弯杆件
在用结点法进行计算时,注意以下三点, 可使计算过程得到简化。
1. 对称性的利用 如果结构的杆件轴线对某轴(空间桁架为 某面)对称,结构的支座也对同一条轴对 称的静定结构,则该结构称为对称结构 (symmetrical structure)。 对称结构在对称或反对称的荷载作用下, 结构的内力和变形(也称为反应)必然对 称或反对称,这称为对称性(symmetry)。
4. 梯形桁架
三、按几何组成分类 简单桁架 (simple truss)
联合桁架 (combined truss)
复杂桁架 (complicated truss)
四、按受力特点分类:
1. 梁式桁架
2. 拱式桁架
五、计算方法 1.结点法 2.截面法 3.联合法

钢桁架结构加固方案设计与经济性分析

钢桁架结构加固方案设计与经济性分析

钢桁架结构加固方案设计与经济性分析钢桁架结构是一种常见的结构形式,具有轻量、高强度、刚性好等优点,广泛应用于建筑、工业和桥梁等领域。

然而,由于长期使用和自然灾害的影响,钢桁架结构可能出现弯曲、扭转和腐蚀等问题,需要进行加固处理。

本文将探讨钢桁架结构加固方案设计与经济性分析的相关内容。

一、加固方案设计1. 结构评估与分析:首先需要进行结构评估与分析,了解钢桁架结构受力情况、现有强度和变形情况等。

通过现场勘察、结构计算和非破坏性测试等方法,确定加固方案设计的依据。

2. 加固材料选择:根据结构评估结果,选取合适的加固材料。

常见的加固材料包括碳纤维复合材料、玻璃纤维增强材料和钢板等。

根据结构的不同需要,选择适合的加固材料可以在保证结构强度的同时减少结构自重。

3. 加固方案设计:根据结构评估结果和加固材料的特点,制定具体的加固方案设计。

例如,可以使用外包围式加固、内置加固、粘结加固等不同的加固方式。

4. 结构施工和监测:在加固方案设计完成后,进行结构施工和监测工作。

施工过程中要注意施工工艺和安全措施,确保施工质量。

同时,定期进行结构监测,了解加固效果和结构的变形情况,及时采取措施进行调整和补充加固。

二、经济性分析1. 加固方案的成本:在加固工程中,成本是重要的考虑因素之一。

加固方案的成本包括加固材料费用、施工费用和监测费用等。

通过合理选择加固材料和施工工艺,可以降低成本,提高加固的经济性。

2. 加固效果与增值:加固方案旨在提高钢桁架结构的强度和稳定性,延长使用寿命。

加固后的结构可以承载更大的荷载,减少变形和挠度,从而提高结构的安全性和稳定性。

此外,加固后的结构还可以提升建筑物的经济价值和市场价值,增加投资回报率。

3. 经济效益与环保效益:加固工程的经济性不仅考虑成本投入和经济回报,还应考虑到长期的维护费用和环境效益。

合理的加固方案可以降低维护费用,延长使用寿命,减少资源消耗和建筑废弃物的产生,从而达到环保的目的。

桁架结构的受力分析与计算

桁架结构的受力分析与计算

桁架结构的受力分析与计算桁架结构是一种由各种杆件连接而成的稳定结构,被广泛应用于建筑、桥梁、航天器等领域。

在设计和建造桁架结构时,受力分析和计算是至关重要的步骤。

