物理专题三带电粒子在复合场(电场磁场)中的运动解读
高考物理带电粒子在复合场中的运动知识归纳

带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指电场、磁场和重力场并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力永不做功.(2) 重力和电场力做功与路径无关,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受合力变化,从而加速度变化,使粒子做变加速运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将做匀速直线运动或处于静止,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v与B平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做匀速圆周运动时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和 圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r联立求解得m =U L qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B Um q又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m r v 2,r =qBmv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2km e .最大动能:E km =m r B q 22m 22f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转.③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =d U q ,可得v =Bd U液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE , E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =d BI k nqd BI k=nq 1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s脱离斜面.求磁场的磁感应强度(g 取10 m /s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+m qE αcos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F电,加速度a =m f mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)R v 2'研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′ 以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m ≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f 洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A 点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu 设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ将L 结果代入上式得s =θθ sin 12cos 352222B q g m碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ 【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有vv 0=cos θ ①v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =r mv 2 ⑤r =qBmv 02 ⑥(3)由几何关系得ON =r sin θ ⑦设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qBm π2 ⑩ 设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qBm 32π ⑫ t =t 1+t 2=qB m 3π)233(+【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s=8 cm 的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m =6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v =3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N ·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m R v 2,得R =Bqmv =0.2 m 如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m r Qq 22'=α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J 易错门诊3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =q dU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·m qU d 22= 竖直方向有v 2y =v 2+2gL离开时的速度v ′=m qU d B U gL v v y x 2222222++=+【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU d B U gL ++2222【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.。
带电粒子在复合场中的运动课件

深化拓展 考点一 带电粒子在电场和磁场中的运动比较
1.“磁偏转”和“电偏转”的区别
偏转产 生条件 受力特征 运动性质 轨迹 运动 轨迹图运动规律动能 Nhomakorabea化 运动时间
匀强电场中的偏转 带电粒子以速度v0垂直射入匀强电场
匀强磁场中的偏转 带电粒子以速度v0垂直射入匀强磁场
只受恒定的电场力F=Eq,方向与初速度方向 垂直
图3
答案 (1) 2eU0 (2) 4U0dh (3) 1 6U0m
m
L(L 2x)
3r e
解析
(1)电子在电场中运动,根据动能定理eU0=
1 2
mv02
解得电子穿出小孔时的速度v0=
2eU 0 m
(2)电子进入偏转电场做类平抛运动,在垂直于极板方向做匀加速直线
运动。设电子刚离开电场时垂直于极板方向偏移的距离为y
大小:G=① mg 方向:② 竖直向下
重力做功与路径③ 无关 重力做功改变物体重力势能
大小:F=④ Eq
电场力做功与路径⑦ 无关
方向:正电荷受力方向与场强方向⑤ 一致 ;负 W=qU
电荷受力方向与场强方向⑥ 相反
电场力做功改变⑧ 电势能
洛伦兹力F=qvB; 方向符合左手定则
洛伦兹力不做功,不改变带电 粒子的⑨ 速度大小
洛伦兹力只改变速度方向,不改变速度的大 小,对带电粒子永不做功
2.带电粒子在分离电场、磁场中运动问题的求解方法
1-1 利用电场和磁场来控制带电粒子的运动, 在现代科学实验和技术设备中有广泛的应用。如图1所示为电子枪的 结构示意图,电子从炽热的金属丝中发射出来,在金属丝和金属板之间 加以电压U0,发射出的电子在真空中加速后,沿电场方向从金属板的小 孔穿出做直线运动。已知电子的质量为m,电荷量为e,不计电子重力及 电子间的相互作用力。设电子刚刚离开金属丝时的速度为零。
专题三 电场与磁场第2讲带电粒子在复合场中的运动

出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场.
已知OP之间的距离为d,(不计粒子的重力)求:
(1)Q点的坐标; (2)带电粒子自进入电场至在磁场中第二次经过x轴的时间.
