腐蚀机理
高温下金属腐蚀机理探究

高温下金属腐蚀机理探究高温下金属腐蚀机理探究引言:金属腐蚀是指金属在特定环境中与氧气、水或其他化学物质发生反应引起的损失。
在高温条件下,金属腐蚀的速度更加快速和严重,因此探究高温下金属腐蚀机理对于有效防止金属材料的损耗具有重要意义。
本文将重点讨论高温条件下金属腐蚀的机理,并介绍常见的高温腐蚀类型和预防措施。
一、高温下金属腐蚀反应机理1. 氧化反应:高温下金属的氧化反应是最主要的腐蚀类型之一。
当金属与氧气接触时,金属表面会形成氧化皮层,这是一种稳定的纳米尺度金属氧化物。
金属氧化物通常具有精细的晶体结构,因此具有优异的物理、化学和热力学性质。
然而,这层氧化层并不稳定,它会通过气相或金属表面的扩散机制被氧进一步氧化形成氧化物或氧化物混合物,导致金属腐蚀加剧。
2. 离子迁移:金属在高温下是高活性物质,它的离子(阳离子)可以在晶体结构中迁移,并与外部环境中的离子发生反应。
离子迁移是金属腐蚀过程中不可忽视的因素之一。
高温下金属晶体中离子的迁移速率比较快,甚至可以达到很高的速度。
离子迁移可以引起金属的局部腐蚀和晶间腐蚀,从而导致金属的失效。
3. 自增强腐蚀:自增强腐蚀是金属在高温下发生腐蚀过程中的一个重要现象。
高温条件下,金属材料内部产生的应力和扩散不均匀会导致局部氧化膜的脱落和重新形成,从而形成更大的氧化层。
这种现象会进一步加速金属的腐蚀速度,形成一个自我放大的过程。
二、高温下常见的金属腐蚀类型1. 高温氧化腐蚀:高温氧化腐蚀是金属在高温条件下与氧气发生反应而引起的腐蚀。
氧化反应是金属在高温下腐蚀的主要原因,它会导致金属的减薄和失效。
常见的高温氧化腐蚀有高温空气氧化腐蚀、高温水蒸气氧化腐蚀等。
2. 高温酸性腐蚀:高温酸性腐蚀是金属在高温酸性介质中发生的腐蚀。
在高温酸性环境中,金属表面会受到腐蚀溶解和局部电化学反应的影响,从而引起金属的失效。
常见的高温酸性腐蚀有酸雾腐蚀、硫酸腐蚀等。
3. 高温碱性腐蚀:高温碱性腐蚀是金属在高温碱性介质中发生的腐蚀。
常见腐蚀机理汇总

常见腐蚀机理汇总腐蚀是指金属及其合金与周围环境中的化学性物质相互作用,导致金属表面发生损坏和失去原有性能的过程。
腐蚀是金属材料常见的破坏形式,对于工业生产和日常生活都具有重要的影响。
下面将对常见的腐蚀机理进行汇总。
1.酸性腐蚀酸性腐蚀是指在酸性介质中,金属表面发生的化学反应造成的腐蚀现象。
酸性腐蚀的机理主要是酸性介质中的氢离子与金属表面上的金属离子发生反应,导致金属表面的腐蚀。
2.碱性腐蚀碱性腐蚀是指在碱性介质中,金属表面发生的化学反应造成的腐蚀现象。
碱性腐蚀的机理主要是碱性介质中的氢氧根离子与金属表面上的金属离子发生反应,导致金属表面的腐蚀。
3.氧化腐蚀氧化腐蚀是指在含氧气的环境中,金属表面发生的化学反应造成的腐蚀现象。
氧化腐蚀的机理主要是金属表面上的氧与金属表面上的金属离子发生反应,导致金属表面的腐蚀。
4.电化学腐蚀电化学腐蚀是指在电解质溶液中,金属表面发生的电化学反应造成的腐蚀现象。