本文将介绍桁架结构的受力分析方法,并给出相应的计算步骤。

一、桁架结构的受力分析桁架结构由杆件和节点组成,杆件通常是直线段或曲线段,节点是连接杆件的固定点。

在受力分析中,需要确定每个节点和杆件的受力情况。

1. 节点的受力分析节点是桁架结构中的重要连接点,它承受着来自相邻杆件的受力。

对于单个节点,可以利用力平衡原理来进行受力分析。

首先,在水平方向上,所有受力要素的水平分力之和应等于零;其次,在竖直方向上,所有受力要素的竖直分力之和也应等于零。

通过解这两个方程,可以求得节点的受力。

2. 杆件的受力分析杆件是桁架结构中起支撑作用的构件,它们承受着来自外力和节点的受力。

在受力分析中,需要确定每个杆件的受力大小和方向。

根据静力平衡原理,杆件上的受力要满足力的平衡条件,即合力为零。

可以利用力的合成和分解的原理来进行受力分析,将受力分解为水平方向和竖直方向的分力。

通过解这些方程,可以求得杆件的受力。

二、桁架结构的受力计算在桁架结构的受力计算中,需要根据受力分析的结果来进行具体的计算。

主要涉及到以下几个方面。

1. 材料的选择和强度计算桁架结构中的杆件通常采用钢材、铝材等材料制作。

在进行强度计算时,需要考虑材料的强度和安全系数。

根据结构所受力的种类(拉力、压力或剪力),选择适当的强度计算公式和安全系数。

2. 荷载的计算桁架结构在使用过程中会承受各种形式的荷载,如静荷载、动荷载、地震荷载等。

荷载的计算是桁架结构设计的重要一环。

需要根据设计要求和建筑规范,合理计算各种荷载的大小和作用方向,以确定结构的强度和稳定性。

3. 结构的稳定性计算桁架结构在承受荷载作用时,需要保持结构的稳定性,避免产生倾覆和失稳等安全隐患。

在进行结构的稳定性计算时,需要考虑结构的整体平衡和节段局部稳定性问题。

大跨度空间桁架结构吊装施工技术分析

大跨度空间桁架结构吊装施工技术分析

大跨度空间桁架结构吊装施工技术分析1. 引言1.1 研究背景在现代建筑工程中,大跨度空间桁架结构被广泛应用于体育馆、会展中心、机场等大型建筑中。

这种结构具有跨度大、自重轻、空间利用率高的特点,能够满足大空间覆盖的需求,提供了更为灵活多样的建筑设计方案。

由于大跨度空间桁架结构的建造和吊装存在较高的技术难度和风险,因此对吊装施工技术进行深入研究和分析具有重要意义。

随着我国大型建筑工程的不断发展和建设规模的日益扩大,大跨度空间桁架结构的应用也越来越广泛。

在实际工程中,由于各种复杂因素的影响,吊装施工往往成为工程施工中的难点和重点。

对大跨度空间桁架结构的吊装施工技术进行深入研究和分析,既有助于总结经验,提高施工效率,又能够有效降低工程风险,保障施工安全。

本文旨在通过对大跨度空间桁架结构的吊装施工技术进行分析,探讨其设计原则和要求,总结吊装工艺流程,提出相关安全措施,以期为工程实践提供参考和借鉴。

1.2 研究目的研究目的是为了探究大跨度空间桁架结构吊装施工技术的相关问题,深入分析吊装过程中可能出现的挑战和难点,寻找解决方案和改进措施,提高施工效率和质量,确保施工安全。