目录
解析:(1)设 Q 点的纵坐标为 h,到达 Q 点的水平分速度为 vx ,则由类平抛运动的规律可知 vx t vx h=v0 t,d= ,tan45° ,得 h=2d = 2 v0 故 Q 点的坐标为(0,2d).
轨道半径都要变大,因此求出4L处的速度,再求半径,利 用数学知识即可求6L处的坐标.
目录
[解题样板]
(1)x=L 处电子的速度为 v1 1 2 eE0 L= mv1 2 v1 = 2eE0 L m (2 分) (2 分)
=4.0×107 m/s.
图3-2-8
目录
(2)电子在 x=0 至 x=L 间运动的时间为 t1 L t1 = =1.5×10-8 s. (1 分) v1 2 电子在 x=L 至 x=3L 间的磁场中运动的半径为 r1,运动的 时间为 t2 2 v1 ev1 B0 =m (1 分) r1 r1 =0.30 m (1 分) 由几何关系知,电子在 x=L 至 x=3L 间的磁场中的运动轨 迹为两个四分之一圆周 (1 分) 2πr1 2πm T= = (1 分) v1 eB0
目录
T πm -8 t2 =2× = =2.3×10 s (1 分) 4 eB0 所以,电子从 x=0 运动到 x=3L 处的时间 t=t1+t2=3.8×10
-8
s.
(1 分)
(3)x=4L 处电子的速度为 v2 1 2 1 2 eE0 L= mv2 - mv1 (1 分) 2 2 电子在 x=4L 至 x=6L 间的磁场中运动的半径为 r2 v2 2 ev2 B0 =m (1 分) r2 mv2 r2 = = 2r1 (1 分) eB0
带电粒子在复合场中的运动 课件

(1)求粒子从 P 点出发至第一次到达 x 轴时所需的时间; (2)若要使粒子能够回到 P 点,求电场强度的最大值.
解析:(1)带电粒子在磁场中做圆周运动,设运动半径为 R, 运动周期为 T,根据洛伦兹力公式及圆周运动规律,有
qv0B=mvR20 T=2vπ0R 依题意,粒子第一次到达 x 轴时,运动转过的角度为54π,所 需时间 t1 为 t1=58T,求得 t1=54πqBm.
(2)根据物体各阶段的运动特点,选择合适的规律求解. ①匀速直线运动阶段:应用平衡条件求解. ②匀加速直线运动阶段:应用牛顿第二定律结合运动学公式 求解. ③变加速直线运动阶段:应用动能定理、能量守恒定律求解.
典例透析 例 2 如图所示,空间中存在着水平向右的匀强电场,电场 强度大小 E=5 3 N/C,同时存在着水平方向的匀强磁场,其方 向与电场方向垂直,磁感应强度大小 B=0.5 T.有一带正电的小
四分之三圆,圆心位于 D 点,半径为 d,由 A 点垂直射入电场.
带电粒子在磁场中运动时,若洛伦兹力充当向心力
由牛顿运动定律 Bqv=mvd2
解得:B=mqdv=1d
2mU q
(3)带电粒子由 A 点垂直于电场方向射入电场之后做类平抛 运动
若能够射出电场,运动时间 t1=2vd=d
2m qU
沿电场方向的位移 s=12at21
【答案】 (1)20 m/s 速度 v 的方向与电场 E 的方向之间的 夹角为 60° (2)3.5 s
方法技巧 带电粒子在复合场中运动的解题思路
1分析复合场的组成:弄清电场、磁场、重力场组合情况. 2受力分析:先场力,再弹力,后摩擦力. 3运动情况分析:注意运动情况和受力情况的结合. 4规律选择: ①匀速直线运动:应用平衡条件求解. ②匀速圆周运动:应用牛顿运动定律和圆周运动规律求解. ③复杂曲线运动:应用动能定理或能量守恒定律求解.
