六年级数学知识点归纳总结
小学 六年级数学 全册 知识点归纳

小学六年级数学全册知识点归纳小学六年级数学全册知识点归纳六年级上册知识点概念总结1.分数乘法分数乘法的意义与整数乘法相同,是求几个相同加数和的简便运算。
计算法则是:分数乘整数,分子与整数相乘的积作分子,分母不变;分数乘分数,分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零。
2.分数乘法的意义分数乘整数的意义与整数乘法相同,是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
3.分数乘整数分数乘整数可以通过数形结合和转化化归来计算。
4.倒数乘积是1的两个数叫做互为倒数。
5.分数的倒数找一个分数的倒数,例如3/4,把分子和分母交换位置,把原来的分子做分母,原来的分母做分子,得到4/3.3/4是4/3的倒数,也可以说4/3是3/4的倒数。
6.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1,再把分子和分母交换位置,得到1/12.12是1/12的倒数。
7.小数的倒数可以用普通算法或用1去除以这个数来求小数的倒数。
例如,0.25的倒数可以化成1/4,再把分子和分母交换位置,得到4/1.8.分数除法分数除法是分数乘法的逆运算。
计算法则是:甲数除以乙数(除外),等于甲数乘乙数的倒数。
9.分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
10.分数除法应用题先找单位1.单位1已知,求部分量或对应分率用乘法,求单位1用除法。
11.比和比例比是算式中等号左边的式子,是式子的一种(如:a:b);比例由至少两个称为比的式子由等号连接而成,且这两个比的比值相同(如:a:b=c:d)。
比和比例的联系可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。
表示两个比相等的式子叫做比例,是比的意义。
比例有4项,前项后项各2个。
圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母π表示。
它是一个无限不循环小数,也就是无理数。
小学六年级数学知识点总结

小学六年级数学知识点总结小学六年级数学知识点总结一基本公式:①工作总量= 工作效率×工作时间②工作效率= 工作总量÷工作时间③工作时间= 工作总量÷工作效率基本思路:①假设工作总量为“1”(和总工作量无关);②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.关键问题:确定工作量、工作时间、工作效率间的两两对应关系。
小学六年级数学知识点总结二第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b= b×a乘法结合律:(a×b)×c= a×(b×c)乘法分配律:(a+b)×c= ac+bc ac+bc= (a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“= ”(等号)(2)分率前是“的”:单位“1”的量×分率= 分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)= 分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
六年级数学基础知识点总结

六年级数学基础知识点总结小学六年级数学总复习学问点1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,假如除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数1.假如整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.在正整数中(除1外),与奇数相邻的两个数是偶数3.在正整数中,与偶数相邻的两个数是奇数4.个位数字是0,5的数都能被5整除5.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数4.假如两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.假如两个数是互素数,那么这两个数的最大公因数是数学学习方法技巧一、明确教学目标,制订复习打算小学毕业班数学总复习学问容量多、时间跨度大,所学学问的遗忘率高,复习之前老师必需再次钻研教材,进一步了解教材的学问内容和编排特点,还要重新学习《数学课程标准》,把握好教学要点和数学学问重点,并对学生驾驭学问的状况全面摸底,然后确定复习目标,制定复习打算,主要包括:复习的内容要点,分几节课完成,设计好每节课的内容和目标。
