恒压恒流充电器
充电模式的分类工作原理

充电模式的分类工作原理充电模式指的是电池充电过程中所采用的工作方式,通常根据电池的特性和使用环境的不同,可以将充电模式分为恒流充电、恒压充电、均衡充电和快速充电四种。
1. 恒流充电模式(Constant Current Charging):在电池电压低于设定值时,充电器会向电池提供一定电流,使电池电流达到预定的值,并维持在这个值上。
这种充电模式可以有效地将电流注入电池,提高充电效率。
恒流充电模式的工作原理是通过充电器内部的充电模块来控制输出电流。
当电池电压低于设定值时,充电模块会调整输出电流以达到恒流状态,保持充电效果。
2. 恒压充电模式(Constant Voltage Charging):在电池电压达到设定值后,充电器会将输出电压保持在该设定值上,同时不断减小输出电流,直到最终停止充电。
这种充电模式可以保证电池充电至额定电压,避免电池电压过高而导致损坏。
恒压充电模式的工作原理是通过充电器内部的充电模块来控制输出电压。
当电池电压达到设定值后,充电模块会将输出电压保持不变,并逐渐减小输出电流,直到充电终止。
3. 均衡充电模式(Balancing Charging):在多个电池串联的情况下,电池之间的电量分布可能存在差异,均衡充电模式可以通过调整充电电流,将电池之间的电量差异逐渐减小,达到均衡充电的效果。
均衡充电模式的工作原理是通过充电器内部的均衡电路来监测电池的电压和电流,并根据电池之间的差异来调整充电电流。
当充电电流通过电池串联时,均衡电路可以实现对电池的均衡充电。
4. 快速充电模式(Fast Charging):为了缩短充电时间,提高充电效率,快速充电模式可以采用更大的电流进行充电,以加快电池容量的恢复速度。
快速充电模式的工作原理是通过充电器内部的充电模块来提供更大的充电电流。
通常快速充电器会根据电池的特性和充电环境的要求,进行电流的调整和控制,以达到快速充电的目的。
总结起来,充电模式的分类是根据电池的特性和使用环境的不同,通过充电器内部的充电模块来实现的。
电动车充电器恒流电路

电动车充电器恒流电路
电动车的充电器恒流电路是一项关键技术,它能够确保电池在充电过程中始终保持恒定的充电电流,从而提高充电效率和延长电池寿命。
恒流充电是一种常见的充电方式,通过控制充电电流的大小来保持电池的充电状态稳定。
恒流充电器通常由恒流源、电流传感器和控制电路组成。
恒流源能够提供稳定的充电电流,而电流传感器则用于监测实际充电电流的大小。
控制电路根据电流传感器的反馈信号来调节恒流源的输出,从而实现恒流充电的目的。
在电动车充电器中,恒流电路的设计至关重要。
一方面,恒流充电可以提高充电效率,缩短充电时间。
另一方面,恒流充电还可以保护电池,避免因过大的充电电流而造成电池损坏。
除了恒流充电外,电动车充电器还通常包含恒压充电和温度控制等功能。
恒压充电可以在电池充满后自动切换至恒压充电状态,以避免过充电。
而温度控制则可以监测电池温度,确保充电过程中不会因温度过高而损坏电池。
总的来说,电动车充电器恒流电路的设计和实现对于电动车的充电效率和电池寿命具有重要影响。
随着电动车市场的不断发展,恒流充电技术也将不断得到改进和完善,为电动车的充电提供更加稳定、高效的解决方案。
恒压恒流充电器原理

恒压恒流充电器原理
恒压恒流充电器是现代电子产品中常用的充电器类型之一。
其原理是在充电过程中,通过调整电源输出电压和电流大小,使得充电电流能够在一定的范围内保持恒定,并且保证充电电压始终稳定在设定的值。
恒压恒流充电器的工作原理可以简单描述为:当电池电压低于设定值时,充电器将输出一个恒定的电流,直到电池电压上升到设定的电压水平。
此时,充电器将保持一个稳定的电压,直到电池电流下降到恒定的充电电流水平为止。