带电粒子在磁场运动(复合场问题)解读课件

带电粒子在磁场中的运动周期与粒子 的速度和磁场的强度有关,可以用公 式T=2πm/qB计算。
运动轨迹的形状取决于粒子的电荷量、 质量和速度,以及磁场的方向和受力分析
带电粒子在复合场中受到的力包括重力、电场力和洛伦兹力。这些力的大小和方 向取决于带电粒子的电荷量、质量和速度,以及场强的大小和方向。
粒子加速器的发展经历了直线加速器、回旋加速器和组合式加速器等多个阶段。随着科技的 不断进步,粒子加速器的性能不断提高,体积不断缩小,成本不断降低,使得其在各个领域 的应用越来越广泛。
核磁共振成像
01
核磁共振成像是一种基于核磁共振原 理的医学成像技术。其原理是利用外 加磁场使人体内的氢原子核发生共振, 通过测量共振信号的强度和频率等信 息,经过计算机处理后形成图像。核 磁共振成像具有无创、无痛、无辐射 等优点,被广泛应用于医学诊断和治 疗中。
02
核磁共振成像技术可以清晰地显示人 体内部的结构和病变情况,对于神经 系统、关节、软组织等部位的病变诊 断具有很高的准确性和可靠性。此外, 核磁共振成像还可以用于监测疾病进 展、评估治疗效果等。
03
核磁共振成像技术的关键在于外加磁 场的均匀性和稳定性,以及共振信号 的检测和处理技术。随着技术的不断 发展,核磁共振成像的图像质量和分 辨率不断提高,为医学诊断和治疗提 供了更加准确和可靠的信息。
物理规律进行求解。
在求解带电粒子在复合场中的运动问题时,需要综合考虑各种因素,运 用合适的物理规律进行求解。
带电粒子的能量转化
洛伦兹力做功
磁场能量转化
电场与磁场能量转化
带电粒子在磁场中的能量损失
01
02
辐射损失
碰撞损失
03 电阻损失
带电粒子在磁场中的能量守恒
带电粒子在复合场中运动的实例分析课件

可忽略.磁感应强度为B的匀强磁场与盒面垂直,高频交流电频率为f,加速电
压为U.若A处粒子源产生的氘核,在加速器中被加速,且加速过程中不考虑相
对论效应和重力的影响,则下列说法正确的是
√A.氘核被加速后的最大速度不可能超过2πfR
B.氘核离开回旋加速器时的最大动能与加速电压U成正比
C.氘核第2次和第1次经过两D形盒间狭缝后的轨道半径之
√D.左、右两侧管口的压强差Δp=
kaU2 bB2c3
图13
2.原理:交流电周期和粒子做圆周运动的周期相等,
使粒子每经过一次D形盒缝隙,粒子被加速一次.
3.粒子获得的最大动能:由 qvmB=mRvm2、Ekm=
图4
12mvm2 得 Ekm=q22Bm2R2,粒子获得的最大动能由磁感
应强度 B 和盒半径 R 决定,与加速电压无关.
4.粒子在磁场中运动的总时间:粒子在磁场中运动一个周期,被电场加速 两次,每次增加动能 qU,加速次数 n=EqUkm,粒子在磁场中运动的总时间 t=n2T=2EqkUm ·2qπBm=π2BUR2.
中,当电流通过导体时,在导体的上表面A和下表面A′之间产生电势差,
这种现象称为霍尔效应,此电压称为霍尔电压.
(2)电势高低的判断:如图10,导体中的电流I向右时,
根据左手定则可得,若自由电荷是电子,则下表面A′
的电势高;若自由电荷为正电荷,则上表面A的电势高.
图10
(3)霍尔电压的计算:导体中的自由电荷(电子)在洛伦兹力作用下偏转,A、 A′间出现电势差,当自由电荷所受静电力和洛伦兹力平衡时,A、A′ 间的电势差(U)就保持稳定,由 qvB=qUh ,I=nqvS,S=hd;联立得 U= nBqId=kBdI,k=n1q称为霍尔系数.