小学六年级数学知识点归纳

小学六年级数学知识点归纳第一部分数与代数一、数的认识知识点一:数的意义及分类1.整数是无限的,没有最小或最大的整数。
2.自然数是无限的,最小的自然数是1,没有最大的自然数。
3.既不是正数也不是负数的数称为零。
4.分数有真分数、假分数、带分数和最简分数。
5.百分数是百分数和分数的对比。
6.小数是有限小数和无限小数(无限不循环小数和无限循环小数)。
知识点二:计数单位和数位1.个、十、百……以及十分之一、百分之一……都是计数单位。
2.各个计数单位所占的位置称为数位。
3.十进制计数法。
4.数的分级。
知识点三:数的读、写法1.整数、小数、分数、百分数、正数和负数的读写法。
知识点四:数的改写1.把多位数改写成以“万”或“亿”为单位的数,可直接改写或省略尾数。
2.求小数的近似数。
3.假分数和带分数、整数之间的互化。
4.分数、小数与百分数之间的互化。
知识点五:数的大小比较1.整数、小数、分数、正数和负数的大小比较。
2.比较小数、分数和百分数的大小时,可把分数和百分数化成小数,把各小数的相同数位上下对齐进行比较,最后排序结果一定要排列原数。
知识点六:数的性质1.分数的基本性质。
2.小数的基本性质。
3.移动小数点的位置可引起小数大小变化,需要补位。
知识点七:因数倍数质数合数1.因数和倍数的意义。
2.因数和倍数的特征,一个数的因数个数有限,最小因数为1,最大因数为本身;一个数的倍数个数无限,最小倍数为本身,没有最大倍数;一个数既是它本身的因数,也是它本身的倍数。
3.2、3、5的倍数的特征。
4.奇数和偶数的意义,自然数不是奇数就是偶数,最小奇数为1,最小偶数为2.5.质数和合数的意义,最小质数为2,2是唯一的偶质数,没有最大质数;最小合数为4,没有最大合数。
6.判断一个数是质数还是合数的方法。
7、质因数、分解质因数、分解质因数的方法质因数是指能整除一个数的质数,分解质因数是将一个数分解成若干个质因数的乘积。
分解质因数的方法有多种,常用的有试除法和分解质因数法。
6年级数学知识点总结

6年级数学知识点总结小学六年级是小学到初中的过渡阶段,数学知识的难度和广度都有所增加。
以下是对六年级数学知识点的详细总结,希望能帮助同学们更好地掌握和复习。
一、分数乘法1、分数乘整数意义:求几个相同加数的和的简便运算。
计算方法:用分数的分子与整数相乘的积作分子,分母不变,能约分的先约分再计算。
2、分数乘分数意义:求一个数的几分之几是多少。
计算方法:用分子相乘的积作分子,分母相乘的积作分母,能约分的先约分再计算。
3、分数乘法的运算定律乘法交换律:a×b = b×a乘法结合律:(a×b)×c = a×(b×c)乘法分配律:(a + b)×c = a×c + b×c二、分数除法1、倒数乘积是 1 的两个数互为倒数。
1 的倒数是 1,0 没有倒数。
2、分数除法的计算除以一个不等于 0 的数,等于乘这个数的倒数。
三、比1、比的意义两个数相除又叫做两个数的比。
2、比的各部分名称在比中,“:”是比号,比号前面的数叫比的前项,比号后面的数叫比的后项,比值通常用分数表示,也可以用小数或整数表示。
3、比的基本性质比的前项和后项同时乘或除以相同的数(0 除外),比值不变。
4、化简比把比化成最简整数比的过程叫做化简比。
四、圆1、圆的认识圆是由一条曲线围成的封闭图形。
圆中心的一点叫做圆心,一般用字母 O 表示;连接圆心和圆上任意一点的线段叫做半径,一般用字母 r 表示;通过圆心并且两端都在圆上的线段叫做直径,一般用字母 d 表示。
2、圆的周长圆的周长计算公式:C =πd 或 C =2πr3、圆的面积圆的面积计算公式:S =πr²五、百分数1、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫百分率或百分比。
2、百分数与分数、小数的互化百分数化小数:把百分号去掉,小数点向左移动两位。
小数化百分数:把小数点向右移动两位,加上百分号。
六年级数学知识点归纳最全版

六年级数学知识点归纳最全版目录•整数•分数•小数•比例与比例关系•代数式•方程与不等式•图形的认识•计算与应用整数正整数和负整数整数由正整数、负整数和零组成。
正整数是大于零的整数,负整数是小于零的整数,零是自身。
例如:正整数有1、2、3等,负整数有-1、-2、-3等,零为0。
整数的加减法整数的加法和减法可以通过数轴来表示。
当两个整数同号时,将它们的绝对值相加,符号保持不变;当两个整数异号时,用大的数减去小的数,结果的符号与绝对值较大的整数的符号一致。
