晶间腐蚀的定义
不锈钢晶间腐蚀问题

不锈钢晶间腐蚀问题晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。
这种腐蚀是在金属(合金)表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。
许多金属(合金)都具有晶间腐蚀倾向。
其中不锈钢、铝合金及含钼的镍基合金晶间腐蚀较为突出。
如有应力存在,由晶间腐蚀转变为沿晶应力腐蚀破坏。
贫化理论认为,晶间腐蚀是由于晶界析出新相,造成晶界附近某一成分的贫乏化。
如奥氏体不锈钢回火过程中(400-800℃)过饱和碳部分或全部以Cr23C6 形式在晶界析出,造成碳化物附近的碳与铬的浓度急剧下降,在晶界上形成贫铬区,贫铬区作为阳极而遭受腐蚀。
对于低碳和超低碳不锈钢来说,不存在碳化物在晶界析出引起贫铬的条件。
但一些实验表明,低碳,甚至超低碳不锈钢,特别是高铬、钼钢,在650-850℃受热时,在强氧化介质中,或其电位处于过钝化区时,也发生晶间腐蚀。
铁素体不锈钢在900℃以上高温区快冷(淬火或空冷)易产生晶间腐蚀。
即使极低碳、氮含量的超纯铁素体不锈钢也难免产生晶间腐蚀。
但在700-800℃重新加热可消除晶间腐蚀。
由此可见,铁素体不锈钢焊后在焊缝金属和熔合线处易产生晶间腐蚀。
18Cr-9Ni 钢在温度高于750℃时,不产生晶间腐蚀,而在600-700℃区间,晶间腐蚀倾向最严重。
当温度低于600℃时,需长时间才能产生晶间腐蚀倾向,温度低于450℃时基本不产生晶间腐蚀倾向。
检验某种钢材是否有晶间腐蚀倾向,一般采用敏化处理工艺。
钢材加热到晶间腐蚀最敏感的,恒温处理一定时间,这种处理工艺称为敏化处理,产生晶间腐蚀最敏感的温度叫敏化温度。
18-8 不锈钢最敏感温度为650-700℃,产生晶间腐蚀倾向所需要的最短时间为1-2小时。
不锈钢中,除了主要成分Cr、Ni、C 外,还含有Mo、Ti、Nb 等合金元素。
它们晶间腐蚀的作用如下:1.碳:奥氏体不锈钢中碳量越高,晶间腐蚀倾向越严重,导致晶间腐蚀碳的临界浓度为0.02%(质量分数)。
标准 晶间腐蚀 对比

标准晶间腐蚀对比晶间腐蚀是一种在金属晶界区域发生的腐蚀现象,主要发生于某些合金材料的热处理或使用过程中。
本文将介绍晶间腐蚀的定义、原因和对比。
一、定义晶间腐蚀是指在金属材料的晶界区域发生的腐蚀现象。
晶界是不同晶格方向的结合区域,晶界周围的原子排列不规则,因此较容易出现腐蚀。
晶间腐蚀对金属材料的力学性能和耐蚀性能造成不可逆的损害。
二、原因晶间腐蚀的原因主要有以下几个方面:1. 合金元素偏聚:在金属合金中,某些元素容易在晶界区域富集,形成易腐蚀的区域。
2. 金属材料的结构不均匀性:金属材料的晶粒大小和形状不均匀,晶界区域容易成为腐蚀的热点。
3. 冷处理和热处理不当:不适当的冷处理和热处理过程会导致晶界区域的腐蚀倾向性增加。
4. 腐蚀介质和环境条件:某些腐蚀介质和环境条件下,晶间腐蚀的发生更为严重。
三、对比晶间腐蚀与普通腐蚀相比,具有以下特点:1. 位置不同:晶间腐蚀主要发生在金属材料的晶界区域,而普通腐蚀主要发生在金属材料的表面。