这种充电方式可以保证电池充电效率高、充电时间短、充电过程稳定等优点。
恒压恒流充电器主要由两个部分组成:调整电路和控制电路。
调整电路负责调整电源电压和电流大小,以适应不同类型的电池充电需求,而控制电路则负责监测电池的状态,控制充电过程,以保证电池的安全和寿命。
在实际应用中,恒压恒流充电器可以应用于各种类型的电池,如铅酸电池、镍氢电池、锂电池等,可以广泛用于移动电子产品、电动工具、电动汽车等领域。
- 1 -。
恒流电源与恒压电源适配器区别

恒流电源与恒压电源适配器区别
常见的电源适配器以及手机充电器都属于恒压开关电源,电源适配器输出的直流电压是固定的,其电压变化允许浮动范围输出电压的±5%,电源适配器输出带有过压、过流、短路及功率保护功能,恒流电源一般多用于LED灯中,输出的是恒流。
当恒压电源也就是电源适配器在额定输出电流范围中,也就是工作范围中。
输出电压一定会保持在额定电压±5%范围内。
当输出电流大于额定电流1.3-2倍时电源适配器就会保护停止工作,当移除负载电源即可恢复正常工作,恒压电源又叫稳压电源,要求输出电源值固定,不随负载,输入电压等外部工作条件而变化,同时对电源的最大输出电流,最大输出功率,提高工作效率,输出电压稳定度,漂移,纹波系数,电磁兼容EMC特征,温度效应,噪声,阻抗特征等都有特定的要求。
恒压电源也称为稳压电源,恒流电源的输出特征曲线与恒压电源的相反,被控制参数是输出电流,在负载范围中输出电流保持不变,负载电阻大的时候,电源进入依从限压保护区,恒流电源认为是过压情况。
应用场合具有局限性,一般用于在负载电阻有限变化范围内必须维持电流恒压的场合。
恒流恒压充电截止电流

恒流恒压充电截止电流先说说恒流。
它就像你在吃自助餐的时候,那个服务员给你端来的菜。
满满一盘子,想吃多少就吃多少。
充电的时候,电流一直保持在一个固定的值,不多也不少,恰到好处。
就像你出门前妈妈叮嘱你,别吃太饱,也别饿着,保持个适中的状态。
这个恒流阶段是充电的开始,电池需要慢慢地把能量吸收进来,就像海绵吸水,别急,慢慢来,别一口气喝太多,要不然会撑着。
然后到了恒压阶段。
这个时候,充电器就像是你家里的“管家”,确保你不会过量。
充电电压保持在一个固定的水平,电流会慢慢减少,最后归于平静。
就像人吃东西,刚开始猛吃,后面就得慢慢咀嚼,享受这个过程,不能狼吞虎咽。
充电器在这个阶段就像个大人,耐心地引导着电池,让它慢慢适应,把能量完全吸收,做到心中有数。
这两个阶段的搭配简直是一对黄金组合,密不可分。
要是没有恒流阶段,电池就像一头急性子的牛,闯进菜市场,非得把所有的“能量”全都一下子吞下去,结果可想而知,电池可能会“消化不良”,发热、膨胀,甚至出现安全隐患。
可别小看了这个恒压阶段,真的很重要。
要是直接给电池过高的电压,那就是给它施加压力,让它觉得自己像是在海里憋气,难受得很。
充电的时候,我们经常看到指示灯闪烁,变成红的、绿的、蓝的,各种颜色都有,像是个调皮的小孩子,给我们不断发信号。
其实它们都在告诉你,充电的状态不一样。
这个时候,我们就得耐心等待,别急着去拔掉充电器。
耐心可是一种美德,充电也是要讲究的,毕竟咱们的钱可不是大风刮来的。
说到这里,可能有人会想,充电器是不是可以一直插着不拔?呃,这个问题得好好说一说。
虽然现代的充电器聪明得很,有保护机制,但长时间插着还是会让电池受到影响。
想象一下,电池就像是个懒惰的小家伙,老是待在舒适的环境中,久而久之,它可能会习惯这个状态,不愿意再“努力工作”了。
电池需要适当的“锻炼”,要让它知道,保持活力才是王道。
所以,咱们用充电器的时候,还是得讲究方法。
就像小孩子上学,要有规律,有计划。
恒压恒流充电器原理分析

恒压恒流充电器原理分析充电器的电路主要由电源变压器、整流电路、滤波电路、功率管、反馈控制电路等组成。