例如:2 + 3 = 5,-4 + 6 = 2,-3 + (-7) = -10,2 - 4 = -2整数的乘法和除法整数的乘法和除法符合相反数的规则。
即两个整数相乘,如果符号相同,则积为正数;如果符号不同,则积为负数。
两个整数相除,如果符号相同,则商为正数;如果符号不同,则商为负数。
例如:2 × 3 = 6,-4 × 6 = -24,-3 ÷ (-2) = 1.5,4 ÷ (-2) = -2分数分数的基本概念分数是一个整体被等分成若干份,每份称为一份。
分子表示等分后的份数,分母表示等分成的总份数。
分数还可以写作小数形式,小数形式是以小数点形式表示的分数。
例如:1/2是一个分数,表示将一个整体等分成两份,每份为1/2;0.5是小数形式的1/2。
分数的加减法分数的加减法需要先找到他们的公共分母,然后对分子进行加减。
最后将结果化简为最简分数形式。
例如:1/2 + 1/3 = 5/6,4/5 - 1/5 = 3/5,7/10 + 3/5 = 9/10分数的乘法和除法分数的乘法通过分子相乘,分母相乘得到结果。
分数的除法可以转化为乘法,即将除法转化为乘法的倒数。
例如:2/3 × 3/4 = 6/12,2/3 ÷ 3/4 = 8/9小数小数的基本概念小数是有限小数和无限循环小数两种形式。
有限小数是小数部分有限位数的小数,无限循环小数是小数部分有无限循环的小数。
小学六年级必掌握的数学知识点总结

1.数的认识和比较
-十进制和整数概念
-数的读法和写法
-数的大小比较
-数轴的使用
2.四则运算
-加法和减法运算
-乘法和除法运算
-运算法则和顺序
3.分数
-分数的概念和表示方法-分数的比较和排序
-分数的加减乘除运算
4.百分数
-百分数的概念和表示方法-百分数的换算
-百分数的应用
5.小数
-小数的概念和表示方法
-小数的大小比较
-小数的加减乘除运算
6.几何图形
-平面图形的认识和分类
-三角形、正方形、长方形、圆的性质-单位面积的认识和换算
7.算术代数
-变量的引入和运算
-代数表达式的简化和计算
8.数据统计
-统计图表的读和解释
-平均数、中位数和众数的计算
-数据分析和应用
9.基础应用题
-模型推理和解决问题
-实际问题的分析和解决
-数学应用题的设计和答题技巧
以上是小学六年级必掌握的数学知识点总结。
在学习过程中,学生需要注重掌握概念的理解、运算规则的应用和问题解决的能力。
同时,学生还应通过不断的练习和复习来巩固和强化所学的知识点。
小学六年级数学全册知识点归纳

一、数与代数1.数的读法:百分数、小数、分数、整数2.数的大小比较:大小关系、用大小符号表示大小关系3.数的进位与退位:百位、千位、万位4.数的四则运算:加法、减法、乘法、除法5.数的倍数和约数:倍数的概念、约数的概念6.乘法的应用:乘法与加法、乘法与减法、乘法与除法7.除法的应用:商的概念、余数的概念、数的整除性质8.分数的认识与比大小:分数的概念、分数的大小比较、分数的简化与扩展9.分数的四则运算:分数的加法、分数的减法、分数的乘法、分数的除法10.整数的认识:正整数、负整数、零、整数的大小比较11.纸带图与有向数线:纸带图的绘制、有向数线的绘制、正负数坐标轴上数的位置表示二、空间与图形1.点、线、面:点的认识、线的认识、面的认识2.平面图形:三角形、四边形、多边形、圆形、椭圆形、正方形、长方形、平行四边形、直角三角形、等腰三角形、等边三角形3.立体图形:长方体、正方体、棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.图形的名称和性质:平行四边形、矩形、正方形、菱形、三角形、四边形等5.平面镜像与空间镜像:平面图形的镜像、立体图形的镜像6.位置与方向:方向的认识、位置的认识、位置关系的认识三、量的认识与运用1.长度的换算:米与厘米的换算、分米与厘米的换算、运用换算计算长度2.长度和重量的比较:比较长度的大小、比较重量的大小3.时间的认识与计算:时、分、秒的认识、时间段的计算、时钟的读法4.面积的认识与计算:长方形的面积计算、正方形的面积计算5.体积的认识与计算:长方体的体积计算、正方体的体积计算6.资料的收集和整理:资料的收集方法、用表格整理资料四、数据的收集与处理2.数据的处理与分析:数据的整理、数据的比较、数据的运算3.数据的表示与解释:数据的图表表示、图表的读取与解读五、解决问题的策略与方法1.数学问题求解:分析问题、选择适当的计算方法、验证和总结解答结果2.解决实际问题:问题与计算、问题与图形3.数学建模:抽象、分析、解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学知识点归纳总结约分的方法:用分子分母的公约数(1除外)逐次去除分子和分母,直到得到最简分数为止.