带电粒子在复合场中的运动及实际应用课件

其加速度为 a,有
a=
2 2 +2 2
⑤
设撤去磁场后小球在初速度方向上的分位移为 x,有
x=vt
设小球在重力与电场力的合力方向上分位移为 y,有
⑥
y=2at2
⑦
1
a 与 mg 的夹角和 v 与 E 的夹角相同,均为 θ,又
tan θ=
,得
2 2
2
r
Ekm=
,可见粒子获得的最大动能由磁感应强度B和D
2
形盒半径r决定,与加速电压无关。
-6-
带电粒子在组合场中运动(师生共研)
这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后
出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场
等。
其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、
2
2 2
。
-5-
2.回旋加速器
乙
(1)构造:如图乙所示,D1、D2是半圆形金属盒,D形盒的缝隙处接
交流电源,D形盒处于匀强磁场中。
(2)原理:交变电流的周期和粒子做圆周运动的周期相等,粒子在
圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一
mv2
qvB=
次一次地反向,粒子就会被一次一次地加速。由
⑧
联立④⑤⑥⑦⑧式,代入数据解得
t=2 3 s=3.5 s。
⑨
-28-
解法二:
撤去磁场后,由于电场力垂直于竖直方向,它对竖直方向的分运
动没有影响,以 P 点为坐标原点,竖直向上为正方向,小球在竖直方向
上做匀减速运动,其初速度为
带 电 粒 子 在 复 合 场 中 的 运 动

带电粒子在复合场中的运动一、复合场的分类:1、分立复合场:即电场与磁场有明显的界线 ,即分段运动,该类问题运动过程较为复杂,但对于每一段运动又较为清晰易辨,往往这类问题的关键在于分段运动的连接点时的速度,具有承上启下的作用.2、叠加复合场:即在同一区域内同时有电场和磁场,此类问题看似简单,受力不复杂,但仔细分析其运动往往比较难以把握。
二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,一般只能用能量关系处理.三、电场力和洛伦兹力的比较见下表:四、对于重力的考虑重力考虑与否分三种情况.1、对于微观粒子,如电子、质子、离子等一般不做特殊交待就不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2、在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3、对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速 qU =12m v 2. v = 2qU m粒子在磁场中偏转,做匀速圆周运动, q v B =m v 2r. (3)作用:主要用于测量粒子的质量、比荷、研究同位素.可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B 2mU q , m =qr 2B 22U , q m =2U B 2r2. 2.回旋加速器(1)构造:两个D 形盒(D 1、D 2是半圆形金属盒),大型电磁铁,高频振荡交变电压,D 形盒的缝隙处接交流电源电压U (回旋加速器中的D 形盒,它的作用是静电屏蔽,使带电粒子在圆周运动过程中只处在磁场中而不受电场的干扰)(2)作用:电场用来对粒子(质子、氛核,a 粒子等)加速,磁场用来使粒子回旋从而能反复加速.高能粒子是研究微观物理的重要手段.(3)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.(4)注:两 场:电场中加速、在磁场中偏转(匀速圆周运动)两 周 期:要求:粒子在磁场中做圆周运动的周期等于交变电源的变化周期.最大动能:得E km =q 2B 2r 22m, 粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压U 无关.R 的变化:不等距回旋时间:粒子在回旋加速器中运动的时间局限性:能量达到25-30Mev 后就很难加速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。
⑴带电粒子在匀强电场中做类平抛运动。
这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。
⑵带电粒子在匀强磁场中做匀速圆周运动。
这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。
