三相异步电动机常见的制动方法(精)
三相异步电机的制动

摘要近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。
特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。
由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。
电机是现代工农业生产和交通运输的重要设备,与电机配套的控制设备的性能已经成为用户关注的焦点。
电机的控制包括电机的起动、调速和制动。
异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。
据统计,其耗电量约占全国发电量的40%左右。
当电机并入电网时,电机转速从静止加速到额定转速的过程称为电机的起动过程。
异步电动机的起动性能最重要的是起动电流和起动转矩。
因此在电机的起动过程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。
电动机机应用广泛,种类繁多、性能各异,分类方法也很多。
本文是对三相异步电动机做出深入的剖析与设计。
三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律详细的加以说明和介绍。
文中主要介绍了几种常用的制动方式的特点,对不同制动方式进行了技术比较,分析了他们各自的实用场所,为实际应用提供了科学的理论依据。
关键词:三相异步电动机结构制动方式前言电动机是把电能转换成机械能的设备。
近几十年随着科技的发展电动机在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,被广泛地应用着。
随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。
此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。
三相异步电动机启动,调速,制动

任务3.三相异步电动机的制动及实现
(1)电源反接制动
三相异步电动机的电源反接制动是将三相电 源中的任意两相对调,使电动机的旋转磁场反 向,产生一个与原转动方向相反的制动转矩, 迅速降低电动机的转速,当电动机转速接近零 时,立即切断电源。
这种制动方法制动转矩大,效果好,但冲击 剧烈,电流较大,易损坏电动机及传动零件。
(4)绕线型异步电动机转子串 电阻起动
绕线型异步电动机的起动,只要在转子回 路串入适当的电阻,就既可限制起动电流, 又可增大起动转矩,但在起动过程中,需 逐级将电阻切除。现在多用在转子回路接 频敏变阻器起动。
任务1:三相异步电动机的起动及实现
任务1:三相异步电动机的起动及实现
3.三相异步电动机启动控制电 路
任务1:三相异步电动机的起动及实现
自锁(自保): 依靠接触器自身辅助常开 触头
而使线圈保持通电的控制方 式 自锁触头: 起自锁作用的辅助常开触 头 工作原理: 按下按钮(SB1),线圈(KM)通 电,电机起动;同时,辅助触头 (KM)闭合,即使按钮松开,线圈 保持通电状态,电机 连续运行。
图为单向连续运行控制电路
K1为起动电流倍数:Ist为电动机的起动电流(A);In为电 动机的额定电流(A);Sn为电源变压器总容量;Pn为电 动机的额定功率。
Hale Waihona Puke 任务1:三相异步电动机的起动及实现
(2).星-三角降压起动 正常运行时,接成△形的鼠笼电动机,在起动时接成 星形,起动完毕后再接成△,称星-三角起动。
任务1:三相异步电动机的起动及实现
任务3.三相异步电动机的制动及实现
3.反接制动控制电路
任务3.三相异步电动机的制动及实现
4.能耗制动控制电路
三相异步电动机的起动调速和制动PPT学习教案

第237页-2/共4 98页
7.2.1转子回路串电阻起动
➢起动电阻 的计算
Z2s
sN E2N 3I2N
r2
jx2
r2
sN E2N 3I2N
R3 R2 3r2 3
R3 r2
3
SA SD
3
SA T1sN / TN
3
TN T1sN
m Rm m TN
r2
T1sN
第247页-2/共5 98页
k k
zk
其中短路 阻抗为
zk
UN 3I s
UN 3K1I N
若定子回 路串电 阻起动 ,也属 于降压 起动, 也可以 降低起 动电流 。但由 于外串 的电阻 上有较 大的有 功功率 损耗, 特别对 中型、 大型异 步电动 机更不 经济。
第137页-1/共4 98页
第147页-1/共5 98页
7.1.5 延边三角形起动
U
2
U
2 x
U121
2U xU11
co s1 2 0
U
2 x
U121
U
xU11
Ux
U11
U12
U11
I11 3
z12
U11
U11 3 z11
z12
z11 z12 U X 0.71U
第157页-1/共6 98页
三相鼠笼式异步电动机降压起动方法的比较
7.2.2 转子串频敏变阻器起动
2 结构 变阻器是一种无触点电磁元件,相当 于一个 等值阻 抗。在 电动机 过程中 ,由于 等值阻 抗便随 转子电 流频率 减小而 自动下 降(自 动变阻 ),从 而只须 一级变 阻器, 就可以 把电动 机平稳 地起动 起来。 变阻器 实质上 是一个 铁芯损 耗特大 的三相 电抗器 。它由 数片E 型钢板叠 合成的 铁芯及 线圈 两个主 要部份 组成。 钢板间 来以垫 圈,保 持片间 距离, 以利散 热。
三相异步电动机启动制动和调速