电化学腐蚀的机理主要是金属表面上的阳极区域和阴极区域发生电流流动,产生阳极溶解和阴极保护,导致金属表面的腐蚀。
5.微生物腐蚀微生物腐蚀是指在生物多样性环境中,由微生物引起的金属腐蚀。
微生物腐蚀的机理主要是微生物代谢产物对金属表面的化学反应,以及微生物表面对金属表面的附着和菌斑形成导致的腐蚀。
6.废物气体腐蚀废物气体腐蚀是指金属材料与废物气体中的化学物质相互作用,导致金属表面的腐蚀。
废物气体中的酸性气体、碱性气体、氧化性气体等会与金属发生反应,引起腐蚀。
7.氯离子腐蚀氯离子腐蚀是指氯离子与金属表面发生的化学反应造成的腐蚀现象。
氯离子腐蚀的机理主要是氯离子与金属表面上的金属离子发生反应,导致金属表面的腐蚀。
8.压力腐蚀压力腐蚀是指金属材料在受到应力的作用下,与周围环境中的化学性物质相互作用,导致金属表面发生的腐蚀现象。
压力腐蚀的机理主要是应力破坏了金属表面的化学传递层,使得金属离子释放速率增加,导致腐蚀加剧。
9.过热腐蚀过热腐蚀是指金属材料在高温环境下发生的腐蚀现象。
腐蚀的机理及其控制措施

腐蚀的机理及其控制措施腐蚀是一种难以避免的自然现象,它会导致材料的破损、失效,对工业制造和设备维护带来极大的困扰。
有许多因素会影响材料的耐腐蚀性能,其中包括环境条件、材料成分、加工和使用方法等等。
在本文中,我们将深入探讨腐蚀的机理,以及如何采取措施来控制它。
1. 腐蚀机理腐蚀是材料在接触化学环境时发生的一系列反应的结果。
在这些反应中,材料的原子或分子被氧化或还原,从而导致其电位和化学性质发生变化。
这些反应可以来源于氧化、酸化、盐类反应和生物作用等不同因素。
一种常见的腐蚀形式是金属腐蚀,它具有很高的经济和环境影响。
在一般情况下,金属的腐蚀反应包括四种反应类型:腐蚀反应、电化学反应、热量反应和生物腐蚀。
腐蚀反应是指金属在非电解质(如酸、碱)中的离子交换反应。
电化学反应通常发生于电解质中,其中金属通过与溶液中的电荷交换来腐蚀。
热反应通常是指金属快速氧化和燃烧等高温现象。
生物腐蚀是指一些微生物在特定条件下对金属的化学反应。
除此之外,在腐蚀机理的研究中,需要探讨腐蚀的成因,包括干燥腐蚀、隐蔽腐蚀和应力腐蚀等等,因为它们都会成为影响腐蚀的因素。
干燥腐蚀是指材料在干燥的环境中产生氧化物而腐蚀,在一些研究中可以通过控制清洁度来避免。
隐蔽腐蚀是指在材料内部发生的腐蚀过程,难以发现和处理。
应力腐蚀则是指金属在受到外界应力和化学环境共同影响下的腐蚀过程。
2. 腐蚀控制措施腐蚀虽然不可避免,但可以通过多种措施来降低腐蚀的风险和减缓腐蚀速度。
以下是几种常见的腐蚀控制措施:2.1 材料选择选用合适的耐腐蚀材料是一种很有效的腐蚀控制措施。
例如,在重化工行业中,选用防腐钢材料可以有效地降低设备和管道的腐蚀风险,从而延长使用寿命。
而在食品加工业中,采用不锈钢、铸铁等材料也可以有效地降低食品中的有害物质含量,提高食品的质量和安全性。
2.2 防腐涂料防腐涂料是一种常见的腐蚀控制方式。
涂料中含有具有防腐性能的化学物质,能够形成一层保护膜,保护金属材料不被化学环境侵蚀。