例1 右图是示波管内部构造示意图。
竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。
电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。
为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。
]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。
它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。
今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。
当t=T/2后,M 、N 两板间的电压为零,微粒在重力的作用下运动。
若要使带电微粒一直向下运动,则带电粒子在t=T/2时的速度V ≥0。
由带电粒了在电场外和电场内加速、减速运动的对称性,要使V ≥0,则可知g h T g h T 822≤≤即例3 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?[解:由带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式知,正、负电子的半径和周期是相同的,只是偏转方向相反。
由于向心力方向跟速度方向垂直,所以圆心一定在过O 点垂直于速度的直线上,因此可确定圆心和半径;由对称性知,射入、射出点处速度和MN 所成的角必然相等。
因此射入点、射出点和圆心恰好是正三角形的三个顶点。
两个射出点相距2r 。
由图看出,正负电子在磁场中的轨迹圆弧所含的度数分别是60°和300°,经历的时间分别为T /6和5T /6,相差2T /3。
故答案为射出点相距Be mv s 2=,时间差为Bqm t 34π=∆。
]3.电场力和洛仑兹力的综合应用: 当E ⊥B 时,正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,v=E /B 。
在本图中,速度方向必须向右。
①这个结论与离子带何种电荷、电荷多少都无关。
②若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
例5正方形abcd 内有方向如图的场强为E 的匀强电场和磁感应强度为B 的匀强磁场。
质子流从ad 边的中点O 以初速度v 0,沿着与ab 平行的方向射入正方形区域。
若撤去匀强磁场,质子将达到b 点;若撤去匀强电场,质子将打到c 点。
求:⑴E ∶B ⑵当匀强电场和匀强磁场同时存在时,为使质子沿原方向射入后能做直线运动而打到bc 边的中点O /,其初速度应调整为v 0的多少倍?[解:⑴只有匀强电场时,由图知质子打到b 点时速度的偏转角为α=45°,可得:N/ b c/ b1tan 20==mv EqL α;只有匀强磁场时,由图可求得质子做圆周运动的半径r =5L /4,可得:450L Bq mv r ==;由以上两式可得E ∶B =5v 0∶4 ⑵为了使质子做直线运动,必须满足Eq =Bqv ,所以1.25v 0 ]例6、(1991年上海高考题)如图所示质量为m 、带电量为+q 的粒子,从两平行电极板正中央垂直电场线和磁感线方向以速度V 飞入。
已知两板间距为d ,磁感强度为B ,这时粒子恰好能沿直线穿过电场和磁场区域(重力不计)现将磁感应强度增大到某值,则粒子将落到板上,粒子落到极板上时的动能为多大?[答案:2/212qBvd mv E k -=]例7、(2001年全国高考理综题)如图所示是测量带电粒子质量的仪器工作原理示意图。
设法使某有机化合物的气态分子导入图中所示的容器A 中,使它受到电子束轰击,失去一个电子变成为正一价的分子离子,分子离子从狭缝S 1以很小的速度进入电压为U 的加速电场区(初速不计),加速后,再通过狭缝S 2、S 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ ,最后,分子离子打到感光片上,形成垂直于纸面且平行于狭缝S 3的细线,若测得细线到狭缝S 3的距离为d 。
导出分子离子的质量m 的表达式。
质谱仪主要是分析同位素、测定其质量、荷质比和含量比的现代科学仪器。
m=qB 2d 2/8U例8、(1993年上海高考题)如图所示为一种获得高能粒子的装置。
环形区域内存在垂直纸面向外、大小可调节的均匀磁场。
质量为m 、电量为+q 的粒子在环中做半径为R 的圆周运动。