软启动器的工作原理简单,它通过软硬件方法,实时检测定子电流、 电压、功率因数或电动机的转矩值,经过计算得到一个准确的晶闸管 的移相角,使加在电动机上的电压或启动电流按某一规律变化(如斜 坡电压软启动、恒流软启动等),优化异步电动机的启动性能。软启
动器也可用PWM方式实现。
21
4.2 三相异步电动机的制动
复杂度 最简单
一般 简单 较复杂
适用性 电机小于7.5kW
任意容量,轻载 正常 ,频繁启动 大容量,大负载
15
Y
自耦变压器
3 1 k
改善结构
通过改变鼠笼式异步电动机的结构,既减小启动电流,又能获得较大 的启动转矩,即通过改变结构来改善电动机的启动性能。
1、增大转子电阻 这种电动机又称为高转差率鼠笼型异步电动机,其转子导条不用普通 的铝条,而是采用电阻率较高的铝合金(ZL-14),通过适当加大转 子导条的电阻来改善启动性能。
如同直流电动机一样,异步电动机制动的目的有两个: • 使传动系统迅速减速或停车; • 限制位能性负载的下放速度。
如果三相异步电动机的电磁转矩Te和转速n的方向相反,电动机便 处于制动状态。在制动状态下,电动机的电磁转矩起反抗旋转的作 用,为制动性转矩。
异步电动机的制动方法有:回馈制动、反接制动和能耗制动 。
n0 n s n0
n n0 (1 s)
1、直流电动机使用静差率,利用理想空载转速和转速(转速降)来
描述,它们都是转子的转速,是机械运动;
2、异步电动机使用转差率,利用旋转磁场的转速和转子的转速来描述, 同步转速非机械转速,也不是理想空载转速;
3、转差率与空载转速无关,更不能等同于转速降。
U L 3U P UL UP
三相交流异步电动机制动控制01(共7张PPT)

电动机正反转控制操作顺序的不同,有“正—停—反”控制电路与“正—反—停”控制电路。
由于是利用接触器(继电器)的常闭触点串接在对方线圈回
路中而形成的相互制约的控制称为电气互锁。这种连接保证
电气
了电路工作安全和可靠,因此在电气控制线路中,凡具有相
互锁
反动作的均需电气互锁。
电动机正反转控制线路,实质上是两个方向相反的单向运行电路的组合,并且在这两个方向相反的单向运行电路中加设必要的联锁。 再按停止按钮SB3,电动机停转。 将在同一时间里两个接触器只允许一个工作的控制作用称为互锁(联锁)。 这种连接保证了电路工作安全和可靠,因此在电气控制线路中,凡具有相反动作的均需电气互锁。 电(动1)机“正正—反停转—控反制”操控作制顺电序路的不同,有“正—停—反”控制电路与“正—反—停”控制电路。 电(动2)机正正—反反转—控停制”控操制作电顺路序的不同,有“正—停—反”控制电路与“正—反—停”控制电路。 控制电路中,我们将这种利用复合按钮的常闭触点串接在对方线圈回路中而形成的相互制约的控制称为机械互锁。 这将种在连 同接一保时证间了里电两路个工接作触安器全只和允可许靠一,个因工此作在的电控气制控作制用线称路为中互,锁凡(具联有锁相)反。动作的均需电气互锁。 电按动下机 正正向反起转动控按制钮线SB路1,接实触质器上K是M两1线个圈方得向电相吸反合的,单其向常运开行主电触路点的闭组合将,电并动且机在定这两子个绕方组向接相通反电的源单,向相运序行为U电、路V中、加W设,必电要动的机联正锁向。起动运 在行生。产实际中,往往要求控制线路能对电动机进行正、反转的控制。 电这动种机 连正接反保转证控了制电线路路工,作实安质全上和是可两靠个,方因向此相在反电的气单控向制运线行路电中路,的凡组具合有,相并反且动在作这的两均个需方电向气相互反锁的 。单向运行电路中加设必要的联锁。 在电生动产 机实正际反中转,控往制往操要作求顺控序制的线不路同能,对有电“正动—机停进—行反正”控、制反电转路的与控“正制—。反—停”控制电路。 按再停按止 停按止钮按钮SBS3B,3K,M电1动失机电停释转放。,电动机停转。 (1)“正—停—反”控制电路 按停止按钮SB3,KM1失电释放,电动机停转。 由于是利用接触器(继电器)的常闭触点串接在对方线圈回路中而形成的相互制约的控制称为电气互锁。 将在同一时间里两个接触器只允许一个工作的控制作用称为互锁(联锁)。
三相异步电动机的制动

