晶间腐蚀机理一
不锈钢晶间腐蚀试验与分析

不锈钢晶间腐蚀试验与分析一、实验目的1. 掌握影响奥氏体不锈钢晶间腐蚀的因素;2. 掌握不锈钢晶间腐蚀试验的方法;二、实验原理18-8型奥氏体不锈钢在许多介质中具有高的化学稳定性,但在400-800 C范围内加热或在该温度范围内缓慢冷却后,在一定的腐蚀介质中易产生晶间腐蚀。
晶间腐蚀的特征是沿晶界进行浸蚀。
使金属丧失机械性能,致使整个金属变成粉末。
1. 晶间腐蚀产生的原因一般认为在奥氏体不锈钢中,铬的碳化物在高温下溶入奥氏体中,由于敏化(400-800 C)加热时,铬的碳化物常于奥氏体晶界处析出,造成奥氏体晶粒边缘贫铬现象,使该区域电化学稳定性下降,于是在一定的介质中产生晶间腐蚀。
为提高耐蚀性能,常采用以下两种方法。
(1)将18-8型奥氏体不锈钢碳含量降至0.03%以下,使之减少晶界处碳化物析出量,而防止发生晶间腐蚀。
这类钢成称为超低碳不锈钢,常见的有00Cr18Ni10。
(2)在18-8型奥氏体不锈钢中加入比铬更易形成碳化物的元素钛或铌,钛或铌的碳化物较铬的碳化物难溶于奥氏体中,所以在敏化温度范围内加热时,也不会于晶界处析出碳化物,不会在腐蚀性介质中产生晶间腐蚀。
为固定18-8型奥氏体不锈钢中的碳,必须加入足够数量的钛或铌,按原子量计算,钛或铌的加入量分别为钢中碳含量的4-8倍。
2. 晶间腐蚀的试验方法晶间腐蚀的试验方法有C法、T法、L法、F法和X法。
这里介绍容易实现的C 法和F法。
试样状态:(1) 含稳定化元素(Ti或Nb)或超低碳(C W 0.03%)的钢种应在固溶状态下经敏化处理的试样进行试验。
敏化处理制度为650C 保温1小时空冷。
⑵含碳量大于0.03%不含稳定化元素的钢种,以固溶状态的试样进行试验;用于焊接钢种应经敏化处理后进行试验。
(3)直接以冷状态使用的钢种,经协议可在交货状态试验。
(4)焊接试样直接以焊后状态试验。
如在焊后要在350C以上热加工,试样在焊后要进行敏化处理。
试样制备:(1) 试样从同一炉号、同一批热处理和同一规格的钢材中选取。
晶间腐蚀产生条件

晶间腐蚀产生条件
晶间腐蚀是一种常见的金属腐蚀现象,它是由于金属晶界处的化学成分不同而引起的。
晶间腐蚀会导致金属的强度和韧性降低,从而影响金属的使用寿命和性能。
下面我们来探讨一下晶间腐蚀产生的条件。
晶间腐蚀的产生与金属的化学成分有关。
当金属中的某些元素在晶界处形成了化合物或固溶体时,就会导致晶界处的化学成分不同于晶内,从而引起晶间腐蚀。
例如,不锈钢中的铬、钼等元素在晶界处形成了化合物,容易引起晶间腐蚀。
晶间腐蚀的产生与金属的加工工艺有关。
在金属的加工过程中,如果温度过高或加工速度过快,就会导致金属晶界处的化学成分发生变化,从而引起晶间腐蚀。
此外,金属的焊接、热处理等工艺也容易引起晶间腐蚀。
晶间腐蚀的产生与金属的环境有关。
在一些特殊的环境中,如高温、高压、酸性或碱性环境中,金属晶界处的化学成分容易发生变化,从而引起晶间腐蚀。
例如,在高温高压下,不锈钢中的铬、钼等元素容易形成化合物,从而引起晶间腐蚀。
晶间腐蚀的产生与金属的微观结构有关。
金属的晶粒大小、晶界角度等微观结构参数都会影响晶间腐蚀的产生。
例如,晶粒越细,晶界处的化学成分差异越小,晶间腐蚀的产生就越不容易。
晶间腐蚀的产生与金属的化学成分、加工工艺、环境和微观结构等因素有关。
在实际应用中,我们需要根据具体情况采取相应的措施,如选择合适的材料、优化加工工艺、控制环境条件等,以减少晶间腐蚀的产生,提高金属的使用寿命和性能。