通过对吊装施工技术进行系统研究和分析,可以为相关领域的工程师和施工人员提供参考和借鉴,推动大跨度空间桁架结构的施工工艺不断完善和发展。

通过这一研究,还可以促进国内相关产业的技术进步和创新,提高我国在大跨度空间桁架结构领域的竞争力,为我国建筑行业的发展做出贡献。

是本论文的重要组成部分,对于全面了解大跨度空间桁架结构吊装施工技术以及未来研究方向具有重要意义。

1.3 研究意义大跨度空间桁架结构是一种具有较大跨度、较高荷载承载能力和较小自重的结构形式,广泛应用于体育馆、展览馆、大型工业厂房等建筑领域。

随着建筑技术的发展和人们对建筑美学的追求,大跨度空间桁架结构在现代建筑中得到了越来越广泛的应用。

研究大跨度空间桁架结构吊装施工技术的意义在于提高建筑施工的效率和质量,保障施工安全,推动建筑行业的发展。

大跨度钢结构空间管桁架设计要点分析

大跨度钢结构空间管桁架设计要点分析

大跨度钢结构空间管桁架设计要点分析
大跨度钢结构空间管桁架是一种结构形式独特、适用范围广泛的钢结构。

它以钢管为主要构件,具有独特的设计特点和应用优势。

本文将从设计要点的角度对大跨度钢结构空间管桁架进行分析,以期加深对该结构形式的理解和应用。

大跨度钢结构空间管桁架的设计要点之一是结构稳定性。

由于大跨度结构受风荷载和自重等影响,结构稳定性是设计的重点之一。

在设计中,需充分考虑大跨度结构的整体稳定性,采取合适的措施来增强结构的抗风荷载和自重的能力。

合理设置稳定杆件和增强节点连接等均是提高结构稳定性的重要手段。

施工和安装是大跨度钢结构空间管桁架设计的重要考虑因素。

由于大跨度结构的体量和尺寸较大,因此在设计中需充分考虑结构的施工和安装性能。

需要合理设置构件的尺寸和连接方式,以便于施工和安装。

在设计中也要考虑到结构的拼装和拆卸方便性,以减少施工过程中的工期和成本。

结构的经济性也是大跨度钢结构空间管桁架设计的关键要点之一。

在设计中,需要充分考虑结构的成本和性能,选用合适的材料和构造形式,以满足结构的使用需求和减少工程投资。

还需要优化设计,减少结构的自重和构件数量,从而提高结构的经济性。

大跨度钢结构空间管桁架的设计要点涉及结构稳定性、刚度和承载力、施工和安装性能、以及经济性等多个方面。

在设计和实际应用中,需要综合考虑这些因素,并根据具体工程要求采取相应的措施,以确保结构的安全、可靠、经济和实用。

希望本文的内容能够对大跨度钢结构空间管桁架的设计和应用提供一定的参考和帮助。

钢桁架建筑结构非线性分析的数值模拟研究

钢桁架建筑结构非线性分析的数值模拟研究

钢桁架建筑结构非线性分析的数值模拟研究钢桁架建筑是现代建筑中的一种重要类型,其结构特点是轻巧、美观、稳定。

在设计钢桁架建筑时,结构非线性分析是必不可少的一项工作。

结构非线性分析是指在考虑所有可能载荷作用下结构变形时,结构的应力、应变等力学性能数据可能受到非线性影响的计算方法。

本文将通过数值模拟的方式探讨钢桁架建筑结构的非线性分析。

一、钢桁架建筑结构的非线性特性钢桁架建筑结构的非线性特性主要来源于材料非线性、几何非线性和边界条件非线性三个方面。

材料非线性是由于钢材的应力与应变之间并不是线性关系,其应力-应变曲线可以是一条曲线,在工程应用中使用的通常是广义胴极材料本构模型。

钢材的应变硬化性能也是一个研究焦点,应变硬化的本质是一种能量耗散过程,可以通过现场钢材的拉伸试验数据进行参数辨识,得到有效的参数后,就可以对钢材作出正确的相应性能。

几何非线性是指结构变形过程不是线性过程。

比如说,钢桁架建筑可能由于受到不同的载荷而发生桥架、支撑架的弯曲变形,这时梁端部的偏转极限就可能出现非线性。

边界条件非线性是指结构的支承点的边界条件(如铰支承、弹簧支承等)不是线性约束关系。

因此,它可能会导致建筑结构的非线性响应。

二、钢桁架建筑结构的数值模拟钢桁架建筑结构的非线性分析需要使用相应的数值方法,其中常用的方法有有限元法、有限差分法和边界元法。

有限元法是钢桁架建筑结构分析中最常用的方法,是指将结构划分为n个元件(如梁、板、支座等),再根据确定的应变单元模型、接触约束和材料力学性能进行计算分析的一种数值方法。