用分子和分母的最大公约数去除分子和分母.18.百分数的意义表示一个数是另一个数的百分之几的数叫百分数.百分数又叫百分率或百分比.19.分数、小数、百分数的互化小数化百分数:小数点向右移动两位,添上% 0.25=( )百分数化小数:去掉%,小数点向左移动两位 0.35%=( )分数化百分数:先化成小数,再化成百分数百分数华分数:先写成分数,再约分20. 整除与除尽整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说数a能被数b整除,或数b能整除a.除尽:数a除以数b(b≠0),除得的商是整数或是有限小数,这就叫做除尽.整除是除尽的一种特殊情况,整除也可以说是除尽,但除尽不一定是整除.区别:21.约数和倍数如果数a能被数b整除(b≠0),a就叫做b的倍数,b就叫做a的约数.一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身.一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数.约数和倍数是相互依存的22.能被2.3.5整除的数的特征能被2整除的数的特征: 个位上是0,2,4,6,8,能被5整除的数的特征: 个位上是0或5能被3整除的数的特征: 各个位上的数字的和能被3整除能同时被2,5整除的数的特征:个位是0能同时被2,3,5整除的数的特征:个位是0,而且各个位上的数字的和能被3整除.注意:有一些数能被7,9,11,13整除,但是不容易看出来,这是大家在约分中容易忽略的.23:偶数和奇数一个自然数,不是奇数就是偶数偶数:能被2整除的数叫做偶数奇数:不能被2整除的数叫做奇数偶数±偶数=( 偶数) 奇数±奇数=( 偶数) 偶数±奇数=( 奇数 )偶数×偶数=( 偶数 ) 奇数×奇数=( 奇数) 偶数×奇数=(偶数 )最小的偶数是: 0最小的奇数是: 124.质数和合数质数:(素数)只有1和它本身两个约数合数:除了1和它本身还有别的约数1 不是质数也不是合数最小的质数是: 2最小的合数是: 425.质因数和分解质因数质因数: 每一个合数都可以写成几个质数相乘的形式, 这几个质数叫做这个合数的质因数.分解质因数:把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数.分解质因数的方法:短除法把30分解质因数正确的做法是( )A.30=1×2 ×3 ×5B.2 ×3 ×5=30C.30=2×3×5C把30分解质因数26.最大公约数和最小公倍数公约数:几个数公有的约数,叫做这几个数的公约数。
最大公约数:其中最大的一个叫做这几个数的最大公约数.例:( )是8和12的公约数,( )是8和12的最大公约数.公倍数、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数.例:( …)都是4和6的公倍数,( )是4和6的最小公倍数.互质数:公约数只有1的两个数叫做互质数.(1)两个数都是质数,这两个数一定互质.(2)相邻的两个数互质.(3)1和任何数都互质.求最大公约数和最小公倍数4和28最大公约数是( ); 最小公倍数是( )(1)如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数;较大数就是这两个数的最小公倍数.4和15最大公约数是( ); 最小公倍数是( )(2)如果两个数互质,它们的最大公约数就是1;最小公倍数就是它们的积.(3)短除法求24和36的最大公约数和最小公倍数24和36的最大公约数是:2×2×3=1224和36的最小公倍数是: 2×2×3×2×3=72商互质除数相乘 所有的除数和商相乘二 运算律的应用举例常见乘法计算(敏感数字) :25×4=100 125×8=1000加法交换律简算例子 加法结合律简算例子 乘法交换律简算例子 乘法结合律简算例子 0.875+23 +18 23 +14 +0.8 0.4×33×52 23×0.375×163=78 +23 +18 =23 +14 +45 =25 ×33×52 =23×38 ×163 =78 +18 +23 =23 +(14 +45 ) =25 ×25 ×33 =23 ×(38 ×163 ) =1+23 =23+1 =1×3 =23×2 含加法交换律与结合律 含乘法交换律与结合律 数字换减法式 数字换加法式 0.875+23 +18 +13 0.375×297 ×163 ×729 35×536 101×910=78 +23 +18 +13 =38 ×297 ×163 ×729 = (36-1) ×536 = (100+1) ×910 =78 +18 + 23 +13 =38 ×163 ×297 ×729 =36×536 -1×536 =100×910 +1×910 = (78 +18 )+ (23 +13 ) = (38 ×163 )×(297 ×729 ) =5-536 =1+910 =1+1 =2×1乘法分配律提取式 乘法分配律提取式 乘法分配律(添项) 乘法分配律(添项)101×0.9-910 ×1 95.5÷1.6-15.5÷1.6 101×0.9-910 52×58 +29×58 -0.625=101×910 -910 ×1 =(95.5-15.5)÷1.6 =101×910 -910 =52×58 +29×58 -58=101×910 -1×910 =80÷1.6 =101×910 -1×910 =52×58 +29×58 -1×58=(101-1) ×910 =800÷16 =(101-1) ×910 =(52+29-1)×58=100×910 =100×910 =80×58减法的性质简算例子 减法的性质简算例子 减法的性质简算例子 数字换乘法式18-58 -0.375 134 -716 -0.75 1225 -(716 +0.4) 0.56×125 =18-58 -38 =134 -716 -34 =1225 -(716 +25 ) =0.7×0.8×125=18-(58 +38 ) =134 -34 -716 =1225 -25 -716 =0.7×(0.8×125)=18-1 =1-716 =12-716 =0.7×100除法的性质简算例子 除法的性质简算例子 除法的性质简算例子 3200÷2.5÷0.4 2700÷2.5÷2.7 5900÷(2.5×5.9) =3200÷(2.5×0.4) =2700÷2.7÷2.5 =5900÷5.9÷2.5 =3200÷1 =1000÷2.5 =1000÷2.5 同级运算中,第一个数不能动,后面的数可以带着符号搬家123 +716 -23 250÷0.8×0.4 123 -716 +13 29×0.25÷0.29 =123 -23 +716 =250×0.4÷0.8 =123 +13 -716 =29÷0.29×0.25 =1+716 =100÷0.8 =2-716=100×0.25 三 量与计量长度单位换算 km m dm cm mm 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米面积单位换算 km² m² dm² cm² mm² 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 L mL m³ dm³ cm³ 1立方米=1000立方分米 1立方分米=1000立方厘米 1升=1000毫升 1立方米=1000升 1立方分米=1升 1立方厘米=1毫升 质量单位换算 t k ɡ ɡ 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算1元=10角 1角=10分 1元=100分 时间单位换算 h min s1世纪=100年 1年=12月 大月(31天)有:1、3、5、7、8、10、12月 小月(30天)的有:4、6、9、11月平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒四统计与概率1.扇形统计图用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数。
优点:很清楚地表示出各部分同总数之间的关系。
制扇形统计图的一般步骤:(1)先算出各部分数量占总量的百分之几。
(2)再算出表示各部分数量的扇形的圆心角度数。
(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形。
(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,用不同颜色或条纹把各个扇形区别开。
2.条形统计图用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。
优点:很容易看出各种数量的多少。
注意:画条形统计图时,直条的宽窄必须相同。
取一个单位长度表示数量的多少要根据具体情况而确定;复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例。
制作条形统计图的一般步骤:(1)根据图纸的大小,画出两条互相垂直的射线。
(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔。