初二数学轴对称知识点总览表格化及判别记忆方法

合集下载

初二数学轴对称知识点总结

初二数学轴对称知识点总结

初二数学轴对称知识点总结初二数学轴对称知识点总结一、定义1、有两边相等的三角形叫做等腰三角形。

2、把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

这条直线叫做对称轴,折叠后重合的点是对应点,叫做对应点。

3、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

4、如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

我们也说这个图形关于这条直线[成轴]对称。

5、三条边都相等的三角形叫做等边三角形。

二、重点1、把成轴对称的两个图形看成一个整体,它就是一个轴对称图形。

2、把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。

3、垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

4、垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

5、如何做对称轴:如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线。

因此,我们只要找到一对再对应点,作出连接它们的线段的垂直平分线就可以得到这个图形的对称轴。

同样,对于轴对称图形,只要找到任意一组对应点所连线段的垂直平分线,就得到此图形的对称轴。

6、轴对称图形的性质:对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化。

由个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状,大小完全相等。

新图形上的每一点,都是原图形上的某一点关于直线的对称点。

连接任意一对对应点的线段被对称轴垂直平分。

7、等腰三角形的性质:等腰三角形的两个底角相等[等边对等角]等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合[三线合一][等腰三角形是轴对称图形,底边上的中线(,底边上的高,顶角平分线)所在直线就是它的对称轴。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C-轴对称与轴对称图形一、知识点:1.什么叫轴对称:如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。

2.什么叫轴对称图形:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

3.轴对称与轴对称图形的区别与联系:区别:①轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分沿某直线对折能完全重合。

②轴对称是反映两个图形的特殊位置、大小关系;轴对称图形是反映一个图形的特性。

联系:①两部分都完全重合,都有对称轴,都有对称点。

②如果把成轴对称的两个图形看成是一个整体,这个整体就是一个轴对称图形;如果把一个轴对称图形的两旁的部分看成两个图形,这两个部分图形就成轴对称。

常见的轴对称图形有:圆、正方形、长方形、菱形、等腰梯形、等腰三角形、等边三角形、角、线段、相交的两条直线等。

4.线段的垂直平分线:(也称线段的中垂线)5.轴对称的性质:⑴成轴对称的两个图形全等。

⑵如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

6.怎样画轴对称图形:画轴对称图形时,应先确定对称轴,再找出对称点。

二、举例:例1:判断题:①角是轴对称图形,对称轴是角的平分线;()②等腰三角形至少有1条对称轴,至多有3条对称轴;()③关于某直线对称的两个三角形一定是全等三角形;()④两图形关于某直线对称,对称点一定在直线的两旁。

()例2:下图曾被哈佛大学选为入学考试的试题.请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形.例3:如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为一个轴对称图形:例4:如图,已知:ΔABC和直线l,请作出ΔABC关于直线l的对称三角形。

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结(二篇)

2024年初二数学期末考试轴对称知识点总结初中数学中,轴对称是一个重要的几何概念。

轴对称是指一个图形或者一个物体能够与某条轴线对称,即图形或物体的一部分关于轴线对称地出现在另一部分的相对位置。

轴对称的性质是常用的,它在初中数学的课本中会有详细的介绍和讲解。

以下是对初二数学期末考试轴对称知识点的总结:一、轴对称的定义和性质:1. 轴对称:如果一个图形、物体或者函数,相对于某条轴线可以对称地出现,那么就称这个图形、物体或者函数是轴对称的。