压力容器不锈钢晶间腐蚀的形成机理及试验方法

压力容器不锈钢晶间腐蚀的形成机理及试验方法作者:马宗萌来源:《中国化工贸易·上旬刊》2020年第02期摘要:介绍不锈钢的晶间腐蚀机理,奥氏体不锈钢在敏化温度区内,碳向晶界扩散,并且碳与铬形成碳化铬,导致晶间贫铬,晶体内外出现电位差,产生电化学腐蚀,即为晶间腐蚀。
晶间腐蚀在特定介质下无法避免,需根据腐蚀环境选择合理的材质及进行晶间腐蚀试验,以判定不锈钢是否具有晶间腐蚀倾向。
关键词:不锈钢;贫铬;晶间腐蚀1 不锈钢晶间腐蚀概述随着社会的发展,材料的进步,碳钢的大量应用让人们认识到了钢材腐蚀的严重性,以及腐蚀带来的安全事故频发。
通过向碳钢中填加合金元素发明了不锈钢。
不锈钢耐腐蚀能力很强,有优良的耐均匀腐蚀性能以及良好的力学、焊接性能,但并不是万能的。
由于奥氏体不锈钢压力容器所产生的晶间腐蚀属于局部腐蚀,隐蔽性很强,不易发现。
对压力容器的安全运行造成极大隐患,易发生安全事故。
因此本文探讨分析奥氏体不锈钢晶间腐蚀的形成原因,以及怎么采取措施降低晶间腐蚀的影响。
不锈钢因填加合金元素和冶炼方法区别形成不同的钢种。
按照钢材晶相组织结构可以分为铁素体不锈钢、奥氏体不锈钢、奥氏体--铁素体不锈钢、马氏体不锈钢、双相不锈钢和近年研发的超级不锈钢;按照化学成分可以将不锈钢分为铬镍不锈钢和铬不锈钢两大类。
奥氏体不锈钢因优异的性能和相对得到了广泛的应用。
2 不锈钢晶间腐蚀的理论基础晶间腐蚀是指不锈钢在特定的腐蚀介质接触中,晶粒、晶界、基体和晶间化合物之间形成微电池效应,导致腐蚀从金属的表面开始,沿晶界不断向晶粒内部发展,造成不锈钢晶粒间结合力降低,不锈钢强度降低,严重时会造成材料的完全失效。
晶间腐蚀虽然在不锈钢表面没有形成严重的腐蚀痕迹,外表看不出腐蚀的迹象,但晶间腐蚀为沿晶界发展的裂纹,金属原有的物理、机械性能几乎完全丧失,导致其在很小的载荷下,便有可能发生材料的破裂失效。
奥氏体不锈钢晶间腐蚀的机理是贫铬理论:不锈钢因填加铬元素而有很高的耐蚀性,经研究铬含量14%~18%的不锈钢有极佳的耐蚀性,但铬含量≤12%时其耐蚀性能和普通碳钢差不多。
铁素体不锈钢晶间腐蚀的机理和改善应用研究

铁素体不锈钢晶间腐蚀的机理和改善应用研究作者:胡海波汤旭炎来源:《时代汽车》2021年第07期摘要:铁素体不锈钢在汽车行业使用很广泛,从电子零件到车身焊接,都要用到铁素体不锈钢,而且激光焊接是汽车系统对不同金属材料连接的一个重要方式,而不锈钢的成分对金属焊接造成的晶间腐蚀敏感性不同。
不锈钢的晶间腐蚀对焊接强度的耐久性有直接影响,对焊接牢固的安全性即对汽车系统的安全性有直接影响。
晶间腐蚀在不锈钢焊接工艺多少存在,本文对晶间腐蚀的发生原因和改善对策做了充分阐述。
关键词:晶间腐蚀敏化作用贫铬区铬化物草酸试验法1 引言汽车电子零件和钣金件,有用到很多铁素体不锈钢零件,而连接不锈钢的方式很多是采用激光焊接工艺,激光焊接后强度能满足测试要求,但是在长期的盐雾试验后,我们发现有很多发生了晶间腐蚀,造成焊接区域产生裂缝,甚至长期使用后,焊接部分发生脱离,造成汽车零件失效甚至造成汽车安全事故。
因此分析晶间腐蚀的发生机理和如何避免晶间腐蚀的发生尤为关键,本论文就以上问题做出深刻分析和改善措施验证,并且以汽车零件实例进行阐述。
1.1 晶间腐蚀概述晶间腐蚀指的是不锈钢在腐蚀介质的作用之下在晶粒之间所产生的一种腐蚀现象。
晶间腐蚀是一种局部腐蚀,这种腐蚀会沿着金属晶粒间的分界面向内部扩展,其会严重破坏晶粒间的结合力。