腐蚀机理研究 实施方案

腐蚀机理研究实施方案腐蚀是一种常见的金属材料损伤形式,它会严重影响材料的性能和使用寿命。
因此,深入研究腐蚀机理,制定科学的实施方案,对于材料保护和延长使用寿命具有重要意义。
本文将就腐蚀机理的研究内容和实施方案进行探讨。
一、腐蚀机理研究内容。
1. 腐蚀类型分析。
腐蚀可以分为化学腐蚀和电化学腐蚀两种类型,化学腐蚀是指金属在化学介质中发生的腐蚀现象,而电化学腐蚀是指金属在电化学条件下发生的腐蚀现象。
对不同类型的腐蚀进行深入分析,有助于找出腐蚀机理的差异性,为制定相应的实施方案提供依据。
2. 腐蚀速率测定。
腐蚀速率是评价材料腐蚀程度的重要指标,通过测定腐蚀速率,可以了解材料在不同环境条件下的腐蚀程度,为腐蚀机理的研究提供数据支持。
3. 腐蚀产物分析。
腐蚀产物的分析可以揭示腐蚀过程中产生的物质,了解腐蚀的化学反应机理,有助于找出腐蚀的根本原因,为腐蚀机理的研究提供重要参考。
二、腐蚀机理研究实施方案。
1. 选择合适的研究方法。
针对不同类型的腐蚀,选择合适的研究方法进行实验,如电化学方法、表面分析方法等,以全面了解腐蚀机理。
2. 建立腐蚀速率测定体系。
建立腐蚀速率测定体系,对不同材料在不同环境条件下的腐蚀速率进行测定,获取准确的腐蚀速率数据。
3. 进行腐蚀产物分析。
通过化学分析、表面分析等手段,对腐蚀产物进行分析,了解腐蚀的化学反应机理,找出腐蚀的根本原因。
4. 结合实际工程应用。
将腐蚀机理研究的成果与实际工程应用相结合,制定相应的腐蚀防护措施和材料选用建议,提高材料的抗腐蚀性能。
5. 完善腐蚀机理研究体系。
建立完善的腐蚀机理研究体系,不断完善研究方法和手段,提高腐蚀机理研究的深度和广度。
通过对腐蚀机理的研究内容和实施方案的探讨,可以更好地了解腐蚀的发生机理,为腐蚀防护提供科学依据,推动材料的腐蚀防护技术不断发展,提高材料的抗腐蚀性能,延长使用寿命。
金属腐蚀机理及抗腐蚀技术

金属腐蚀机理及抗腐蚀技术腐蚀是金属材料常见的一种损害方式。
它是指金属表面在化学或电化学作用下遭受损害,通常导致材料的性能下降和寿命缩短。
虽然一些金属如银、金等比较稳定,但其它金属在常温下或接触不适当条件下很容易发生腐蚀。
如何防止金属腐蚀,是工程界长期以来的难题之一。
一、金属腐蚀的机理金属腐蚀的机理较为复杂,主要有化学反应型和电化学反应型两种。
1.化学反应型金属在遇到某些化学物质时,会和其发生化学反应,从而导致金属的化学成分发生变化,最终形成氧化物。
金属外表形成氧化物层,外行称之为锈,通俗来说就是被腐蚀了。
2.电化学反应型电化学反应型的腐蚀机理主要是由于金属表面的异质腐蚀电池形成了阳极和阴极之间的电化学反应。
阳极表面出现金属离子,发生溶解,而阴极情况下保持了金属的完整性。
其中阳极和阴极之间的差异赋予了形成电位,这种电位会影响金属的腐蚀程度。
电化学反应型的腐蚀过程比较复杂,其腐蚀机理与很多因素都有关,例如温度、PH值、流体速度等。
