抽样调查_抽样调查
抽样调查报告12篇

抽样调查报告12篇抽样调查报告1为了解我市近期建筑节能设计选用的节能技术(产品)情况,由市墙材革新与建筑节能办公室对我市____年民用建筑节能设计资料进行抽样调查、统计分析,形成以下报告。
一、抽样调查情况本次调查对象为我市____年民用建筑节能设计审查备案表,共抽样280项工程,其中公共建筑59项,居住建筑221项。
涉及到的建设单位有64家,设计院38家。
本次调查内容主要是在民用建筑中采用的各项建筑节能技术(产品)情况。
(一)外墙节能设计在外墙节能设计方面,目前使用的主要墙材是加气混凝土砌块,占85.7%,其次是烧结粉煤灰砖、蒸压泡沫粉混凝土砖和灰砂砖。
外墙使用灰砂砖的比例为1.8%,比____年抽查统计数据下降78%。
采取保温隔热措施的比例为31.4%,比____年抽查统计数据增长32.5%,其中外墙外保温做法占77.3%。
使用的保温隔热材料主要是聚苯颗粒保温砂浆,占60.2%,其次是普通砂浆,占13.6%。
其中,居住建筑中采用加气混凝土砌块的比例为86.9%;加气混凝土砌块+聚苯颗粒保温砂浆(外保温)的比例为14.9%;公共建筑中采用加气混凝土砌块的比例为81.4%,加气混凝土砌块+聚苯颗粒保温砂浆(外保温)的比例为15.3%。
外墙采用的墙材和保温隔热材料情况见表1、表2:表1外墙采用的墙材外墙采用的墙材抽样调查报告2国家统计局继首次开展全国群众安全感调查之后,已于11月份组织开展了第二次全国群众安全感抽样调查工作。
现将本次抽样调查的主要数据公布如下:一、被调查者的基本情况本次共抽取全国31个省、自治区、直辖市年满16周岁以上的101988人进行了问卷调查。
在被调查者中,男性59760人,占被调查人员总数的58.6%;女性42228人,占41.4%。
从被调查者的年龄来看,16岁至17岁的2192人,占2.1%;18岁至25岁的10396人,占10.2%;26岁至34岁的23674人,占23.2%;35岁至49岁的38407人,占37.7%;50岁至59岁的13694人,占13.4%;60岁以上的13625人,占13.4%。
《统计学原理》课件第七章抽样调查

第二节 抽样调查的基本概念
全及总体(总体) 样本总体(样本)
几组基 本概念
重复抽样 不重复抽样
大数定律 中心极限定理
4 -7
研究对象
抽 取 方 法
重复考虑顺序 不重复不考虑 顺序
研
究 原
总体分布 样本分布 抽样分布
理
一、全及总体和样本总体
全及总体:也称总体。指所要认识对象的全体。 用N表示有限总体的单位数,称总体容量。
m
lim p n
n
p
ε
1
贝努大数定律对于抽样调查的意义:
从理论上解释了用频率代替概率的理论依据, 即随着抽样单位数n的增加,事件A发生的频率接近 于事件A发生的概率。
4 - 18
大数定律特点
大数定律论证了抽样平均数趋近于总体平均 数的趋势,这为抽样推断提供了重要依据。 但是:
抽样平均数和总体平均数的离差究竟有多大? 离差的分布状况怎样? 离差不超过一定范围的概率究竟有多少?