2. 来源不同:晶间腐蚀主要由于材料的内在结构和成分不均匀导致,而普通腐蚀主要受腐蚀介质和外界环境条件等因素影响。
3. 形式不同:晶间腐蚀呈现为晶界区域的腐蚀沿晶界面扩展,形成孔洞和裂纹;而普通腐蚀则是由于腐蚀介质的化学作用,表面均匀腐蚀形成溶解层或表面坑洞。
4. 影响不同:晶间腐蚀对金属材料的力学性能和耐蚀性能造成较大的损害,更容易导致材料的断裂;而普通腐蚀主要影响材料的外观和表面光洁度,并对材料的功能性能有一定影响。
晶间腐蚀是一种发生在金属晶界区域的腐蚀现象。
它与普通腐蚀在位置、来源、形式和影响等方面存在明显的差异。
对于金属材料的工程应用和使用过程中,我们应加强对晶间腐蚀的认识和防护措施,以保证材料的长期稳定性和可靠性。
腐蚀分类1

比较均匀。腐蚀在金属的整个表面上进行,整个金属表面几乎以相同速
度进行腐蚀,金属腐蚀表现为整体减薄,直到失效; 2. 腐蚀原电池的阴、阳极面积非常小,用微观方法无法辨认,而且微阳
极和微阴极的位置随机变化,由微观腐蚀电池组成;
3. 整个金属表面在溶液中处于活化状态,只是各点随时间(或地点)有 能量起伏,能量高时(处)呈阳极,能量低时(处)呈阴极,从而使整
7.
表面可根据服役年限的要求,涂覆不同的覆盖层,包括
金属喷镀、电镀、热浸镀和各种涂料涂装体系以防止设
备的过早腐蚀破坏。
局部腐蚀特点:
1. 导致的金属的损失量小,很难检测其腐蚀速率,
但由于局部区的严重腐蚀往往导致突然的腐蚀事
故; 2. 局部腐蚀的种类多种多样; 3. 腐蚀事故中80%以上是由局部腐蚀造成的,难以 预测局部腐蚀速率并预防。
点蚀发生的条件
点蚀的发生要满足材料、介质和电化学 三个方面的条件: 1.材料条件:
点蚀多发生在表面容易钝化的金属材料上(如不锈钢、 Al及Al合金)或表面有阴极性镀层的金属上(如镀Sn、Cu或 Ni的碳钢表面)。 原因:当钝化膜或阴极性镀层局部发生破坏时,未破坏区和 破坏区的金属形成了大阴极、小阳极的“钝化-活化腐蚀电 池”,使腐蚀向基体纵深发展而形成蚀孔。
蚀孔形核敏感位置
金属材料表面成分和组织的不均匀性,表面钝化膜在某些部位较为薄弱, 这些部位成为蚀孔容易形核的部位:
晶界:晶界析出碳化铬导致晶界贫铬;位错,金属材料表面露头的位错是产 生点蚀的敏感部位 非金属夹杂:硫化物 硫化物夹杂是碳钢、低合金钢、不锈钢以及Ni等材料萌生点蚀最敏感的 位置。
析出相:碳化物、氮化物、碳氮化物 异相组织: 耐蚀合金元素在不同相中的分布不同,使不同的相具有不同的点蚀敏感 性,即具有不同的Eb值。 例如:在铁素体-奥氏体双相不锈钢中,铁素体相中的Cr、Mo含量较高, 易钝化;而奥氏体相容易破裂。点蚀一般发生在相界处奥氏体一侧。 钝化膜的机械划伤
8825晶间腐蚀标准

8825晶间腐蚀标准腐蚀是金属材料在特定环境条件下遭受化学或电化学侵蚀而发生的破坏过程。
其中,晶间腐蚀是一种常见的金属腐蚀现象,尤其是对于高强度钢材来说,其晶间腐蚀的标准与评定具有重要意义。
本文将从晶间腐蚀的定义、原因及影响因素出发,重点探讨8825晶间腐蚀标准的制定。
1. 晶间腐蚀的定义晶间腐蚀是指金属材料在特定条件下,由于晶界处的微观结构存在缺陷或偏差,导致晶界区域比基体金属更容易遭受腐蚀而发生的现象。