其中最重要的腐蚀因素是金属质量和表面处理方式。
一般情况下,金属质量优良的材料比较不容易腐蚀,而粗糙的金属表面则比光滑的面更易遭受腐蚀。
二、金属抗腐蚀技术腐蚀是一种普遍存在于各个领域的问题,例如化工、轻工、航空航天、海洋工程等领域的金属结构。
为了能够延长金属材料的使用寿命,提高金属的抗腐蚀能力,需要采取一系列的抗腐蚀技术。
1.物理防腐物理防腐指的是通过改变物理状态来保护金属不被腐蚀。
如在金属表面形成一层防护膜来防止腐蚀。
这种方法优点是简单并且成本较低,但是该方法的防护效果不够长久。
2.化学防腐化学防腐指使用某些化合物对金属表面进行防护处理,使其生成一层稳定的金属化合物膜,防止腐蚀的发生。
这种方法防护效果相对较好,但是施工成本较高。
3.材料选择在设计使用金属材料时,需要充分考虑其在使用环境中可能面临的腐蚀因素,并选择适合的金属材料才能有效防护。
例如耐腐蚀性能极高的不锈钢,仪器、航空、医疗器械、食品工业等领域中都大量使用不锈钢。
金属材料的腐蚀机理与控制

金属材料的腐蚀机理与控制腐蚀是金属材料在特定环境中发生的一种化学反应,导致金属表面发生损害或氧化。
了解金属材料腐蚀的机理,并采取控制措施,是保护金属材料并延长其使用寿命的关键。
本文将介绍金属材料的腐蚀机理以及可行的控制方法。
一、金属腐蚀的机理金属腐蚀主要受以下因素影响:1.1 金属自身性质每种金属材料都有自己的化学成分和晶体结构,这些特性将直接影响金属腐蚀的行为。
例如,铁质材料容易发生氧化腐蚀,而不锈钢则具有较强的抗腐蚀性能。
1.2 环境条件金属腐蚀的速度和程度与环境中的某些因素密切相关。
例如,温度、湿度、酸碱度、气体成分以及阳光照射等都会影响金属腐蚀的发生。
高温和高湿度环境以及强酸或强碱溶液通常会加剧金属腐蚀的速度。
1.3 电化学反应金属腐蚀通常是通过电化学反应发生的。
在腐蚀过程中,金属可以作为阳极或阴极参与电化学反应。
阳极反应是金属的氧化步骤,而阴极反应则是电子和还原剂之间的转移。
这些反应在金属表面产生了电位差,促使腐蚀反应的发生。
二、金属腐蚀的控制方法为了减缓金属腐蚀速度,以下控制方法可供选择:2.1 表面涂层通过在金属表面形成涂层可以提供一层保护层,减少金属与外界环境的直接接触。
例如,镀锌过程中将铁制品浸入锌溶液中,使其表面形成一层锌层,起到防腐蚀的作用。
2.2 阳极保护通过将一个更容易腐蚀的金属设为阳极,来保护所需保护的金属,从而降低了金属腐蚀的速率。
例如,在油罐等容器中,可以使用铝或锌作为阳极材料,来保护铁制品。
2.3 缓蚀剂缓蚀剂是一种可以控制金属腐蚀的化学物质,通过在金属表面形成保护层来阻止腐蚀反应的发生。
缓蚀剂可以通过溶液中的添加剂或覆盖在金属表面的薄膜来实现。
例如,在水中添加磷酸和亚磷酸盐可以减缓金属腐蚀的速度。
2.4 电化学防护电化学防护是通过控制金属表面的电位差来防止腐蚀反应的发生。
常见的电化学防护技术包括阳极保护和阴极保护。
阳极保护是通过提供一定的电流来保护金属,而阴极保护则是通过向金属表面提供足够的电子来防止氧化反应的发生。