转 速 n, 时 电 动 机 处 于 电动 运 行 状 态 , 由于 莺 力作 用 , 重 . 这 但 在 物 的下 放 过 程 中 . 使 电 动机 的 转 速 n大 于 同 步 转 速 1. 时 会 1这 1
电动 机 处 于发 电运 行 状 态 . 子 相 对 于 旋 转 磁 场 切 割 磁 感 线 的 转
F
转 由于 这种 制 动 方 法 是 在 定 子绕 组 中通 入 直 流 电 以消 耗 转 子 惯 性 运 转 的动 能 来 进 行 制 动 的 . 以称 为 能 耗 制 动 。 能 耗 制 动 所
时 . 生 的 制 动 力矩 的大 小 与 通 人 定 子 绕 组 中的 直 流 电 流 的 大 产
当起 重 机 在 高处 开 始 下 放 重 物 时 . 电动 机 转 速 n小 于 同步
使 电 动 机 在 切 断 电源 停 转 的 过 程 中 . 生 一 个 和 电动 机 实 产 际旋 转 方 向相 反 的 电磁 力 矩 . 使 电 动机 迅 速 停 转 的方 法 叫 做 迫 电 气制 动 。电 气制 动 常 用 的 方 法 有 反 接 制 动 、 耗 制 动 和 再 生 能
力 , 是 失 败 的 。 外 , 果 在 教学 中运 用 一 般 的 传统 教 学 方 式 则 另 如
就 可 以 取 得 较 好 的教 学 效 果 . 学 生 学 到 知 识 . 没 有 必 要 制 让 就 作 多 媒 体 课 件 了 , 样 会 花 费大 量 的 时 间 和 精 力 。 因 此 . 师 那 教 不 要 一 味 赶 时 髦 . 课 堂 上 滥 用 多 媒 体 课 件 . 且 在 制 定 课 件 在 而 时 . 师应 该选 取 那 些 重 点 和 难 点 的 内容 进 行 编 排 如数 学 概 教 念 、 义 等 知 识 比较 抽 象 。 用 计 算 机 的 动 画 来 演 示 , 仅 能 定 若 不 把 高 度 抽 象 的 知 识 直 观 显 示 出来 .而 且 能 给 学 生 以 新 颖 的刺
三相异步交流电动机制动的常用方法

三相异步交流电动机制动的常用方法
三相异步交流电动机的制动是指将电动机的转速减缓或停止,常用的方法有以下几种:
1. 直接制动法:即将电动机的电源直接切断,电动机的转子惯性使其继续转动,由于没有电源给它提供能量,电动机会逐渐减速直至停止。
2. 反接制动法:将电动机的两条相线交换接线,使电动机变成发电机,将其与外部电阻负载相连,电动机继续转动,通过外部电阻的消耗,将电动机的能量转化为热能散失,从而达到制动的目的。
3. 动态制动法:在电动机运行时,通过改变电动机的电源参数,如改变电源电压、频率等,使电动机的电磁能转化为机械能,使其减速或停止运转。
4. 电磁制动法:在电动机转速较高时,通过向电动机的绕组通电,产生电磁力,使电动机的转子减速或停止,这种方法适用于制动力较大的场合,如起重机、卷扬机等。
5. 转矩控制制动法:通过控制电动机的电源,使电机产生逆转矩,对电动机进行制动,这种方法适用于制动精度要求较高的场合,如卷板机、拉拔机等。
- 1 -。
三相异步电动机的起动、调速和制动