晶间腐蚀往往表现为晶界附近的腐蚀坑或裂纹,严重时会导致材料的强度和韧性下降。
2. 晶间腐蚀的原因晶间腐蚀的产生原因主要包括以下几个方面:(1)合金中不稳定的相:某些合金在高温或特定环境下,会出现与基体不相容的相,形成了晶界附近不稳定区域,易于遭受腐蚀。
(2)晶界缺陷与偏差:晶界处存在晶格位错、孔洞、错配度等缺陷或偏差,这些缺陷容易诱导腐蚀反应的发生。
(3)环境因素:如温度、湿度、化学物质等,不适宜的环境条件会加速晶间腐蚀的发生。
3. 8825晶间腐蚀标准的制定8825晶间腐蚀标准是指一种用于评定高强度钢材晶间腐蚀程度的标准。
该标准通常采用一系列评价方法,比如金相观察、腐蚀剥离实验、X 射线检测等,对材料进行定性和定量的分析,以判断晶间腐蚀的程度。
4. 评定指标8825晶间腐蚀标准的评定指标主要包括以下几个方面:(1)腐蚀程度:通过对试样进行金相观察等分析手段,评估晶间腐蚀的程度,以确定其是否符合标准要求。
(2)腐蚀比例:通过对试样进行腐蚀剥离实验,测量腐蚀区域的比例,以判断晶间腐蚀的扩展情况。
(3)晶界裂纹:通过X射线检测等方法,观测晶界附近是否存在裂纹现象,以判断晶间腐蚀对材料的影响程度。
5. 标准的应用8825晶间腐蚀标准主要应用于高强度钢材的质量控制和产品认证中。
通过对材料的晶间腐蚀情况进行评估,制定相应的标准和监管措施,可以保证高强度钢材的使用安全和可靠性。
6. 预防与应对为了防止或减轻8825晶间腐蚀的发生,可以采取以下措施:(1)优化材料成分:调整合金的成分,减少不稳定相的生成,提高材料的抗腐蚀性能。
《晶间腐蚀》课件

晶间腐蚀是指金属晶界处发生的一种腐蚀现象。本课件将介绍晶间腐蚀的定 义、机理、分类、危害以及防治方法,共同探索晶间腐蚀的奥秘。
什么是晶间腐蚀
晶间腐蚀是金属晶界处发生的一种腐蚀现象。它基于金属晶粒内的特殊结构, 容易受到外部环境的侵蚀。了解晶间腐蚀的定义和机理可以帮助我们更好地 理解和预防这种腐蚀现象。
晶间腐蚀的分类
晶间腐蚀类别的概述
晶间腐蚀可以根据腐蚀形貌、腐蚀速度等进 行分类,这有助于我们对不同类型的晶间腐 蚀进行深入研究。
不同材料的晶间腐蚀分类
不同金属材料的晶间腐蚀表现存在差异,了 解不同材料的分类可以帮助我们更好地应对 晶间腐蚀问题。
晶间腐蚀的危害
1 晶间腐蚀可能造成的影响
2 实际应用中的晶间腐蚀案例
晶间腐蚀不仅损害金属材料的性能和强度, 还可能导致相关设备的失效和安全隐患。
通过实际案例分析,我们可以更好地认识 晶间腐蚀对工业领域的影响,并探索解决 方案。
晶间腐蚀的防治
1
晶间腐蚀的治理方法
2
一旦晶间腐蚀发生,我们可以通过电 化学处理、金属涂层等治理方法来修
复受损的金属表面。
晶间腐蚀的预防
采取正确的材料选择、合适的工艺控 制和环境监测等预防措施,可以有效 降低晶间腐蚀的风险。
总结
对晶间腐蚀的认识深度
深入了解晶间腐蚀现象和预防方法,可以更好地 保护金属材料的性能和延长设备的使用寿命。
对晶间腐蚀的应用前景展望
持续研究晶间腐蚀机理和防治方法,有助于探索 更先进的材料和技术,为工业发展提供支持。
Байду номын сангаас
晶间腐蚀

晶间腐蚀机理