金属腐蚀的机理及其控制技术

金属腐蚀的机理及其控制技术金属腐蚀是指金属与其周围环境作用产生的一种物理或化学反应,使金属发生腐蚀和破坏的现象。
金属腐蚀是工业、生活生产中不可避免的问题,因此控制金属腐蚀是十分必要的。
本文将从金属腐蚀的机理、类型和其控制技术等方面进行介绍。
一、金属腐蚀的机理金属腐蚀的机理是指金属与周围环境发生化学、电化学反应,导致金属原子丢失、离开金属内部,最终导致金属的腐蚀及破坏。
在自然环境中,金属腐蚀通常是由于金属与外界氧气、水等物质发生反应,而导致的。
具体而言,金属腐蚀可以分为以下几种类型:1. 干腐蚀干腐蚀是指金属在氧气和水分离的条件下腐蚀。
例如,铝的表面会自然形成一层致密的氧化物覆盖层,保护铝不被腐蚀。
2. 溶液腐蚀溶液腐蚀是指金属在水溶液或其他溶剂中腐蚀。
例如,铜为了提高其导电性通常利用盐酸进行处理,让铜表面形成一层致密的氯化物覆盖层。
3. 电化学腐蚀电化学腐蚀是指金属在电解质溶液中,被其周围的化学物质和微观环境引起的化学和电化学反应而腐蚀。
电化学腐蚀是金属腐蚀中一种主要的类型,它包括了放电腐蚀、脱金属腐蚀和形成电池腐蚀等等。
4. 应力腐蚀应力腐蚀是指金属在外力(包括内部应力)的作用下,在腐蚀介质中发生的各种腐蚀现象。
比如,由于金属材料受到作用的应力、拉伸等就会导致金属表面形成裂纹,这样会导致金属的腐蚀。
二、金属腐蚀的控制技术为了控制金属腐蚀产生的损害,通常可以采用下列的方法:1. 涂层防护涂层防护是通过表面涂覆一种具有防护性的金属材料,防止金属与周围环境发生化学反应而导致的腐蚀损坏。
比如,我们平时买车的时候,可以在车的表面涂上一层具有抗腐蚀性能的防腐漆,这样就可以起到防腐的作用,延长车辆使用寿命。
2. 金属镀层金属镀层是将一层具有防护性能的金属物质贴附在需要防护的金属表面,防止金属与周围环境发生化学反应而导致的腐蚀和破坏。
例如,白银是一种优良的防腐金属,可以用来对其它金属表面进行镀银,也可以使用镍、铬等金属对金属表面进行镀层。
腐蚀与腐蚀机理

一、腐蚀与腐蚀机理:1、金属腐蚀原因·钢铁、铝、镁、锌、等金属材料都有倾向恢复至其原始化合物(矿石)状态。
将矿石冶炼成钢需要大量的能量。
此能量潜存于钢铁中,它们随时随地可恢复至原始自然的化合态而释放出能量,是化学热力学上自发的过程,即腐蚀现象。
2、环境因素对金属腐蚀的影响·影响腐蚀的主要因素:水分;氧气;化学电解质;导电通路。
·其它因素:温度:温度低,腐蚀速率下降;温度高,腐蚀速率升高。
二、涂料防护作用:1、屏蔽作用:使基体和环境隔离,阻挡水、氧离子透过涂层到达金属表面。
根据电化学腐蚀原理,涂层下金属发生腐蚀必须有氧离子存在,涂层能够阻挡水、氧和离子透过涂层到达金属表面,屏蔽效果决定于涂层的抗渗透性。
2、缓蚀作用:涂层含有化学防锈颜料,当有水存在时,从颜料中解离出缓蚀离子,通过各种机理使腐蚀电池的一个或两个电极极化,抑制腐蚀进行。
缓蚀作用能弥补屏蔽作用的不足,而屏蔽作用又能防止缓蚀离子流失,使缓蚀效果稳定持久。