(二)抽样成数的抽样平均误差
重复抽样: 不重复抽样:
p
p1 p
n
p
p1 p 1 n
n N
说明:实际应用中,平均数和成数的标准差一般是 未知的,通常采用如下方式解决 (1)用过去调查的资料 (2)样本方差的资料代替总体方差 (3)用小规模调查资料 (4)用估计材料
4 - 30
【进上例行者】测为试合某(1,格灯)平资品泡均料,厂使如计对用下算10时。这00按批0间个质灯:x产量泡品规的进定时x行ff,间寿灯抽命2泡样12检10使平40测0用均0,寿误随1命差0机5在和7(抽小1合0取时格002)率小%样的时本平以
按照随机原则 从调查对象中抽取一部分单位进行 观察,并运用数理统计的原理,以被抽取的那部分 单位的数量特征为代表,对总体做出数量上的推断 分析
第七章 抽样调查

数据计算出样本均值(平均耐用时间)
x=1055小时,样本成数(合格率) p=91% 依据样本统计量可以对总体参数进行估 计(估计方法将在第三节介绍)。
六、抽样推断的基本原理
样本指标 1、理论基础: 大数定律 中心极限定理 2、抽样估计的基本要求:
无偏性、有效性、一致性
总体指标
第二节 抽样组织方式
对无限总体不能采用全面调查。
另外,有些产品的质量检查具有破坏性,不可能进行全面调
查,只能采用抽样调查。 从理论上讲,有些现象虽然可以进行全面调查,但实际上没 有必要或很难办到,也要采用抽样调查
抽样调查可以用于工业生产过程的质量控制。
三、抽样推断的内容
(一)参数估计。特点是不知道总体的数量特征,
X
x
2
K
p
P p
K
2
抽样平均数平均误差的计算公式:
采用重复抽样:
x
n
此公式说明,抽样平均误差与总体标准差成正 比,与样本容量成反比。(当总体标准差未知 时,可用样本标准差代替)
例:假定抽样单位数增加 2 倍、0.5倍时, 抽样平均误差怎样变化?
解:抽样单位数增加 2 倍,即为原来的 3 倍
1 则: x 0.577 3n 3
即:当样本单位数增加2倍时,抽样平均误差为原来的0.577倍。 抽样单位数增加 0.5倍,即为原来的 1.5倍
则:
1 x 0.8165 1.5n 1.5
即:当样本单位数增加0.5倍时,抽样平均误差为原来的0.8165 倍。
例:某施工班组5个工人的日工资分别为:34、38、
例:
某厂生产一种新型灯泡共2000只,随机抽出400只作耐 用时间试验,测试结果平均使用寿命为4800小时,样 本标准差为300小时,求抽样推断的平均误差? 已知:
第六章 抽样调查

第六章抽样调查第一节抽样调查的意义及全然概念一、抽样调查的意义抽样调查(随机抽样):按照随机原那么从总体中抽取一局部单位进行瞧瞧,并运用数理统计的原理,以被抽取的那局部单位的数量特征为代表,对总体作出数量上的推断分析。
二、抽样调查的适用范围抽样调查方法是市场经济国家在调查方法上的必定选择,和普查相比,它具有正确度高、本钞票低、速度快、应用面广等优点。
一般适用于以下范围:1.实际工作不可能进行全面调查瞧瞧,而又需要了解其全面资料的事物;2.虽可进行全面调查瞧瞧,但比立困难或并不必要;3.对普查或全面调查统计资料的质量进行检查和修正;4.抽样方法适用于对大量现象的瞧瞧,即组成事物总体的单位数量较多的情况;5.利用抽样推断的方法,能够关于某种总体的假设进行检验,判定这种假设的真伪,以决定取舍。
三、抽样调查的全然概念(一)全及总体和抽样总体(总体和样本)全及总体:所要调查瞧瞧的全部事物。
总体单位数用N表示。
抽样总体:抽取出来调查瞧瞧的单位。
抽样总体的单位数用n表示。
n≥30大样本n<30小样本(二)全及指标和抽样指标(总体指标和样本指标)全及指标:全及总体的那些指标。