2. 轴线:轴线是指对称图形相对出现的那根线。

3. 轴对称的性质:轴对称的图形具有以下性质:- 轴线上的点不动。

- 对称轴的两侧对称,即轴线上的一点与该图形对称轴另一侧的点,关于对称轴中点对称。

- 对称轴的两侧的点与对称轴上的一点对称关系。

二、判断轴对称的方法:1. 观察法:通过观察图形是否关于某条线对称,可以判断图形是否轴对称。

如果图形可以重叠折叠,使得一个部分与另一个部分完全重合,那么这个图形就是轴对称的。

2. 对称线法:使用直尺将图形的两个对称部分的最近相对线段连接起来,如果这条线段与直尺重合,那么这条线段就是图形的对称线。

3. 折叠法:将纸张上的图形剪下来,然后将图形沿着一个假想的轴线折叠起来,如果两个对称的部分完全重合,那么这个图形就是轴对称的。

三、轴对称的常见图形:1. 一阶图形:一个点、一条线段、一条射线、一个无面积的抽象图形等。

2. 二阶图形:矩形、正方形、菱形、圆、椭圆等。

3. 三阶图形:五角星、六边形等。

四、轴对称和平移、旋转的关系:1. 平移:平移是图形在平面上沿水平方向或者垂直方向移动的变换,平移不改变图形的形状和大小,也不改变图形的轴对称性。

2. 旋转:旋转是图形围绕一个点或者直线进行旋转的变换,旋转不改变图形的形状和大小,但可能改变图形的轴对称性。

有些图形在旋转一定角度之后仍然保持轴对称,有些则不再保持轴对称。

五、轴对称的应用:1. 填充对称:将一个图形沿着对称轴镜像复制,用来填充平面空间。

八年级数学轴对称知识点总结修订版

八年级数学轴对称知识点总结修订版

八年级数学轴对称知识点总结集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]轴对称【知识脉络】【基础知识】Ⅰ. 轴对称?(1)轴对称图形?如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.(2)轴对称?定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上.(3)轴对称图形与轴对称的区别和联系?区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的.联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线?线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. Ⅱ. 作轴对称图形?1.作轴对称图形?(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2.用坐标表示轴对称?点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);点(x,y)关于原点对称的点的坐标为(-x,-y).Ⅲ. 等腰三角形?1.等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质?①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定?如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2.等边三角形?(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°. (3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为?60°的等腰三角形是等边三角形.3.直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.Ⅳ. 最短路径。

数学八年级轴对称知识点

数学八年级轴对称知识点

数学八年级轴对称知识点
在八年级数学中,轴对称是重要的几何概念之一。

以下是轴对称的相关知识点:
1. 定义:轴对称是指一个图形以某条直线为轴,对称图形的每个点都与轴上与原点相
对称。

2. 轴对称图形:轴对称图形是具有轴对称性质的图形,例如正方形、矩形、圆等。

3. 轴对称轴:轴对称图形上的轴称为轴对称轴,轴对称轴通常是垂直于对称轴的直线。

4. 轴对称性质:轴对称图形中,如果图形上的某一点关于轴对称轴对称,则该图形上
有另一点与之对称,且该对称点关于轴对称轴对称的点也在图形上。

5. 轴对称性质的判断:判断一个图形是否具有轴对称性质,可以通过折纸法来判断。

将图形沿着可能的轴对称轴线折叠,如果能够使折叠后的两部分完全重合,则图形具
有轴对称性质。

6. 轴对称图形的性质:轴对称图形具有以下性质:
- 图形上任意一点到轴对称轴的距离,与该点的对称点到轴对称轴的距离相等;
- 图形上任意一点到轴对称轴的距离,与该点的对称点到轴对称轴的距离之积为轴对称轴的平方;
7. 轴对称图形的应用:轴对称图形常出现在几何中,例如在折纸、制作对称性的图案
和图形等方面得到广泛应用。

这些是八年级数学中关于轴对称的重要知识点,希望对你有帮助!。

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结数学不是教出来的,是悟出来的,是自学出来的。

数学不是看会的,是算会的。

学数学最重要的就是解题能力,同时上课要认真听讲、课后做匹配练习,学会以不变应万变。

下面是我整理的八年级上册数学轴对称学问点总结,仅供参考希望能够关怀到大家。

八年级上册数学轴对称学问点总结1.对称轴:假如一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。

8.直角三角形中,30°角所对的直角边等于斜边的一半。

9.直角三角形斜边上的中线等于斜边的一半。

数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字外表,对概念的特殊状况重视不够。

例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽视了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

这样就不能很好的将学到的学问点与解题联系起来。

三是,一部分同学不重视对数学公式的记忆。

记忆是理解的基础。

假如你不能将公式烂熟于心,又怎能够在题目中娴熟应用呢?我们的建议是:更细心一点(观看特例),更深入一点(了解它在题目中的常见考点),更娴熟一点(无论它以什么面目出现,我们都能够应用自如)。