导致这种腐蚀现象发生的原因是晶粒表面和内部之间的化学成分有着较大的差异,并且有晶界杂质或者是内应力存在。
这种腐蚀会严重破坏晶粒间的结合,让金属的机械强度受到巨大的影响。
需要注意的是这种腐蚀在金属和合金的表面看不出有破坏的迹象,然而其内部晶粒之间的结合力已经被破坏,并且力学性能也出现了恶化,很难有效分辨,所以非常危险。
只有采用金相显微镜进行观察,才能够发现晶界呈网状形态,晶界区因腐蚀已遭破坏,晶粒也接近分离。
晶间腐蚀多出现于黄铜、硬铝合金以及一些不锈钢、镍铬基合金中。
而在化学工业中,不锈钢焊缝的晶间腐蚀是一个重大的问题。
晶间腐蚀及选材

晶间腐蚀及选材不锈钢的晶间腐蚀是沿不锈钢晶粒间界产生的一种优先破坏.它曾经是人们20世纪30~50年代最为关注,最为常见的腐蚀破坏形式。
虽然不锈钢敏化态晶间腐蚀的事故已大大减少,但非敏化态晶间腐蚀的研究和解决尚需人们继续努力。
(一)铬镍奥氏体不锈钢的敏化态晶间腐蚀(1)现象和识别敏化态晶间腐蚀出现在焊接构件的焊缝热影响区或构件经过450~850°C加热的部件,在介质作用下导致这些部位的泄漏或破损;产生敏化态晶间腐蚀的设备,部件等,其尺寸,外形几乎没有变化且无任何塑性变形;除受腐蚀的区域外,其它部位没有任何腐蚀的迹象,仍具有明显的金属光泽;局部取样检查,受腐蚀部位的强度,塑性已严重丧失,冷弯时不仅出现裂纹,严重时常常出现脆断和晶粒脱落且落地无金属声。
在金相显微镜和扫描电镜下可以明显看到钢的晶界由于受腐蚀而变宽,多呈网状,严重时还有晶粒脱落现象。
(2)机理常见的敏化态晶间腐蚀应用贫铬理论可得到圆满的解释。
Cr-Ni奥氏体不锈钢在使用前或冶炼厂出厂交货状态多为固溶处理状态。
即将不锈钢加热到高温(1000~1150°C左右,随钢种而异),保温后快冷(一般为水冷)。
此时,当Cr-Ni奥氏体不锈钢中含碳量在0.02~0.03%以上时(随钢中的含Ni量而异),碳在钢中便处于过饱和状态。
随后,在不锈钢的加工及设备,构件的制造和使用过程中,若要经过450~850°C的敏化温度加热(例如焊接或在此温度范围内使用),则钢中过饱和的碳就会向晶界扩散,析出并与其附近的铬形成铬的碳合物。
在常用的Cr-Ni奥氏体不锈钢中,这种碳化物一般为Cr23C6[M23C6]。
由于这种碳化物含有较高的Cr,所以铬碳化物沿晶界沉淀就导致了碳化物周围钢的基体中Cr浓度的降低,形成所谓“贫铬区”。
当铬碳化物沿晶界沉淀呈网状时,贫铬区亦呈网状,不锈钢耐腐蚀是因为在介质作用下,钢中含有足以使钢在此介质中钝化的铬量。
而贫铬区铬量不足,使钝化能力降低,甚至消失,而奥氏体晶粒本身仍具有足够钝化(耐蚀)能力,因此,在腐蚀介质作用下晶界附近连成网状的贫铬区便优先溶解而产生晶间腐蚀。
晶间腐蚀的原理

晶间腐蚀的原理
在不锈钢中,碳与硫、磷等杂质元素的存在,会导致晶间腐蚀。
在加工和使用过程中,这些杂质会逐渐积聚在不锈钢中,并沿晶间的缝隙向基体中扩散,形成疏松多孔的组织,导致强度下降、脆性增大。
尤其是磷元素,当其浓度达到一定数值时,就会使不锈钢产生“点蚀”。
“点蚀”是一种典型的晶间腐蚀形式。
点蚀是指不锈钢表面出现小孔或凹坑等缺陷的现象。
在金属腐蚀过程中,产生晶间腐蚀的原因主要有以下几种:
1.合金元素的偏析
在金属晶体形成时,由于不同元素在晶体内的分布不同而导致原子序数和电子层数的不同。
合金元素的偏析可以通过化学分析来检测。
例如在不锈钢中加入少量Si、Al、Ca等元素,就会形成第二相沉淀物(Al2CuO4)。