贫化理论、晶间相析出理论、晶界吸附理论。 1、贫化理论:该理论认为,晶间腐蚀是由于晶界易析出第二相,造 成晶界某一成分的贫乏化。 ①对于奥氏体不锈钢,因晶界析出Cr23C6相,造成晶界贫铬,则为贫 铬理论; ②对于镍钼合金,晶界析出Ni7Mo5,晶界贫钼; ③对于铜铝合金,晶界析出CuAl2,造成晶界贫铜。
700~800 ℃ 温 度 范 围 内 , 碳 的 固 溶 量 不 超 过 0.02% , 过 饱 和
的碳要全部或部分从奥氏体中析出,这时碳将扩散到晶界处, 并 与 晶 界 处 的 铁 和 铬 化 合 生 成 含 铬 量 高 的 碳 化 物 Cr 23 C 6 , 消 耗了晶界区的铬,而铬在晶粒内部的扩散速度比其在晶界处 的扩散速度要慢得多,来不及补充晶界区消耗的铬,因此在 晶界区形成贫铬区。
不 锈 钢 晶 界 上 碳 化 铬 析 出 示 意 图
1
3 4
例 如 将 奥 氏 体 不 锈 钢 1Cr18Ni9 加 热 至 1050~1150 ℃ 固 溶 碳
的 固 溶 度 为 0 10~0 15% , 随 后 进 行 淬 火 , 经 固 溶 处 理 的
1Cr18Ni9 钢 是 一 种 碳 过 饱 和 体 , 不 会 产 生 晶 间 腐 蚀 。 在
3、不锈钢焊接晶间腐蚀:焊缝腐蚀
奥氏体不锈钢虽然是一种焊接性能非常优良的钢种,但它在焊接 时,相对于焊接热影响区的母材再一次加热,所以在熔合线附近, 引起碳化物的析出,导致严重的晶间腐蚀。
谢 谢!
B.铬、镍、钼、硅:Cr、Mo含量增高,可降低C的活度,有利于 减弱晶腐蚀倾向;Ni、Si等是不形成碳化物的元素,会提高C的 活度、降低C在奥氏体中的溶解度,促进碳化物的析出。 C.钛、铌:对于抗晶间腐蚀是有益的,因为它们同C的亲和力大 于Cr同C的亲和力。为阻止碳化铬的形成,首先将不锈钢加热到 1100 ℃以将所有碳化物溶解进入奥氏体中,然后冷却到900 ℃保 温几个小时让Ti或Nb与碳充分反应。在以后的碳化铬析出温度范 围内加热就没有碳化铬形成。
化工机械名词解释

弹性模数(E):材料在弹性范围内,应力和应变成正比,即σ=Eε,比例系数E为弹性模数。
碳素钢:这种钢的合金元素含量低,而且这些合金元素不是为了改善钢材性能人为加入的。
热处理:钢铁在固态下通过加热,保温和不同的冷却方式,以改变其组织、满足所需要的物理,化学与机械性能,这样的加工工艺称为热处理。
晶间腐蚀:一种局部的,选择性的破坏。
薄壁容器:容器的壁厚与其最大截面圆的内径之比小于0.1的容器。
薄膜理论:薄膜应力是只有拉压正应力没有弯曲正应力的一种两向应力状态,也称为无力矩理论。
胀接:是用胀管器挤压伸入管板孔中的管子端部,使管端发生塑性变形,管板孔同时发生弹性变形,当取出胀管器后,管板孔弹性收缩,管板与管子间就产生一定的挤紧压力,紧密地贴在一起,达到密封紧固连接的目的。
焊接:是通过加热或者加压,或者两者并用;用或不用填充材料;使两分离的金属表面达到原子间的结合,形成永久性连接的一种工艺方法。
外压容器:壳体外部压力大于壳体内部压力的容器均称外压容器。
内压容器:承受正压即容器内部压力大于外部压力的容器。
弹性失稳:在外压作用下,突然发生的筒体失去原形,即突然失去原来的稳定性的现象称为弹性失稳。