电源变压器是将市电的交流电转变为充电器所需的低电压交流电,一般为主变压器和副变压器组成。
主变压器将220V交流电转换成较低电压的交流电,而副变压器将主变压器输出的交流电进一步降压,使电压达到充电器所需要的低电压。
整流电路将变压器输出的交流电转换为直流电,常见的整流方式包括单相桥式整流器和三相桥式整流器。
整流电路可以通过整流管或整流二极管实现,将交流电转化为带有波动的直流电。
滤波电路是为了减小充电器输出的直流电中的纹波成分,提供相对稳定的输出电压。
滤波电路的主要元件是电容器,它能将直流电中的纹波成分滤去,得到相对平滑的直流电。
功率管是充电器输出电流和电压的关键控制元件。
充电器根据需要可以装备一个或多个功率管,功率管能够调节输出电流和电压的大小。
当充电电流较小时,功率管处于导通状态,通过功率管和输出电阻连接负载,实现恒压输出。
当充电电流较大时,功率管处于关断状态,通过反馈控制电路和功率管的控制信号,控制功率管的导通和关断,实现恒流输出。
反馈控制电路是恒压恒流充电器的核心部分。
它通过检测输出电压和电流的大小,通过比较电压和电流的反馈信号,控制功率管的导通和关断。
当输出电流大于设定值时,控制电路会减小功率管的导通时间,从而控制输出电流恒定。
当输出电压大于设定值时,控制电路会减小功率管的关断时间,从而控制输出电压恒定。
总结一下,恒压恒流充电器通过控制充电电流和电压来实现恒定输出。
它的工作原理是通过电源变压器将交流电转换为充电器所需的低电压交流电,然后通过整流电路将交流电转换为直流电,再通过滤波电路提供稳定的输出电压。
功率管和反馈控制电路控制输出电流和电压的恒定。
这样就可以实现对电池等设备的稳定充电。
恒流充电与恒压充电

恒流充电与恒压充电随着电子产品的普及和电动汽车的快速发展,电池技术逐渐成为人们关注的焦点。
在电池充电过程中,常见的两种充电方式是恒流充电和恒压充电。
本文将介绍这两种充电方式的原理、特点以及适用场景。
一、恒流充电恒流充电是指在充电过程中,通过控制充电电流的大小来进行充电。
电池在充电初期,其内阻较小,可以承受较大的充电电流。
因此,恒流充电在电池充电初期会以最大充电电流进行充电,直到电池电压逐渐上升至设定的恒压值后,进入恒压充电阶段。
恒流充电的优点在于能够快速充满电池。
通过控制较大的充电电流,电池的充电速度得到了提升。
此外,恒流充电还能够有效延长电池寿命。
在充电初期,电池内阻较小,恒流充电可以更好地激活电池活性物质,提高电池的容量和循环寿命。
然而,恒流充电也存在一些缺点。
首先,由于恒流充电中充电电流较大,容易导致电池的温度升高,从而影响电池寿命和安全性。
其次,恒流充电在接近充电结束时,电池电压上升速度过快,容易造成充电过冲,进而影响电池的寿命和安全性。
二、恒压充电恒压充电是指在充电过程中,通过控制充电电压来进行充电。
当电池电压逐渐上升至设定的恒压值后,充电电压将保持不变,直到充电电流逐渐下降至预设的截止电流为止。
恒压充电的优点在于能够更好地控制电池的充电状态。
通过控制充电电压,可以避免充电过冲,有效延长电池的寿命。
此外,恒压充电还能够较好地适应电池的不同充电需求,保证电池充电的安全性和稳定性。
然而,恒压充电也存在一些局限性。
首先,恒压充电的充电速度相对较慢,无法满足某些场景下的快速充电需求。
其次,恒压充电对电池的功率要求较高,需要更稳定的充电设备和电源。
三、恒流充电与恒压充电的适用场景恒流充电适用于对电池快速充电、时间紧迫的场景。
例如,电动汽车的充电过程中,恒流充电可以更高效地将电池充满,缩短充电时间。
同时,恒流充电也适用于一些需要快速充电的移动设备,如智能手机、平板电脑等。
然而,在进行恒流充电时,需要注意控制充电电流和电池温度,以保证充电的安全性和稳定性。
锂电池充电器工作原理详解

锂电池充电器工作原理详解锂电池充电器是一种用于给锂电池充电的设备,它采用特定的工作原理来确保锂电池充电过程安全和高效。
本文将详细解释锂电池充电器的工作原理,包括锂电池充电器的类型、充电过程中的控制电路、充电器的保护功能以及充电器的工作原理。
一、锂电池充电器的类型目前市面上常见的锂电池充电器主要分为恒流充电器和恒压充电器。
恒流充电器是通过控制充电电流来充电,当电池电压低于设定值时,充电器会提供最大充电电流直到电池电压达到设定值,然后逐渐减小充电电流直至充电结束。
而恒压充电器则是通过控制充电电压来进行充电,当电池电压接近设定值时,充电器会减小充电电流直至充电结束。
二、充电过程中的控制电路在充电过程中,充电器通过控制电路来监测和调节充电电流和电压,以确保充电过程稳定和安全。
其中包括恒流充电器的电流控制电路和恒压充电器的电压控制电路。
电流控制电路通常采用电流采样电路和反馈控制电路来实现对电池充电电流的精确控制,而电压控制电路则包括电压采样电路和反馈控制电路,能够确保充电电压稳定在设定范围内。
三、充电器的保护功能一款优秀的锂电池充电器应该具备多重保护功能,以保障充电安全。
充电器通常包括过电压保护、过电流保护、短路保护、过温保护等功能,当电池或充电器出现异常情况时,充电器会自动切断充电电路以防止安全事故的发生。
四、充电器的工作原理充电器的工作原理主要通过控制电路和功率转换电路来实现。
当充电器接通电源后,控制电路会进行初始化,监测电池电压、温度和其他参数,并根据设定值调节功率转换电路输出的电流和电压,开始充电过程。
在充电过程中,控制电路会不断监测电池状态并实时调节输出电流和电压,直到电池充满或充电结束。
通过保护电路对充电器和电池进行实时监测和保护。
锂电池充电器通过恒流或恒压充电原理以及相应的控制电路和保护功能来确保充电过程高效、安全和稳定。
有效的充电器工作原理能够延长电池寿命,提高充电效率,同时避免了电池过充、过放等安全隐患。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2).对于无法采用12-15V稳定的电压给MOSFET驱动芯片供电的情况下需要在栅源极之间并联15V的稳压管。
2. 漏源极过压
MOSFET的漏源极之间允许的电压(BVDSS)都有一个限制,意味着MOSFET的漏源极之间超过这个电压,MOSFET就有可能击穿损坏。因此在选型的时候我们需要根据电路的电压输入范围和拓扑结构来选择MOSFET并留有一定的余量。当然,由于分布参数和变压器漏感的影响,在MOSFET的某个工作瞬间往往会瞬间过压,虽然MOSFET具有抗击这种瞬间过压不被损坏的能力,但也不能超过一定的限度,为了电路的安全,我们还是要做好保护措,一般以下几3种:
关于R5-R8的栅极下拉电阻,主要作用是在驱动IC损坏开路的情况下可以防止MOS管的误导通。在某些特殊的应用场合下,比如对待机电流有限制的电池保护板,这个电阻往往取值很大甚至没有,这样栅极的阻抗会比较高,极易感应比较高的静电损坏MOS管的栅极。这种应用最好在栅源极之间并联一个15V左右的稳压管。
3. MOS管的并联对布线的要求
默认出货时已经调节到 0.1倍
最低压差:2V
输出功率:自然冷却15W转换效率:92%(最高92%(输出电压越高,效率越高)
输出纹波:20M带宽 (仅供参考)
输入12V 输出5V 3A 60mV(MAX)
工作温度:工业级(-40℃到 +85℃)(环境温度超过40度,请降低功率使用,或加强散热)
满载温升:45℃
1).采用瞬态二极管的尖峰抑制电路:
2).采用RC吸收回路:
3).采用RCD吸收回路:
二. 过流