抽样指标:抽样总体的那些指标。
第二节抽样调查的组织形式通常有以下四种组织形式:一、简单随机抽样(纯随机抽样)即从总体单位中不加任何分组、排队,完全随机地抽取调查单位。
随机抽选可有各种不同的具体做法,如:1.直截了当抽选法;2.抽签法;3.随机数码表法;二、类型抽样(分类抽样)先对总体各单位按一定标志加以分类(层),然后再从各类(层)中按随机原那么抽取样本,组成一个总的样本。
类型的划分:一是必须有清楚的划类界限;二是必须明白各类中的单位数目和比例;三是分类型的数目不宜太多。
类型抽样的好处是:样本代表性高、抽样误差小、抽样调查本钞票较低。
要是抽样误差的要求相同的话那么抽样数目能够减少。
两种类型:1.等比例类型抽样(类型比例抽样);2.不等比例类型抽样(类型适宜抽样)。
第四章 抽样调查

抽样分布原理
(一)基本符号 1.总体 A = {a1 , a2 ,, aN }, A = N . 1.总体 2.从总体中抽取n个对象构成样本,共有k个样 2.从总体中抽取n个对象构成样本,共有k 本,设样本的符号为:
A1 , A2 ,, Ak , k = C , Ai = n, i = 1, 2,, k
本章复习思考题
1,什么叫抽样?从总体中抽样样本需满足哪些 条件? 2,简单随机抽样?机械抽样?抽样调查法的性 质?随机抽样的原则? 3,抽样误差?影响抽样误差大小的因素?抽样 误差与调查误差,系统误差的区别? 4,抽样分布?平均误差?抽样分布原理? 5,教材第三章课后习题P84的第二题,P85的第 ,教材第三章课后习题P84的第二题,P85的第 四题,P86的第六题. 四题,P86的第六题.
(三)问卷设计的原则 (三)问卷设计的原则 题意清楚,明确,易懂;口语化;避免一题两问;避免 诱导;公正客观;逻辑一致性;完整性(问题和备选 答案);不要用否定形式提问;不要直接询问敏感性 问题. (四)问卷的结构 1,四结构说:标题(简明扼要,概括专项调查的主 题);指导语(包括调查的目的和意义;问题及备选 答案的必要解释,调查须知及其他事项说明等;如涉 及需为被调查者保密的内容,需申明予以保密);主 体内容(内容不宜过多,过繁,应根据需要而确定); 结束语(提出几个开放性的问题或让被试提出对本研 究的建设性的意见;表示对被试合作的感谢). 2,六结构说:在四结构说的基础上,加上被调查者的 基本信息;作业证明的记载.
无限总体时, 有限总体时,
σ σx = n
σ N n σx = × N 1 n
对于有限总体,样本容量与总体容量的 比n/N称为抽样比例. n/N称为抽样比例. 一般认为,n/N<0.05时,就可以省略修 一般认为,n/N<0.05时,就可以省略修 正系数.
第6章 抽样调查(1)

33
1、由于总体单位总数未 知,因此采用重复抽样 公式。又总体标 准差未知,采用过去资 料最大标准差作为估计 值。
x
n
0.12 0.0219 (升) 30
n1 30 2 2、合格率p 93.3% n 30 S P p(1 p) 93.3% (1 93.3%) 6.25%
根据质量标 准,使用寿 命800小时及 以上者为合 格品,计算 产品平均合 格率和标准 差。
14
全及指标
X XF X N F
P N1 N
X
2
( X X )2
N
( X X )2 F F
X
(X X )
N
2
(X X ) F F
2
P 2 P(1 P)
31
例 上题中,如果寿命低于9000小时的产品是不合格品,计 算不合格率(合格率)的抽样平均误差。
不合格率:
n1 90 x p 18% n 500
Sp
p(1 p)
Sp
0.18 (1 0.18) 38.4%
重复抽样下:
p
p
Sp n