3、阴极报护作用:涂层中加入对基体金属能成为牺牲阳极的金属粉,其量又足以使金属粉之间和金属粉与基体金属之间达到电接触程度,使基体金属免受腐蚀。
三、防腐蚀涂层漆膜介绍:·防腐蚀涂层漆膜的组成1.钢材表面(喷砂面)2.预涂底漆3.底漆4.中涂漆5.面漆·底漆1.对底材(如钢、铝等金属表面)有良好的附着力2.具有耐碱性,例如氯化橡胶、环氧树脂等3.底漆基料具有屏蔽性,阻挡水、氧、离子的通过4.底漆中含有较多的颜料、填料5.底漆对物面有良好的湿润性,对于焊缝、锈痕等部位透入较深6.一般底漆漆膜厚度不高,太厚会引起收缩应力,损伤附着力。
·中涂与底漆和面漆附着良好,漆膜之间的附着并非主要是靠极性基团的吸力,而是靠中间层所含溶剂将底漆溶胀,使两层界面的高分子链缠接紧密。
增加整个涂层的厚度,提高屏蔽性能。
·面漆1.遮蔽日光紫外线的破坏2.美观装饰(如轿车漆),号志(如化工产的不同管道颜色)3.最后一道不含颜料的面漆,可以获得致密的屏蔽膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般可达到10mm/a。COZ腐蚀产物为FeCO:,,含量高时呈灰白色,而且比较硬,
酸起泡。
(2)CO:腐蚀的特征
在产生COZ腐蚀时,金属破坏的基本特征是局部腐蚀,但均匀腐蚀现象也很常
见。均匀腐蚀的腐蚀速率主要由CO:的分压、温度、腐蚀产物的保护性、电解质
液的成分和材料决定,而在局部腐蚀时,除上述因素外,流速、某些化学组分(如
由于碳酸的二级电离非常微弱,甚至可忽略不计,所以可以认为溶液中的碳
酸是以+H和HC仇一形式存在的,因此反应产物中大多数物质不是FCeO。而是
e(HCO:,)2。
Fe(HCO办2在高温下不稳定,发生分解:
Fe(HCO3)2一FeCO:,+H:O+COZ
腐蚀产生的碳酸盐在钢铁表面不同区域之间形成了自催化作用很强的腐蚀
硫化氢是由于含硫油田伴生气在水中的溶解或硫酸盐还原菌的分解而产生
的:
IOH++5042一+4Fe一HZSt+4FeZ++4HZO
硫酸盐还原菌是油田水中常见的一种微生物,它易于在厌氧的条件下生长繁殖。
产生的HZS易与腐蚀下来的FeZ‘形成FSe沉积,促进了腐蚀的进一步发生。
HZS+4FeZ‘一FeS毒+ZH‘
油产量,另外还有可能造成垢下腐蚀。在垢块沉积区域内流体的滞流作用使氧
传递发生困难,结垢区域外的氧不能进入,垢下的Fe+2不能扩散出去,垢下的
很快被消耗掉,迫使结垢区内的氧还原反应停止,结垢区内外形成氧浓差,氧
浓差使垢下成为阳极,而垢残余应力等都对其有影响。由此可以看出,COZ腐蚀的影响因
很多,其中COZ分压、流速、pH值、温度和保护膜、溶液成分、材料成分等都
影响腐蚀的非常重要的因素。国内外很多学者“了,进行了大量的研究,其目的在
通过综合考虑各个方面的因素,制订出腐蚀速率预测模型,找到最切合实际的
防止COZ腐蚀的方法。
管随抽油杆的上下运动而伸缩,从而造成油管柱与套管的磨损,由丝堵的磨损
重程度可以想象到套管的损坏程度。
l
·
4
.