一、三相异步电动机的起动 3、绕线式电动机转子电路串电阻起动
起动电阻
定子
转子
R
R R
•
电刷
滑环
起动时将适当的R 串入转子电路中,起动后将R 短路。
一、三相异步电动机的起动 3、绕线式电动机转子电路串电阻起动
1)、转子串电阻起动
一、三相异步电动机的起动 3、绕线式电动机转子电路串电阻起动
2)、转子串频敏变阻器起动
Z
W1
V2 V1
U2
起动
正常运行
降压起动时的电流 为直接起动时的 1
3
I lY 1 I l 3
一、三相异步电动机的起动 2、降压起动 (2) Y- 起动
U V W QS1 FU
U1 V1
W1 △ (运行) QS2
U2 V 2
W2
Y(起动)
Y-△起动线路图
一、三相异步电动机的起动 2、降压起动 (2) Y- 起动
M 3~
直接起动线路
一、三相异步电动机的起动 2、降压起动
能否直接起动的经验公式:
I st 3 供电 变压 器容 量 ( KVA) IN 4 4 电动 机容 量KW ) (
一、三相异步电动机的起动 2、降压起动 其目的就是要减小起动电流, 但同时也限制了起动转矩,因此 只适用于轻载或空载情况下起动。
注意: 反接制动时,定子旋转磁场与转子的相对转速很大。
即切割磁力线的速度很大,造成 I 2 ,引起 I 1 。
为限制电流,在制动时要在定子或转子中串电阻。
三、三相异步电动机的制动 4.发电反馈制动 当电动机转子的转速大于旋转磁场的转速时,旋转磁场产生的 电磁转距作用方向发生变化,由驱动转距变为制动转距。电动机进 入制动状态,同时将外力作用于转子的能量转换成电能回送给电网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机常见的制动方法
作者:骑着乌龟追蚂蚁,2007-5-31 10:47:00 发表于:《变频器与调速论坛》共有11人回复,1096次点击加为好友查看播客发
送留言
最近公司在安装大型的行车,原理图上有电动机的几种制动方式,我在网上查了一下,与大家分享一下.
三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。
而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。
这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。
1.机械制动
采用机械装置使电动机断开电源后迅速停转的制动方法。
如电磁抱闸、电磁离合器等电磁铁制动器。
(1电磁抱闸断电制动控制电路
电磁抱闸断电制动控制电路如图1所示.合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈
YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。
断开开关电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。
图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。
倒顺开关接线示意图如图2所示。
这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动等。
其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。
(2电磁抱闸通电制动控制电路
电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。
因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。
当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。
机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开,克服弹簧的拉力而满足工作现场的要求。
电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。
2.电力制动
电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩使电动迅速停止的方法。
最常用的方法有:反接制动和能耗制动。
(1反接制动。
在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。
反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。
实际控制中采用速度继电器来自动切除制动电源。
反接制动控制电路如图4所示。
其主电路和正反转电路相同。
由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。
因此反接制动电路增加了
限流电阻R。
KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时.KV常开触头闭合为制动作好准备。
反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备,后接通KM2线圈(KV常开触头在正常运转时已经闭合,其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2线圈,反接制动结束。
一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。
反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。
因此适用于l0kw以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。
(2能耗制动。
电动机切断交流电源的同时给定子绕组的任意二相加一直流电源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产生制动力矩的方法。
原理分析:电动机切断电源后,转子仍沿原方向惯性转动,如图5设为顺时针方向,这时给定子绕组通入直流电,产生一恒定的静止磁场,转子切割该磁场产生感生电流,用右手定则判断其方向如图示。
该感生电流又受到磁场的作用产生电磁转矩,由左手定则知其方向正好与电动机的转向相反而使电动机受到制动迅速停转。
可逆运行能耗制动的控制电路如图6所示。
KV1、KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、KM3之间互锁,防止交流电源、直流制动电源短路。
停车时按下停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电流经变压器T,全波整流器VC通入V、W相绕组直流电,产生恒定磁场进行制动。
RP调节直流电流的大小,从而调节制动强度。
能耗制动平稳、准确,能量消耗小,但需附加直流电源装置,设备投资较高,制动力较弱,在低速时制动力矩小。
主要用于容量较大的电动机制动或制动频繁的场合及制动准确、平稳的设备,如磨床、立式铣床等的控制,但不适合用于紧急制动停车。