0.384 1.7% n 500
3
特 点
遵循随机原则抽取部分单位 ;
用样本推断总体;
会产生抽样误差,但误差可以计算和控制。
4
随机原则的实现
统 计 学 概 论
是将总体中每个单位的编号写在外形完全 一致的签上,将其搅拌均匀,从中任意抽 抽签法 选,签上的号码所对应的单位就是样本单 位。 将总体中每个单位编上号码,然后使 用随机数表,查出所要抽取的调查单 随机数表法 位。
统计学第六章抽样调查
n
N
例题2
xf
x
f
8400 200
42
s (x x)2 f 12200 7.81
f
200
2 (1 n ) 7.812 (1 200 ) 0.55
x
n
N
200
2000
例题3
❖某冷库的10万只冻鸡合格率为97%, 如果按重复抽样与不重复抽样各抽 取1000只和2000只,分别计算抽样 平均误差。
A
B
较小的样本容量
X
成数
❖ 总体成数
每个总体单位标志值设为0或1 1:具有某种属性的总体单位标志值 0:不具有某种属性的总体单位标志值 总体中具有某种特征的单位占全部总体单位
数的比例称为总体成数,记作P 成数总体方差:P(1-P)
总体成数和样本成数
❖ 样本成数
从成数总体中抽取样本容量为n的样本 样本中具有此种特征的单位占全部样本单位
从1、2 、3、4中随机抽取2个的样本数
重复抽样考虑顺序
16
1、1 2、1 3、1 4、1
1、2 2、2 3、2 4、2
1、3 2、3 3、3 4、3
1、4 2、4 3、4 4、4
从1、2 、3、4中随机抽取2个的样本数
不重复抽样考虑顺序 12
2、1 3、1 4、1
1、2
3、2 4、2
1、3 2、3
- 2.58x
-1.65 x
+1.65x + 2.58x
x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
区间估计
❖ 根据一个样本的观察值给出总体参数的估计范围 ❖ 给出总体参数落在这一区间的概率 ❖ 例如: 总体均值落在50~70之间,置信度为 95%
抽样调查的五种方法
抽样调查的五种方法
抽样调查是研究人员在研究中采取的一种常见的数据收
集方法。
通过从总体中选择一部分样本,并在样本上进行测量和分析,研究人员可以推断总体的特征和情况。
以下是五种常见的抽样调查方法:
1. 简单随机抽样:这是抽样调查中最基本的一种方法。
它要求所有个体有等同的机会被选中,并且选取的每个个体都是独立的。
研究人员可以使用随机数表或随机数生成器来进行样本选择。
2. 系统抽样:系统抽样是一种有规律的抽样方法。
研究
人员首先确定样本量,然后按照一个固定的规则选择样本。
例如,研究人员可以选择每10个人中的一个进行调查。
3. 分层抽样:分层抽样将总体分成若干层,然后从每个
层中进行抽样。
这种方法可确保样本在每个层上的代表性。
例如,如果研究人员研究一个城市的居民,他们可以将城市分成不同的区域,然后从每个区域中抽取一定数量的样本。
4. 整群抽样:整群抽样是一种将总体分成若干群体,然
后从选定的群体中进行抽样的方法。
这种方法通常用于人口较少或封闭的群体研究。
例如,如果研究人员研究一个学校的学生,他们可以将学校分成不同班级,然后从每个班级中抽取样本。
5. 方便抽样:方便抽样是一种简便的抽样方法,研究人
员选择方便获得的个体作为样本。
这种方法的优点是操作简单、节省时间和成本,但样本的代表性可能较差。
每种抽样调查方法都有其特点和适用场景。
研究人员在选择抽样方法时需要考虑研究目的、总体特征、时间和资源限制等因素。
正确选择和应用合适的抽样方法可以提高研究的准确性和可靠性。
抽样调查方法有哪些
抽样调查方法有哪些抽样调查是社会科学研究中常用的一种数据收集方法。