(word完整版)八年级数学轴对称知识点总结,推荐文档

(word完整版)八年级数学轴对称知识点总结,推荐文档

【知识脉络】轴对称图形邮称轴对称•轴対称的性质 垂盲平分曜「作一个圉形美于某聚割的詰吋称畦质'关予铀对称 雋坐标表示轴时称关于.紬对称[关于原点对称库义等腫三甬盼性庚I 和定辱义等迪三角开麥性质利定【基础知识】I. 轴对称(1) 轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴 •轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线(2) 轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴 •成轴对称的两个图形的性质:① 关于某条直线对称的两个图形形状相同,大小相等,是全等形;② 如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③ 两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴 上.(3) 轴对称图形与轴对称的区别和联系 区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的 .轴对称作铀対称圄形联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形.(4)线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等. 反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.n .作轴对称图形1. 作轴对称图形(1)几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些点,就可以得到原图形的轴对称图形;(2)对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.2. 用坐标表示轴对称点(x,y )关于x轴对称的点的坐标为(x, —y);点(x,y )关于y轴对称的点的坐标为(一x,y ); 点(x,y )关于原点对称的点的坐标为(-x, -y).川.等腰三角形1. 等腰三角形(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一” ).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).2. 等边三角形(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60° .(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.3. 直角三角形的性质定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. IV .最短路径。

(word版)八年级上册轴对称知识点总结归纳,文档

(word版)八年级上册轴对称知识点总结归纳,文档

轴对称知识点总结∵CA=CB,1、轴对称图形:直线m⊥AB 于C , 一个图形沿一条直线对折,直线两旁的局部点P 是直线m 上的点。

能够完全重合。

∴PA=PB。

这条直线叫做对称轴。

互相重合的点叫做对〔3〕判定。

应点。

与线段两端点距离相等的点在线段的垂直2、轴对称:平分线上。

两个图形沿一条直线对折,其中一个图形能如图3,∵PA=PB,够与另一个图形完全重合。

直线m 是线段AB 的垂直平分线, 这条直线叫做对称轴。

互相重合的点叫做对∴点P 在直线m 上。

应点。

6、等腰三角形:、轴对称图形与轴对称的区别与联系: 〔1〕定义。

有两条边相等的三角形,叫做等腰3〔1〕区别。

轴对称图形讨论的是“一个图形与 三角形。

一条直线的对称关系〞;轴对称讨论的是“两 相等的两条边叫做腰。

个图形与一条直线的对称关系〞。

第三条边叫做底。

顶 〔2〕联系。

把轴对称图形中“对称轴两旁的部两腰的夹角叫做顶角。

腰角分看作两个图形〞便是轴对称;把轴对称的“两腰与底的夹角叫做底角。

腰说明:顶角=180°-2底角底角底角A 'H底角=180顶角90-1顶角底边图4I22DD' B'可见,底角只能是锐角。

J〔2〕性质。

KC' 等腰三角形是轴对称图形,其对称轴A 是“底边 图1的垂直平分线〞 ,只有一条。

等边对等角。

个图形看作一个整体〞便是轴对称图形。

如图5,在△ABC 中4、轴对称的性质: ∵AB=AC 〔1〕成轴对称的两个图形全等。

∴∠B=∠C。

C 〔2〕对称轴与连结“对应点的线段〞垂直。

三线合一。

BD〔3〕对应点到对称轴的距离相等。

〔3〕判定。

图5〔4〕对应点的连线互相平行。

有两条边相等的三角形是等腰三角形。

5、线段的垂直平分线:如图5,在△ABC 中,〔1〕定义。

经过线段的中点且与线段垂直的直 ∵AB=AC 线,叫做线段的垂直平分线。

m ∴△ABC 是等腰三角形。

如图2,有两个角相等的三角形是等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称知识点表格化及判别、记忆方法
图形
下图如果不考虑颜色,所示的图案就是
一个轴对称图形,直线l是它的一条对称轴。

l
M
A
B
C
D
E
F
A'
D'
B'
C'
判断所列图形中有哪些是轴对称图形?是否只有第⑤不是。

问题解释:
1、问:两条边不一样长的角是轴对称图形吗?
答:是,它的对称轴是它角平分线所在的直线。

因为角的定义是:由一点发出的两条射线所围成的图形叫做角。

又因为射线是无限延伸的,因此,就算两边不一样长,它照样是轴对称图形。

轴对称的性质定理
(轴对称的性质定理也就是轴对称图形及
轴对称性质定理①、关于某条直线对称的两个图形是全等形。

(可以表述成成轴对称的两个图形全等)
(本定理为“证明两个图形是全等形”提供了依据)
轴对称性质定理②、如果两个图形(关于某条直线)成轴对称,那么对称轴是对称点连线的垂直平分线。

相关文档
最新文档