A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为+U ,B 板电势仍为零,粒子在两板间的电场中得到加速。
第当粒子离开时,A 板电势又降到零。
粒子在电场一次次加速下动能不断增大,而绕行半径不变。
(1) 设t=0时,粒子静止在A 板小孔处,在电场作用下加速,并开始绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能En 。
(2) 为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时磁感应强度B 。
(3) 求粒子绕行n 圈所需的总时间tn (设极板间距远小R )(4) 在图中画出A 板电势U 与时间t 的关系(从t=0起画到粒子第四次离开B 极板)(5) 在粒了绕行的整个过程中,A 板电势可否始终保持+U ?为什么?本题是回旋加速器原理图:(1)En=Ek=nqUO t u(2) qnmU R B n 21=(3) )131211(22nqU m R t ++++= π (4) 图略(5) 不可以。
因为这样会使粒子在AB 两板之间飞行时,电场力对其做功+qU ,从而使之加速;在AB 板之外飞行时,电场力又对其做功-qu ,从而使之减速。
粒子绕行一周电场对其所做的总功为零,能量不会增加。
例9、(2001年北京海淀区高考模拟题)目前世界上正在研究的一种新型发电机叫做磁流体发电机。
这种发电机与一般发电机不同,它可以直接把内能转化为电能,它的发电原理是:将一束等离子体(即高温下电离的气体,含有大量带正电和带负电的微粒,而整体来说呈中性)喷射入磁场,磁场中A 、B 两平行金属板上会聚集电荷,产生电压。
设AB 两平行板的面积为S ,彼此相距L ,等离子体气体的导电率为P (即电阻率ρ的倒数)喷入速度为V ,板间磁感应强度B 与气流方向垂直,与板相连的电阻的阻值为R 。
问流过R 的电流I 为多少? 解析:电源电动势为外电路断开时电源两极间的电势差,当等离子体匀速通过AB 板时,AB 两板间的电势差达到最大 )/(RPS L vBLPS I +=例10、(2001年全国理科综合考题)电磁流量计广泛应用于测量可导电流体(如污水)在管中流量(单位时间内通过管内横截面的流体的体积)。
为了简化,假设流量计是如图所示的横截面长长方形的一段管道,其中空部分的长、宽、高分别为图中的a 、b 、c 。
流量计的两端与输送流体的管道相连(图中虚线)图中流量计的上下两面是金属材料,前后两面是绝缘材料。
现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面,当导电流体稳定地流经流量计时,在管外将流量计上、下两表分别与一串接了电阻R 的电流表的两端连接。
I 表示测得的是流值。
已知液体的电阻率为ρ,不计电流表的内阻,则可求得流量为A 、I (bR+ρC/a )/B B 、I (aR+ρb/c )/BC 、I (cR+ρa/b )/BD 、I (R+ρbc /a )/B 电磁流量计是一根管道内部没有任何阻碍流体流动的仪R器,所以可以用来测量度粘度强腐蚀性流体的流量,它还具有测量范围宽、反应快、易与其它自动控制配套等优点。
当导电液流动时,流体中定向移动离子受洛仑兹力作用,在上下金属板上就聚集电荷,产生电场。
当导电液体匀速运动时,有洛仑兹力等于电场力。
该电源电动势ε=VBc 根据电阻定律r=ρc/ab 由全电路欧姆定律I=ε/(R+r)解得:V=I(R+ρc/ab)/Bc 故流量Q=SV=(答案A)例11、(2000年全国理科综合考题)如图所示,厚度为h,宽度为d的导体放在垂直于它的磁感应强度为B的均匀磁场中。
当电流通过导体板时,在导体板的上侧面A和下侧面A1之间会产生电势差。
这种现象称为霍尔效应。
实验表明,当磁场不太强时,电势差U、电流I 和磁感应强度B的关系为U=KIB/d,式中的比例系数K称为霍尔系数。
霍尔效应可解释如下:外部磁场的洛仑兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场对电子施加与洛仑兹力相反的静电力。
当静电力与洛仑兹力达到平衡时,导体板上下两侧面之间会形成稳定的电势差。
设电流I是由电子的定向流动形成的,电子的平均定向速度为V,电量为e,回答下列问题:Array(1)达到稳定状态时,导体板上侧A的电势(低于)下侧面A1的电势;(填“高于”“低于”或“等于”)(2)电了所受的洛仑兹力的大小为();(3)当导体板上下两侧面之间的电势差为U时,电子所受静电力的大小为();(4)由静电力和洛仑兹力平衡,证明:霍尔系数为K=1/ne,其中n代表导体板的单位体积内的电子的个数。