法兰密封原理:当介质压力通过密封口的阻力降大于密封口两侧介质的压力差时,介质就被密封住了。
14.何谓管子拉脱力?如何定义?产生原因是什么?答:换热器在操作中,承受流体压力和管壳壁的温度应力的联合作用,这两个力在管子与管板的连接接头处产生了一个拉脱力,使管子与管板有脱离的倾向。
拉脱力的定义:管子每平方米胀接周边上所受到的力,单位为帕。
5.换热管在管板上有哪几种固定方式?各适用范围如何?答:固定方式有三种:胀接、焊接、胀焊结合。
胀接:一般用在换热管为碳素钢,管板为碳素钢或低合金钢,设计压力不超过 4.0MPa,设计温度在350℃以下,且无特殊要求的场合。
焊接:一般用在温度压强都较高的情况下,并且对管板孔加工要求不高时。
胀焊结合:适用于高温高压下,连接接头在反复的热冲击、热变形、热腐蚀及介质压力作用,工作环境极其苛刻,容易发生破坏,无法克服焊接的“间隙腐蚀”和“应力腐蚀”的情况下。
不锈钢腐蚀的种类和定义

不锈钢腐蚀的种类和定义不锈钢是一种具有良好抗腐蚀性能的合金材料,但长期使用或在特定环境中,仍然会发生腐蚀。
不锈钢腐蚀主要分为以下几种类型:1.广义腐蚀广义腐蚀是不锈钢表面发生的一般性腐蚀,最常见的是均匀腐蚀。
均匀腐蚀即表面各处承受相同的腐蚀破坏,使金属表面出现均匀的腐蚀痕迹。
2.点蚀腐蚀点蚀腐蚀是不锈钢表面发生的一种局部腐蚀,通常在扉门结构、焊接缝等处形成几个点状或斑点状的腐蚀坑。
点蚀腐蚀往往是由于金属表面的局部缺陷引发的。
3.缝隙腐蚀缝隙腐蚀是在不锈钢的缝隙、接触面等有氧的部位发生的局部腐蚀。
这种腐蚀主要由于缝隙处的氧气耗尽或蓄积了腐蚀介质而引起的。
4.应力腐蚀开裂应力腐蚀开裂是不锈钢在特定介质中受到应力作用而引起的开裂现象。
该腐蚀类型通常发生在高应力或高应变的工况下,会造成材料的开裂甚至断裂。
5.粒界腐蚀粒界腐蚀也称为晶间腐蚀,是指不锈钢晶粒边界处发生的腐蚀。
这种腐蚀通常发生在铸造或焊接等工艺中,晶界处的合金元素溶解得更多,使得晶界处失去了原本的耐腐蚀性。
6.穿孔腐蚀穿孔腐蚀是一种局部腐蚀现象,通常发生在不锈钢的嵌件、焊接部位等处,引起金属表面出现直径很小的小孔。
7.受控腐蚀受控腐蚀是指在特定条件下,通过特定管理措施来控制腐蚀过程。
通过防腐涂层、防腐处理等方法,可以有效减缓或阻止不锈钢的腐蚀过程。
以上是几种常见的不锈钢腐蚀类型,每种腐蚀类型都有各自的定义和产生原因。
了解和分析腐蚀类型对于制定腐蚀控制和防护措施至关重要,以延长不锈钢材料的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶间腐蚀
英文名称:intergranular corrosion;intercrystalline corrosion
说明:局部腐蚀的一种。
沿着金属晶粒间的分界面向内部扩展的腐蚀。
主要由于晶粒表面和内部间化学成分的差异以及晶界杂质或内应力的存在。
晶间腐蚀破坏晶粒间的结合,大大降低金属的机械强度。
而且腐蚀发生后金属和合金的表面仍保持一定的金属光泽,看不出被破坏的迹象,但晶粒间结合力显著减弱,力学性能恶化, 不能经受敲击,所以是一种很危险的腐蚀。
通常出现于黄铜、硬铝合金和一些不锈钢、镍基合中。