7其它腐蚀“,,
巨二水中成垢离子含量较大,在温度较高、HP值较大的情况下会发生结垢
办,‘厄附录5),另外水中的悬浮物、腐蚀产物、微生物粘泥等因素也会在一
条件下加速沉积,可能引起地层堵塞,造成注水压力上升,注水量减少,影响
偶,加快金属的腐蚀。
CO:的腐蚀程度取决于温度、压力、C0:含量、水的pH值、水的组分、沉淀
类型和流动条件,其主要影响因素是C02在水中的含量【‘6’。低硫油井或凝析气
中,局部腐蚀要比均匀腐蚀严重得多,特别是C02分压升高到0.IMPa时,碳钢
坑蚀更严重,局部腐蚀出大小不同形状各异的腐蚀疤和沟槽;腐蚀穿透率也很
引起的腐蚀。氧在水中的溶解度取决于压力温度和C1一含量。氧的腐蚀通常表现
为凹痕。
(2)O:腐蚀的特征
溶解氧是转杆腐蚀的主要原因。即使在很小的浓度时(小于lppm),氧也可
以引起严重的腐蚀,如果在水中再溶解另外两种气体或其中的一种,那就更大大
加了水的腐蚀性。
在大多数情况下,氧从两个方面加快腐蚀,一是氧将起“去极剂”的作用,
eS。反应机理是:
水的电离:HZO一OH一十+H
阳极:Fe一FeZ‘+Ze
阴极:H‘+e一H
SRB阴极去极化:50;2一+SH~52一+4HZO
腐蚀产物:FeZ‘+ZOH一Fe(OH):
Fe卜+52-一FeS
4.5采出水的水质引起的腐蚀
油田水的矿化度很高(江苏油田水的矿化度一般在5000~3300Omg/L),包括
引发大量恶性事故。
.
4.302的腐蚀
(l)02腐蚀机理
氧气是大多数腐蚀发生的主要因素。氧气参与了腐蚀的阴极反应,与阳极铁
的溶解构成了腐蚀电池,氧去极化作用加速了腐蚀。其腐蚀反应如下:
阳极:Fe一FeZ++Ze
阴极:02+ZH:O+4e一4OH-
生成的FeZ+与周围介质中的O--H和HC认一结合生成铁的氢氧化物和盐类,反应
使得水质发臭。
硫化氢对钢的腐蚀会金属锈蚀、管壁减薄,另外腐蚀过程中产生的氢原子极
易渗透到钢铁内部,这样就有可能在很低的应力作用下发生破裂。根据NACE标
准规定的HZS分压超过3x10一4Mpa时,敏感材料将会发生硫化物应力开裂。
(2)比S腐蚀的特征
当生成的FSe致密且与基体结合良好时,对腐蚀有一定的减缓作用。但当生
第一章前言
‘、
Na‘、Ca,‘、MgZ‘、BaZ‘、Sr,’等阳离子以及e一、5042一、Co3,一、Heo3一等阴离子,矿
度的增加,使得电化学腐蚀反应易于进行,增大了腐蚀速度。此外,高浓度氯
子还会引起严重的局部腐蚀(江苏油田水的Cl一般在1800一1500omg/L),由
氯离子半径小,迁移速度高,穿透能力强,最易产生局部酸化水解形成浓差电
CO2+H2O一H,CO:、
H:CO;一H++HCO。-
(1一1)
(1一2)
第一章前言
HCO3-一H++CO32一(l一3)
而产生氢去极化腐蚀,其腐蚀反应为:
阳极:Fe一FeZ++Ze(1一4)
阴极:H‘+e一H(1一5)
ZH一H:(1一6)
总反应为:Fe+HZCO:,一FeCO:,+HZ(1一7)
速铁的腐蚀,也可抑制铁的腐蚀。
(3)H石腐蚀的危害
第一章前言
在石油、天然气、煤化工及其它一些工业中广泛存在HZS腐蚀问题。金属材
遭受HZS腐蚀时,可发生均匀腐蚀U(C)、点蚀P(C)、氢鼓泡H(B)、氢致开
(HIC)、应力导向的氢致开裂(SOHIC)、氢脆(HE)、硫化物应力腐蚀开裂(SSCC)
氢诱发阶梯裂纹(HICS)等,且各种腐蚀形式相互促进,最终导致材料开裂并
但是,如果存在一定量的氯化物离子,就会干扰Fe(OH)。防护层的形成,
腐蚀速度随着氧浓度的增加而继续增加。
(3)02腐蚀的危害
即使是浓度很小的氧(小于lppm),也是非常有害的。另外,由于氧可以起
极剂的作用,所以,它也使HZS或C02所引起的腐蚀加剧。
浓差电池能首先产生腐蚀并出现腐蚀凹痕,在一个系统的两个不同地方,电
液中的氧含量任何时候也不会相同,腐蚀首先会在氧浓度最低的地方发生。典
的例子是水气接触面,裂缝处和水系统中的“氧气结节”处。
.