MOSFET能承受的的电流和芯片,时间,结温和电流都有关系,例如锐骏半导体的RU190N08R,芯片在25度时允许通过的电流为ID=190A, 在100度许通过的电流为ID=140A,但是这个只是芯片能承受的电流,当然还受封装的限制,对于TO-220封装来说,只允许通过75A的电流。如果是瞬间呢,在25度时,在300微秒(没有超过安全区域)的脉冲宽度可以通过700A的IDP(峰值电流)。
电池充电 使用方法:
1.确定您需要充电电池的 浮充电压和充电电流,模块的输入电压;
2.调节恒压电位器使输出电压达到浮充电压;
3.用万用表10A电流挡测量输出短路电流,同时调节恒流电位器使输出电流达到预定的充电电流值;
4.充电转灯电流默认出货为 0.1倍充电电流(恒流值),如需调整请调节转灯电流电位器;
4接上LED,试机。
为了方便大家学习,进一步了解锐骏MOS管的应用,我们为大家提供了10种驱动电路供大家选择参考。
1. PWM芯片直接驱动MOSFET
2. 开通和关断速度分开控制的MOSFET驱动电路
3. 带图腾柱扩流的MOSFET驱动电路
4. 使用TL494,SG3524内部的输出电路采用的单端集电极和射极开路的驱动电路
一.过压:
MOSFET的过压主要分为栅源极过压和漏源极过压。
1. 栅源极过压:
MOSFET的栅源极之间允许的电压(VGSS)都有一个限制,业界的一般是±20V,锐骏半导体大部分MOS管的栅源极耐压是±25V,意味着MOSFET的栅源极之间超过这个电压,MOSFET就有可能击穿损坏。为了防止栅源极过压,我们可以采取如下措施:
4).电路加入防静电措施,如栅极并联稳压管;
5).操作人员的防静电,如穿防静电服,带静电环等。
五. 过热
当MOSFET超过允许的结温时很容易缩短使用寿命,甚至很快烧毁,所以在选型时需要预留值比较大,并设计过热保护电路。
一般的过热保护电路由热敏电阻做温度检测,如PTC,超过一定温度,PTC的电阻会上升很多,如果在PTC上通过一个电流,其两端的电压也会上升很多,我们可以用比较器设定一个基准电平,超过这个基准电平,比较器就会发出一个高或地电平关断MOSFET,这就是典型的温度保护的原理,其典型的电路如下:
2. MOS管的并联电路
理论上MOS管可以由N颗并联,实际上MOS管并联多了容易引起走线很长,分布电感电容加大,对于高频电路工作产生不利的影响。下面以4颗为例说明MOS管的应用。并联的一般电路图如下
上图中,R1-4为栅极驱动电阻,每个MOS管都由独立的栅极驱动电阻隔离驱动,主要是可以防止各个MOS管的寄生振荡,起到阻尼的作用。R1-4的取值怎么取呢?如果取值过小,可能就起不到防止各个MOS管的寄生振荡的作用,如果取值大了,开关速度会变慢,由于每个MOS管的结电容会有细微的不同,结果取值过大还会导致各个MOS管的导通速度相差比较大,所以R1-4在能够防止各个MOS管的寄生振荡的情况下尽量小到可以满足开关速度。
一种典型的过流短路保护电路如下图:
四. 静电
MOSFET由于输入阻抗极高,属于容性负载,因而对静电非常敏感,当输入电容感应静电到一定电压时就有பைடு நூலகம்能损坏。
防静电的一般措施有:
1).包装,采用防静电袋,管脚套短路环;
2).储存环境的湿度控制,保持相对比较高的湿度可以防静电;
3).接地,所有接触MOSFET的设备都要有妥善的接地措施;
在设计选型时我们要根据的上述电流参数选择合适的MOSFET并留有一定的余量,MOSFET过流一般都是由于过流后引起结温过高而损坏,或者是超过了安全区域导致耗散功率过大损坏。
常规的过流保护电路有:
1).采用源极串联电流取样电阻的过流保护电路:由图中可以看出,U1的电流比较基准是1V,只要R3两端的压降超过了1V,U1就关断PWM停止输出,从而保护了MOSFET.
2).采用电流互感器取样的过流保护电路:互感器取样的特点是能过很大的电流而损耗小,但体积比较大。
三.短路
短路也可以理解为严重的过流,以锐骏半导体的RU190N08为例,我们来看下MOS管的安全区域:
从曲线上可以看出,当VDS=13V时,300A的电流只有1MS的时间耐量。还有规格书上标明了300US的耐电流是700A,这些都是我们设计短路保护的重要依据。比如我们设计一个24V的系统采用的就是单颗这个型号的MOSFET,经过计算和测量MOSFET回路(包含供电电源的内阻)是20 mΩ,如果不限制短路电流的话,那么短路电流将达到24/20 mΩ=1200A,这个电流有可能使MOSFET在很短的时间内烧毁。所以我们需要快速地检测MOSFET的电流比如达到300A,快速(几十到几百微妙)地关断它。从而保护了MOSFET的安全。
(2)固定输出(1.25-30V之间任意选择),购买时请告诉掌柜。(暂时只针对批量客户,样品全部发可调型)
输出电流:额定2A,最大4A (超过15W 请安装散热片)
恒流范围:0-3A(可调节)
转灯电流:恒流值*(1%—100%),转灯电流与恒流值联动,比如恒流值为3A,转灯电流设置为恒流的0.1倍(0.1*3A=0.3A),当把恒流值调节成2A时候,此时转灯电流为恒流的0.1倍(0.1*2A=0.2A).
5.接上电池,试充。
(1、2、3、4步骤为模块输入接电源,输出空载不接电池。)
LED恒流驱动 使用方法:
1.确定您需要驱动LED的工作电流和最高工作电压;
2.调节恒压电位器使输出电压达到LED最高工作电压;
3.用万用表10A电流挡测量输出短路电流,同时调节恒流电位器使输出电流达到预定的LED工作电流;
模块性质:非隔离降压恒流、恒压模块(CC CV) 充电模块
适用范围:大功率LED恒流驱动,锂电池充电(包括铁电),4V、6V、12V、14V、24V电瓶充电、镍镉镍氢电池(电池组)充电,太阳能电池板,风力发电机
输入电压:7-35V如需要更高电压请直接联系我
输出电压:(1)连续可调(1.25-30V)
5. 使用光耦隔离的驱动电路
6. 使用光耦隔离的带负压关断驱动电路:
7. 采用专用驱动光耦驱动的隔离驱动电路:
8. 电动车控制器驱动电路
9. P管驱动电路:
10. 多管并联驱动电路:
MOSFET作为一种新型的功率器件,具有开关速度快,内阻低损耗小等优点,但是如果使用不当也容易损坏。MOSFET损坏的原因主要有过压,过流,短路,静电,过热,机械损坏等。
六. 机械损坏
由于芯片和管壳的弹性系数不同,虽然在管壳螺丝孔和芯片之间加了机械应力缓冲措施,当它们封装成一个整体后,还是不能超过一定的机械应力,比如对于TO-220封装在打螺丝时,(电动)螺丝刀的扭力不应超过6KG.
在大功率产品的实际应用中,单颗MOS管往往达不到需要的电流,此时我们需要把多颗MOS管并联起来应用,这样很大的电流由多颗MOS管来分担,单颗MOS管承担的电流就比较小了,确保了器件安全稳定地工作。但是如果应用不当,也会使多颗并联的MOS管电流不均衡,甚至损坏某颗MOS管使系统崩溃。
1. MOS管并联的可行性分析
由下面的某颗MOS管的温度曲线可以看出MOS管的内阻的温度特性是随温度的升高内阻也增大,如果在并联过程中由于某种原因(比如RDSON比较低,电流路径比较短等)导致某颗MOS管的电流比较大,这颗MOS管会发热比较严重,内阻会升高比较多,电流就会降下来,由此可以分析出MOS管有自动均流的特性而易于并联。
空载电流:典型10mA(12V转4.2V)
负载调整率:±1%
电压调整率:±0.5%
动态响应速度:5% 200uS
电位器调节方向:顺时针(增加),逆时针(减少)
指示灯:恒流指示灯红色,充电中指示灯红色,充电完毕指示灯蓝色
输出短路保护:有,恒流(当前设置恒流值)
输入反接保护:无,请在输入串联二极管。
接线方式:焊接,加引脚后可直接焊接在PCB上
大家知道,多个MOS管并联,漏极和源极的走线都需要通过多个MOS管的总电流,理论上计算,如果要达到单个MOS管的电流不偏移平均电流的10%,那么总线上的总阻抗一定要控制在所有MOS管并联后的内阻的10%以内。比如过50A的电流,由我们的RU75N08R 4颗并联, RU75N08典型是8mΩ,并联后就是2 mΩ,那么漏极或源极的走线电阻需要控制在2 mΩ*10%=0.2 mΩ以内才能保证10%的均流误差。如果PCB铜箔厚度和宽度有限,我们可以加焊铜线或通过散热片达到这个低的走线内阻。