这些第二相沉淀物不溶于水而溶于酸或碱中,当它们溶解于酸或碱中时,就会破坏原不锈钢中所含有的第二相沉淀物而生成新的化合物,这种化合物称为腐蚀产物。
—— 1 —1 —。
晶间腐蚀的机理

二、晶间腐蚀的防止和消除 进行均匀化处理
焊后, 将奥氏体不锈钢的焊接接头重新加热至850~900℃, 保温 2 h, 使奥氏体晶粒内部的铬有充分时间扩散到晶界, 使晶界处 的含铬量又恢复到大于12%(质量分数) , 贫铬区得以消失, 这叫 均匀化处理。
二、晶间腐蚀的防止和消除 铁素体含量的影响
合格标准
பைடு நூலகம்
与钢表面敲击,有清脆 的金属敲击声 弯曲 90°,无裂纹;若 开裂,开裂边缘没有晶 间腐蚀迹象。 微观金相:作为上述两 试验的补充,在上述两 试验存在争议时,提供 判定依据
三、晶间腐蚀试验方法 核电设计中常用的奥氏体不锈钢晶间腐蚀试验方法
标准 敏化处理条件 适用范围 加 热 至 650± , 加 热 时 间 不 超 过 5min,保温10min后,立刻水冷 低碳(C≤0.06)18-10钢 加 热 至 675± , 加 热 时 间 不 超 过 5min,保温10min后,立刻水冷 含Mo低碳(C≤0.06)18-10钢 加 热 至 700± , 加 热 时 间 不 超 过 RCC-M MC 5min ,保温 30min 后,缓慢随炉冷 超低碳(C≤0.03)18-10钢;含稳定化元素(Ti,Nb)的18-10 1310 却(60±/h)至后,空冷 钢 加 热 至 725± , 加 热 时 间 不 超 过 5min ,保温 30min 后,缓慢随炉冷 含Mo超低碳(C≤0.03)18-10钢;含稳定化元素(Ti,Nb)以 却(60±/h)至后,空冷 及Mo的18-10钢 超低碳(C≤0.03)钢或稳定化钢(添加Ti或Nb),压力加工 试件 超低碳(C≤0.03)钢或稳定化钢(添加Ti或Nb),铸件 焊后还要进行以上热加工的焊接件
四、晶间腐蚀要求 RG1.44对于工艺评定的要求
晶间腐蚀产生条件

晶间腐蚀产生条件引言晶间腐蚀是一种常见的金属腐蚀类型,对于一些金属结构的强度和可靠性产生了严重的影响。
了解晶间腐蚀产生的条件对于预防和控制晶间腐蚀具有重要意义。
本文将深入探讨晶间腐蚀产生的条件。
组织结构对晶间腐蚀的影响晶间腐蚀主要发生在不锈钢和合金中。
晶间腐蚀的产生与材料的组织结构密切相关,下面将从晶间腐蚀的影响角度分析组织结构对晶间腐蚀的影响。
晶界溶质偏聚晶界溶质偏聚是晶间腐蚀的重要原因之一。
溶质偏聚会导致晶界区域退火不足,使晶界处易受腐蚀。
发生晶界溶质偏聚的原因常常是材料的非均匀冷却或热处理过程不当。
晶界结构异常晶间腐蚀还与晶界结构异常有关。
晶界结构异常可能是由于金属中的夹杂物或不均匀成分分布引起的。
这种异常结构容易形成电偶对,加速了晶间腐蚀的发生。
晶界能差异晶界能差异也是引发晶间腐蚀的一个重要因素。
晶界能差异会导致晶界区域具有更高的电化学活性,使其成为腐蚀的首要位置。
晶界能差异通常是由不同晶粒的成分和晶粒生长条件不同引起的。
环境因素对晶间腐蚀的影响溶液成分溶液成分是晶间腐蚀中的重要环境因素。
一些有害离子的存在会加速晶间腐蚀的发生。
例如,氯离子、溴离子和硫离子等常见的离子在一定条件下会导致晶间腐蚀加剧。
温度温度是晶间腐蚀的重要影响因素之一。
在一定的温度范围内,晶间腐蚀的速率随温度的升高而增大。
高温环境下的金属晶界往往更容易发生晶间腐蚀。