不锈钢焊缝的晶间腐蚀是化学工厂的一个重大问题。
不锈钢的晶间腐蚀:
不锈钢在腐蚀介质作用下,在晶粒之间产生的一种腐蚀现象称为晶间腐蚀。
产生晶间腐蚀的不锈钢,当受到应力作用时,即会沿晶界断裂、强度几乎完全消失,这是不锈钢的一种最危险的破坏形式。
晶间腐蚀可以分别产生在焊接接头的热影响区(HAZ)、焊缝或熔合线上,在熔合线上产生的晶间腐蚀又称刀线腐蚀(KLA)。
不锈钢具有耐腐蚀能力的必要条件是铬的质量分数必须大于10~12%。
当温度升高时,碳在不锈钢晶粒内部的扩散速度大于铬的扩散速度。
因为室温时碳在奥氏体中的溶解度很小,约为0.02%~0.03%,而一般奥氏体不锈钢中的含碳量均超过此值,故多余的碳就不断地向奥氏体晶粒边界扩散,并和铬化合,在晶间形成碳化铬的化合物,如(CrFe)23C6等。
数据表明,铬沿晶界扩散的活化能力162~252KJ/mol,而铬由晶粒内扩散活化能约540KJ/mol,即:铬由晶粒内扩散速度比铬沿晶界扩散速度小,内部的铬来不及向晶界扩散,所以在晶间所形成的碳化铬所需的铬主要不是来自奥氏体晶粒内部,而是来自晶界附近,结果就使晶界附近的含铬量大为减少,当晶界的铬的质量分数低到小于12%时,就形成所谓的“贫铬区”,在腐蚀介质作用下,贫铬区就会失去耐腐蚀能力,而产生晶间腐蚀。
不锈钢的敏化及预防措施
含碳量超过0.03%的不稳定的奥氏体型不锈钢(即不含钛或铌的0Cr18Ni9不锈钢),如果热处理不当则在某些环境中易产生晶间腐蚀。
这些钢在425-815℃之间加热时,或者缓慢冷却通过这个温度区间时,都会产生晶间腐蚀。
这样的热处理造成碳
化物在晶界沉淀(敏化作用),并且造成最邻近的区域铬贫化使得这些区域对腐蚀敏感。
敏化作用也可出现在焊接时,在焊接热影响区造成其后的局部腐蚀。
最通用的检查不锈钢敏感性的方法是65%硝酸腐蚀试验方法。
试验时将钢试样放入沸腾的65%硝酸溶液中连续48h为一个周期,共5个周期,每个周期测定重量损失。
一般规定,5个试验周期的平均腐蚀率应不大于0.05mm/月。
奥氏体型不锈钢焊接结构的晶间腐蚀可用如下方法预防:
①使用低碳牌号00Cr19Ni10(304L)或00Cr17Ni14Mo2(316L),或稳定的牌号0 Cr18Ni11Ti(321,多见于欧洲)或0Cr18Ni11Nb(347,多见于美国).使用这些牌号不锈钢可防止焊接时碳化物沉淀出造成有害影响的数量。
②如果结构件小,能够在炉中进行热处理,则可在1040-1150℃进行热处理以溶解碳化铬,并且在425-815℃区间快速冷却以防止碳的沉淀。
焊接铁素体不锈钢在某些介质中也可能出现晶间腐蚀。
这是当钢从925℃以上快速冷却时,碳化物或氧化物沉淀,金属晶格应变造成的,焊接后进行消除应力热处理可消除应力并恢复耐腐蚀性能。
在1Cr17不锈钢中加入超过8倍碳含量的钛,通常可减少焊接钢结构在一些介质中的晶间腐蚀。
然而加入钛在浓硝酸中不是有效的。
相关标准:
我国已经有GB/T 4334.(1~5)—2000不锈钢晶间腐蚀敏感性试验方法标准(根据不同材料敏感性选择相应标准)
GB/T 15260—1994《镍合金晶间腐蚀敏感性试验方法标准》
GB/T 21433-2008《不锈钢压力容器晶间腐蚀敏感性检验》。