有限差分法则是以差分方程作为数值分析的基本思路,利用差分方程描述了钢桁架建筑结构的变形和力学特性,并通过离散化求解差分方程,得出基于差分方程的数值模拟结果。

边界元法是以边界上的相邻点之间的物理关系作为计算结果的数值模拟分析方法。

它不需要把研究对象划分成小的元件,因此对于那些形状复杂或者非均匀性强的物体分析可以取得优秀的效果。

桁架结构及有限元分析MATLAB

桁架结构及有限元分析MATLAB

桁架结构及有限元分析MATLAB桁架结构是一种由杆件和节点连接而成的结构系统。

它的主要特点是具有良好的刚性和承载能力,适用于跨度较大的建筑物或桥梁。

桁架结构的设计和分析是工程领域中重要的课题。

有限元分析是一种常用的方法,用于对桁架结构进行力学和结构分析。

MATLAB是一种强大的数学建模和计算工具,可以方便地进行有限元分析。

在进行桁架结构的有限元分析之前,首先需要进行结构的建模。

可以使用MATLAB中的节点和杆件来建立桁架结构的几何模型。

节点代表结构中的连接点,杆件代表连接节点的杆件。

接下来,需要将结构分割为有限元网格。

在MATLAB中,可以使用二维和三维有限元网格生成函数来生成网格。

生成的网格可以根据需要的精度进行调整。

每个有限元包含一个或多个节点和杆件,用于描述局部的力学行为。

在有限元分析中,需要考虑材料的力学性质。

可以通过定义材料的模量、泊松比和密度等参数来描述材料的本构关系。

在MATLAB中,可以使用材料库函数来定义不同材料的力学性质。

进行有限元分析时,需要考虑结构的边界条件和加载条件。

边界条件包括固定边界和位移约束,加载条件可以是力、压力或扭矩等。

在MATLAB中,可以使用边界条件函数来定义结构的边界条件和加载条件。

在有限元分析的过程中,需要对结构进行求解。

可以使用线性或非线性求解算法来计算结构的位移和应力等。

MATLAB中提供了多种求解器和求解方法,可以根据需要选择适合的求解算法。

完成有限元分析后,可以进行结果的后处理。

可以使用MATLAB中的可视化工具来绘制结构的位移和应力云图,以及显示结构的反应力和形变等。

可以通过对结果进行分析和比较,评估结构的可靠性和安全性。

总之,使用MATLAB进行桁架结构的有限元分析可以帮助工程师深入了解结构的力学行为和性能。

它可以为结构的设计和优化提供依据,并帮助工程师制定提高结构性能的策略。

同时,MATLAB提供了丰富的功能和工具,使得桁架结构的分析和设计更加高效和准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013-2014年度学生研究计划(SRP)“桁架结构模型结构优化及试验”结题论文姓名骆辉军学院土木与交通学院专业土木工程(卓越全英班)学号 201230221450指导老师范学明时间 2014年10月一.实验背景随着科学技术的发展和计算机软件技术的应用,应用相关的软件来进行桁架结构模型的优化已经可以成为现实。

桁架结构中的桁架指的是桁架梁,是格构化的一种梁式结构。

桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。

由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。

在桥梁结构中,桁架结构也应用广泛。

只受结点荷载作用的等直杆的理想铰结体系称桁架结构。

它是由一些杆轴交于一点的工程结构抽象简化而成的。

合理地设计桁架结构,就能够最大限度地利用材料的强度,起到减轻桁架重量,节省材料的目的,从而也能为工程实际应用提供相关的依据和参考。

但桁架的结构模型形式千变万化,仅仅从理论上分析桁架的受力特征和破坏特征,而不进行相应的试验研究是无法取得实质性的进展的。

正是基于这样一个原则,我们需要在理论研究的基础上通过试验来优化桁架的结构模型,在各式各样的桁架结构中挑选出受力合理的结构,最大限度地使材料的强度得以利用。

研究桁架结构模型优化的意义桁架结构中,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。

由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。

结构布置灵活,应用范围非常广。

桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。

在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。

这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。

更重要的意义还在于,它将横弯作用下的实腹梁内部复杂的应力状态转化为桁架杆件内简单的拉压应力状态,使我们能够直观地了解力的分布和传递,便于结构的变化和组合。

由于杆件之间的互相支撑作用,且刚度大,整体性好,抗震能力强,所以能够承受来自多个方向的荷载。

而且具有结构简单,运输方便等优点,其应用于各个工程领域。

古代木构建筑,而今的2008北京奥运会的主体育馆鸟巢;太空中的大型可展天线,地面上的跨海大桥,随处都可见到桁架的身影。

由于桁架的结构模型千变万化,不同的桁架结构形式对桥梁或者屋架的受力特征有很大的影响,因而,研究桁架结构模型的优化具有重大的意义。

二.实验的相关资料1.桁架结构的常见构造方式桁架指的是桁架梁,是格构化的一种梁式结构,即一种由杆件彼此在两端用铰链连接而成的结构。

桁架由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。

由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。

桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。

其主要结构特点在于,各杆件受力均以单向拉、压为主,通过对上下弦杆和腹杆的合理布置,可适应结构内部的弯矩和剪力分布。

由于水平方向的拉、压内力实现了自身平衡,整个结构不对支座产生水平推力。

结构布置灵活,应用范围非常广。

桁架梁和实腹梁(即我们一般所见的梁)相比,在抗弯方面,由于将受拉与受压的截面集中布置在上下两端,增大了内力臂,使得以同样的材料用量,实现了更大的抗弯强度。

在抗剪方面,通过合理布置腹杆,能够将剪力逐步传递给支座。

这样无论是抗弯还是抗剪,桁架结构都能够使材料强度得到充分发挥,从而适用于各种跨度的建筑屋盖结构。

从力学方面分析,桁架外形与简支梁的弯矩图相似时,上下弦杆的轴力分布均匀,腹杆轴力小,用料最省;从材料与制造方面分析,木桁架做成三角形,钢桁架采用梯形或平行弦形,钢筋混凝土与预应力混凝土桁架为多边形或梯形为宜。