pH值溶液的pH值也对晶间腐蚀产生影响。
在一些特定的pH范围内,晶界区域的腐蚀速率显著增加。
不同金属对应不同的pH敏感范围。
氧化性氧化性是引起晶间腐蚀的另一个重要环境因素。
高氧化性会增加晶间腐蚀的概率。
氧化性通过氧化物和氧载体的形式参与晶间腐蚀的过程。
预防晶间腐蚀的措施合理冷却和热处理在金属材料制备的过程中,合理的冷却和热处理过程对于预防晶间腐蚀至关重要。
通过合理的退火和固溶处理,可以减轻晶界溶质偏聚的现象,减小晶界能差异。
选择合适的材料成分合理选择材料成分可以降低晶间腐蚀的风险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、晶间腐蚀的机理 晶间腐蚀机理
1)晶间区偏析杂质或第二相选择性溶解理论 非敏化态晶间腐蚀机理主要是晶间区偏析杂质或第二相选 择性溶解理论。 该理论认为,偏析于晶界上的杂质元素(如P和Si)或沉淀析 出相(如σ相或亚显微的σ相)的选择性溶解是引起晶间腐蚀 的原因。 2)贫Cr理论 奥氏体不锈钢敏化态晶间腐蚀的机理主要是贫Cr理论。
二、晶间腐蚀的防止和消除 控制加热温度和时间
二、晶间腐蚀的防止和消除 控制含碳量
随着不锈钢中含碳量的增加, 在晶界生成的碳化铬随之增多, 结果就使得在晶界形成“贫铬区“的机会增多, 导致产生晶间 腐蚀的倾向增加, 所以碳是晶间腐蚀最有害的元素。 一般认为奥氏体不锈钢中含碳量降低到0.02~0.03%以下,便 可避免晶间腐蚀。
三、晶间腐蚀试验方法 核电设计中常用的奥氏体不锈钢晶间腐蚀试验方法
标准号 试样尺寸 ASTM A262E GB/T4334 E RCC-M MC1300 5-13 厚 ,9-25 宽 , 最 小 80-100 长 , 20mm 厚 ,3-4mm 长 × 宽 × 厚 75mm长 厚 70×10×4mm 试样数量: 3 个, 1 个参 考试样,1个焊后热处理 态试样(若产品需要焊后 热处理态 ) , 1 个经敏化 处理后的试样; 675 650 700 1h 2h 加热至700±,加热时间 不 超 过 5min , 保 温 30min 后 , 缓 慢 随 炉 冷 却(60±/h)至后,空冷 将 硫 酸 铜 将 硫 酸 铜 质量百分比: 10% 结晶 (CuSO4· 5H2O) 溶 解 于 (CuSO4· 5H2O)(GB/T 665 分 硫酸铜, 10% 硫酸 ( 密度 700ml 蒸馏水中,再加 析纯 ) 溶解于 700ml 蒸馏水或 1.83),80%蒸馏水 入100ml硫酸(比重1.84), 去离子水中,再加入 100ml 用 蒸 馏 水 稀 释 至 纯硫酸(GB/T 625 优级),用 1000ml( 质量百分比: 蒸 馏 水 或 去 离 子 水 稀 释 至 约 6% 无 水 硫 酸 铜 , 1000ml 16%硫酸)
二、晶间腐蚀的防止和消除
在钢材和焊接材料中加入Ti、Nb 等与碳的结合能力比铬更强 的元素, 能够与碳结 合成稳定的碳化物, 可以避免在奥氏体晶 界形成贫铬区。所以, 常用奥氏体不锈钢及焊接材料中都含有 Ti 或Nb 元素,如ER347等。
二、晶间腐蚀的防止和消除 进行固溶处理
焊后, 将奥氏体不锈钢的焊接接头重新加热至1050~1100℃, 此 时碳又重新溶入奥氏体中, 然后急速冷却, 便可得到稳定的奥 氏体组织, 消除贫铬区。这种方法叫固溶处理。固溶处理的缺 点是, 如果焊接接头需要在危险的温度区工作, 则仍不可避免 地会形成贫铬区。