4
.
4细菌腐蚀
油气井中含有碳酸盐还原菌、硫酸盐还原菌(SRB)铁细菌。由SRB引起的
蚀使硫酸盐还原,这一反应使阳极恢复了极性,从而引起腐蚀。SRB是一种厌
菌,在适度条件下,可迅速繁殖,将硫酸盐中的硫还原成二价硫,生成黑色
成的FSe不致密时,可与金属形成强电偶,反而促进基体金属的腐蚀。另外,当
溶液中或金属基体表面有硫化物存在时,硫化物在一定程度上阻止了氢原子向氢
分子的转变,氢原子在管材表面层的缺陷等部位结合成氢分子,体积膨胀,产生
氢压。在氢气聚集区附近,基体内部形成拉应力,在管材的服役拉力叠加、协同
作用下,就形成了氢裂和硫化物应力腐蚀开裂。在不同实验条件下,H石既可加
应速度就加快,因此就要向水中补充更多的二价铁,以保持化学平衡。
如果Fe+2到Fe+3的氧化过程速度很快,那么腐蚀反应也就会很剧烈。氧的腐
通常表现为出现凹痕。
当溶解在“纯”水中的氧含量增加到一定程度时,水的腐蚀性也就增加。如
水中有足够的氧,那么FeZ+在金属表面扩散掉以前,就会很快地氧化Fe3‘。在
种情况下,在金属表面就会形成Fe(OH)。防护层。
如下:
FeZ++ZOH一Fe(OH)2腐蚀产物
4Fe(OH)2+02+ZHZO一4Fe(OH)。腐蚀产物
HCO:,一H++CO:,,-
FeZ++CO,2一FeCO3腐蚀产物
氧具有很强的腐蚀性,即使浓度很低(IXIO一“以下),也可以引起严重的腐蚀。
另外,水中的溶解氧对井下管材产生氧化去极化腐蚀作用,可加剧H石或C0:所
CO:引起钢铁迅速地全面腐蚀和严重的局部腐蚀,使管道和设备过早失效,往
往还会造成严重事故。如华北油田58号井由于COZ将油管腐蚀的千疮百孔,形同
筛网,仅用18个月就报废;渤海海上油田13一n井的套管内侧,在水蒸气冷凝成水
膜并有C02存在时,发生严重的腐蚀破坏。
1.4.2HZS的腐蚀
(1)H,S腐蚀机理【‘8’
,
出现小阳极/大阴极情况,使腐蚀反应加剧。
1.4.6机械因素的腐蚀
由于抽油杆、活塞、阀等处于运动状态,尤其是缸套经常处于受磨损状态,
固定阀处受流体的冲击而形成涡流导致腐蚀。
由于采油机械的原因,有井斜、全角变化率等因素加快了定向井套损的速度,
江苏油田的定向井,其丝堵位于井斜角变化较大的位置,由于生产管柱未锚定,
在阴极得到电子,并能将腐蚀速度限制在氧可以扩散到阴极的速度之内。如果
有氧,由阴极放出氢气所需的能量是腐蚀反应的难关并且阻止反应。反之,当
存在时,它就会作为阴极表面上一个附加的电子接受体,使得反应速度加快;
硕士学位论文
是pH值大于4时,二价铁氧化为三价铁,使腐蚀反应加快。这是因为氢氧化
不溶解,而且在溶液中沉淀。如果这些沉淀的氢氧化铁从金属表面剥落,腐蚀
(3)COZ腐蚀的危害
硕士学位论文
C02腐蚀是石油天然气工业中一种常见的腐蚀类型。随着我国西部油田的开
及深井的开采,COZ腐蚀已成为困扰我国石油工业发展的一个极为突出的问题。