桁架的高度与跨度之比,通常,立体桁架为1/12~1/16,立体拱架为1/20~1/30,张拉立体拱架为1/30~1/50,在设计手册和规范中均有具体规定。

桁架的使用范围很广,在选择桁架形式时应综合考虑桁架的用途、材料和支承方式、施工条件,其最佳形式的选择原则是在满足使用要求前提下,力求制造和安装所用的材料和劳动量为最小。

三角形桁架在沿跨度均匀分布的节点荷载下,上下弦杆的轴力在端点处最大,向跨中逐渐减少;腹杆的轴力则相反。

三角形桁架由于弦杆内力差别较大,材料消耗不够合理,多用于瓦屋面的屋架中。

梯形桁架和三角形桁架相比,杆件受力情况有所改善,而且用于屋架中可以更容易满足某些工业厂房的工艺要求。

如果梯形桁架的上、下弦平行就是平行弦桁架,杆件受力情况较梯形略差,但腹杆类型大为减少,多用于桥梁和栈桥中。

多边形桁架也称折线形桁架。

上弦节点位于二次抛物线上,如上弦呈拱形可减少节间荷载产生的弯矩,但制造较为复杂。

在均布荷载作用下,桁架外形和简支梁的弯矩图形相似,因而上下弦轴力分布均匀,腹杆轴力较小,用料最省,是工程中常用的一种桁架形式。

空腹桁架基本取用多边形桁架的外形,无斜腹杆,仅以竖腹杆和上下弦相连接。

杆件的轴力分布和多边形桁架相似,但在不对称荷载作用下杆端弯矩值变化较大。

优点是在节点相交会的杆件较少,施工制造方便。

桁式组合拱桥是由两个悬臂桁架支承一个桥梁拱组成,它除保持桁式拱结构的用料省、跨越能力大、竖向刚度大等特点外,更具有桁梁的特性和可以采用无支架悬臂安装的方法施工,使桁式组合拱桥具有一定的竞争能力。

我国贵州省建造桁式组合拱桥数量最多,国内较知名的有以下几座:(1)贵州省剑河大桥,桥梁跨径为150m,桥面宽为11m,建于1985年;(2)四川省牛佛大桥,桥梁跨径为160m,桥面宽为11m,建于1990年;(3)贵州省江界河大桥,桥梁跨径为330m,桥面宽为12m,建于1995年。

贵州省剑河大桥2.桁架结构常见材料的截面形式、强度等材料性能参数桁架的几种常用材料:1.钢材:而通常用于桁架中的钢材主要有两种:①碳素结构钢:强度:含碳量约0.05%~0.70%,个别可高达0.90%。

可分为普通碳素结构钢和优质碳素结构钢两类。

而用于结构工程中常用的是普通碳素钢。

一般Q195、Q215、Q235钢碳的质量分数低,因为焊接性能好,塑性、韧性好,有一定强度,常轧制成薄板、钢筋、焊接钢管等,用于桥梁、建筑等结构。

而“Q”表示钢材的屈服点。

②低合金钢:强度:典型碳素结构钢的最小屈服点为235MPa。

而典型低合金高强度钢的最小屈服点为345MPa。

因此,根据其屈服点的比例关系,低合金高强度钢的使用允许应力比碳素结构钢高1.4倍。

与碳素结构钢相比,使用低合金高强度钢可以减小结构件的尺寸,使重量减轻。

必须注意,对于可能出现弯曲的构件,其许用应力必须修正,以达到保证结构的坚固性。

有时用低合金高强度钢取代碳素结构钢但不改变断面尺寸,其唯一的目的是在不增加重量的情况下而得到强度更高更耐久的结构;成形性能:具有适当的成形性能,容易地和经济地进行热或冷加工以制成工程结构的各种部件;2.钢筋混凝土:由于混凝土的抗拉强度远低于抗压强度,因而素混凝土结构不能用于受有拉应力的梁和板。

如果在混凝土梁、板的受拉区内配置钢筋,则混凝土开裂后的拉力即可由钢筋承担,这样就可充分发挥混凝土抗压强度较高和钢筋抗拉强度较高的优势,共同抵抗外力的作用,提高混凝土梁、板的承载能力。