二、晶间腐蚀的防止和消除 进行均匀化处理
焊后, 将奥氏体不锈钢的焊接接头重新加热至850~900℃, 保温 2 h, 使奥氏体晶粒内部的铬有充分时间扩散到晶界, 使晶界处 的含铬量又恢复到大于12%(质量分数) , 贫铬区得以消失, 这叫 均匀化处理。
二、晶间腐蚀的防止和消除 铁素体含量的影响
一、晶间腐蚀的机理 晶间腐蚀机理
贫Cr理论 对奥氏体不锈钢而言其晶间腐蚀的原因是由于晶界区贫铬 所引起的。含碳量高于0.02%的奥氏体不锈钢中,碳与铬能 生成碳化物(Cr23C6)。这些碳化物经过高温淬火,以固溶态 溶于奥氏体中,铬均匀分布,使合金各部分铬含量均在钝 化所需值即12%以上。这种过饱和固溶体在室温下虽然暂 时保持这种状态,但它是不稳定的。如果加热到敏化温度 范围内,碳化物就会沿晶界析出,铬便从晶界边界的固溶 体中分离出来。由于铬的扩散速度很慢,远低于碳的扩散 速度,不能从晶粒内固溶体中扩充到晶界,因而只能消耗 晶界附近的铬,造成晶粒边界贫铬区。
一、晶间腐蚀的机理 晶间腐蚀机理
贫Cr理论 贫铬区的含铬量远低于钝化 所需要的极限值,其电位比 晶粒内部的电位低。更低于 碳化物的电位。贫铬区和碳 化物紧密相连,当遇到一定 腐蚀介质时就会发生短路电 池效应。该情况下碳化铬和 晶粒呈阴极,贫铬区呈阳极, 迅速被侵蚀。
二、晶间腐蚀的防止和消除 控制加热温度和时间
加热温度和加热时间对奥氏体不锈钢晶间腐蚀的影响, 如图1 所示。当加热温度小于450℃或大于850℃时, 不会产生晶间腐 蚀。因为温度小于450℃时, 由于温度较低, 不会形成碳化铬。 当温度超过850℃时, 晶粒内的铬扩散能力增强, 有足够的铬扩 散至晶界和碳化合, 不会在晶界形成“贫铬区”。所以产生晶 间腐蚀的加热温度是在450~ 850 ℃, 这个温度区间就称为产生 晶间腐蚀的”危险温度区”(又称”敏化温度区”) , 其中尤以650℃ 最危险。焊接时焊缝两侧处于”危险温度区”的地带最易发生 晶间腐蚀。即使是焊缝由于在冷却过程中其温度也要穿过”危 险温度区”, 所以也会产生晶间腐蚀。
在相同碳含量时,含有5%的铁素体组织的奥氏体不锈钢将明 显改善其乃晶间腐蚀性能。
三、晶间腐蚀试验方法 核电设计中常用的奥氏体不锈钢晶间腐蚀试验方法
(a) GB/T 4334 E法不锈钢硫酸-硫酸铜腐蚀试验方法 (b) ASTM A262 E法 Copper–Copper Sulfate–Sulfuric Acid Test for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels (c) RCC-M-2007 MC1300 Accelerated Intergranular Corrosion Test of Austenitic Stainless 18-10 Chromium Nickel Steel
核电设备奥氏体不锈钢焊接接头 晶间腐蚀试验
2014.06
上海核工程研究设计院
目录
一.什么叫晶间腐蚀
二.晶间腐蚀的防止和消除
三.常见晶间腐蚀的机理 晶间腐蚀定义
晶间腐蚀是一种由微电池作用而引起的局部腐蚀现象,是 金属材料在特定的腐蚀介质中沿着材料的晶界产生的腐蚀。 这种腐蚀主要是从表面开始,沿着晶界向内部发展,直至 成为溃疡式腐蚀,整个金属强度几乎完全丧失。其腐蚀特 征是,在表面还看不出腐蚀特征时,晶粒之间已丧失了结 合力,失去金属声音,严重时,只要轻轻敲打就可破碎, 甚至形成粉状。因此,它是一种危害性很大的局部腐蚀。