钢筋混凝土结构钢筋与混凝土两种不同性质的材料能有效地共同工作,是由于混凝土硬化后混凝土与钢筋之间产生了粘结力。

它由分子力(胶合力)、摩阻力和机械咬合力三部分组成。

其中起决定性作用的是机械咬合力,约占总粘结力的一半以上。

将光面钢筋的端部作成弯钩,及将钢筋焊接成钢筋骨架和网片,均可增强钢筋与混凝土之间的粘结力。

为保证钢筋与混凝土之间的可靠粘结和防止钢筋被锈蚀,钢筋周围须具有15~30毫米厚的混凝土保护层。

若结构处于有侵蚀性介质的环境,保护层厚度还要加大。

3.梁和板等受弯构件中受拉力的钢筋,根据弯矩图的变化沿纵向配置在结构构件受拉的一侧。

在柱和拱等结构中,钢筋也被用来增强结构的抗压能力。

它有两种配置方式:一是顺压力方向配置纵向钢筋,与混凝土共同承受压力;另一是垂直于压力方向配置横向的钢筋网和螺旋箍筋,以阻止混凝土在压力作用下的侧向膨胀,使混凝土处于三向受压的应力状态,从而增强混凝土的抗压强度和变形能力由于按这种方式配置的钢筋并不直接承受压力,所以也称间接配筋。

在受弯构件中与纵向受力钢筋垂直的方向,还须配置分布筋和箍筋,以便更好地保持结构的整体性,承担因混凝土收缩和温度变化而引起的应力,及承受横向剪力。

木材:木材有很好的力学性质,但木材是有机各向异性材料,顺纹方向与横纹方向的力学性质有很大差别。

木材的顺纹抗拉和抗压强度均较高,但横纹抗拉和抗压强度较低。

木材强度还因树种而异,并受木材缺陷、荷载作用时间、含水率及温度等因素的影响,其中以木材缺陷及荷载作用时间两者的影响最大。

建筑用木材,通常以原木、板材、枋材三种型材供应。

原木系指去枝、去皮后按规格加工成一定长度的木料;板材是指宽度为厚度的三倍或三倍以上的型材;而枋材则为宽度不足三倍厚度的型材。

按照国家标准,根据木材的缺陷情况对各种商品木材进行了等级划分,通常分为一、二、三、四等。

结构和装饰用木材一般选用等级较高的木材。

对于承重结构用的木材,又根据《木结构设计规范》(GBJ5—88)的规定,按照承重结构的受力要求对木材进行分级,即分为I、II、III三级,设计时应根据构件的受力种类选用适当等级的木材。

例如承重木结构板材的选用,根据其承载特点,一般I级材用于受拉或受弯构件;II级材用于受弯或受压弯的构件;III级材用于受压构件及次要受弯构件。

三.实验的过程1.设计过程以下是我们设计的12个方案。

方案1方案2方案3方案5方案6方案8方案9方案11接下来以其中一个设计方案为例,对设计过程进行详细阐述。

I.结构的构件.图1图2图3图4图5图6提示:图1是该结构的前视图,每个部件的中间表示它的轴。

此外,我们对不同元素的标记是从1号到11号(部件12是两个结构之间的连接件)。

图2表示顶部梁1,主梁2 和底部支撑梁3的构造,梁1,2,3,用表面上的竖直线分割,由于定位所有其他构件。

图3和图4表示各构件具体的尺寸,作为我们做出精确模型的基础依据。

图5和6解决我们切材料的方式。

A x指6 * 6的轻木条和B x指6×3轻木条。

Table 1 Summary of ElementsNumber Amount Length(cm)SectionalDimensions(mm*mm)Total Length(cm)Tips1 2 30.97 6*6 61.94 A2:22 2 41.45 6*6 & 6*3 82.9 Strengthen both sides 41.45*2=82.9A1:2 B3:23 4 11.4 6*3 45.6 B1:44 4 10.81 6*6 43.24 A2:2 A5:25 4 9.4 6*6 37.6 A4:46 4 10.81 6*6 43.24 A4:47 8 10.81 6*6 & 6*3 86.48 A3:8 Strengthen 4 elements in both sides 10.81*2*4=86.48 B4:88 4 6.82 6*6 27.28 A1:1 A2:1 A4:1 B5: making 1 elementwith 6*39 4 4.4 6*6 17.6 A3:1 A5:2 B5: making 1 element with 6*310 4 11.4 6*6 45.6 A5:411 4 6.82 6*6 27.28 A5:2 B5:making 1 element with 6*312 15 8 6*3 120 B1:5 B2:10Sum 638.76Tips show the way to embody the arrangement of members, which is also included in figure 5&6.II.设计在解释我的设计过程中,我们真的要说感谢我们的老师,因为这次比赛给了我们一个学习SAP2000的机会。

相关文档
最新文档