它通过从总体中选择一部分样本,对这些样本进行观测、测量和调查,再通过统计分析来推断全体的特征和规律。
抽样调查方法有很多种类,下面将对一些常见的抽样调查方法进行详细介绍。
1. 简单随机抽样:简单随机抽样是指从总体中随机抽取样本,使得每个个体被选中的概率是相等的。
这种方法适用于总体的特征均匀分布、个体之间相互独立的情况。
2. 分层抽样:分层抽样是将总体划分为若干个层次,然后在各个层次上进行抽样。
这种方法可以保证不同层次的特征和规律都能得到充分的反映。
例如,我们想要对某个城市的人口进行调查,可以先按照不同的年龄、性别、职业等因素进行划分,然后在每个层次上进行抽样。
3. 整群抽样:整群抽样是将总体划分为若干个群体,然后随机抽取其中的几个群体作为样本。
这种方法适用于群体内部的个体相似度较高,而群体之间差异较大的情况。
例如,我们想要对一个大学的学生进行调查,可以先将学生按照不同的学院或专业划分成若干个群体,然后随机抽取其中的几个群体作为样本。
4. 系统抽样:系统抽样是指将总体中的个体按照一定的规则进行编号,然后按照一定的间隔选取个体作为样本。
这种方法适用于总体个体的编号规律存在一定规则的情况。
例如,我们想要对某个学校的学生进行调查,可以将学生按照学号进行编号,然后按照一定的间隔选取样本。
5. 效率抽样:效率抽样是指根据样本的费用、时间等成本因素,选择一个相对较小的样本,但能够尽可能准确地反映总体特征和规律。
例如,我们想要对某个公司的员工进行调查,由于采访每个员工都需要一定的时间和成本,可以通过一些方法(如分层、整群等)选择一个相对较小的样本,以降低调查成本。
6. 随意抽样:随意抽样是指根据研究者的主观意愿随意选择样本。
这种方法一般不具备统计学意义,但在一些探索性研究和个别案例分析时,可以作为一种初步收集数据的方法。
例如,我们想要对某个商场的顾客进行调查,可以通过观察和询问商场内的顾客进行随意抽样。
抽样调查意义及方法
抽样调查意义及方法抽样调查是社会科学研究中常用的一种调查方法,它通过收集样本的信息来推断总体的特征和规律。
抽样调查的意义在于提高研究的效率、降低成本、减少数据采集的工作量、保证数据的可靠性等方面。
本文将重点介绍抽样调查的意义,并探讨一些常用的抽样方法。
首先,抽样调查的意义在于提高研究的效率。
研究者往往无法对整个总体进行调查,因为时间、资源和人力都是有限的。
通过抽样调查,研究者能够选择一部分代表性样本进行研究,从而节省大量的时间和成本。
同时,抽样调查能够保证研究结果的可靠性,使研究者更有信心和把握地得出结论。
其次,抽样调查能够降低数据采集的工作量。
如果要调查的总体非常庞大,如全国范围内的人口或企业,可能需要耗费大量的时间和精力进行调查。
而通过抽样调查,研究者只需对一部分样本进行调查,就能获取到总体的信息。
这样可以大大减少数据采集的工作量,让研究者能够更集中地分析和解读数据。
再次,抽样调查能够减少调查过程中的误差和偏差。
在进行调查时,研究者往往会遇到各种各样的误差和偏差,如抽样误差、测量误差、非响应误差等。
通过合理的抽样设计和抽样方法,研究者可以尽量减少这些误差和偏差的影响,提高调查数据的准确性和可靠性。
最后,抽样调查能够保证样本的代表性。
样本的代表性是进行抽样调查的关键因素之一,它要求样本能够真实地反映总体的特征和规律。
通过采用随机抽样、分层抽样等抽样方法,研究者可以有效地保证样本的代表性,使样本能够更好地代表总体,从而得出更准确的结论和推断。
在抽样调查中,常用的抽样方法有:简单随机抽样、系统抽样、分层抽样、整群抽样、多阶段抽样等。
简单随机抽样是一种简单的抽样方法,即从总体中随机地选择一些个体作为样本。
系统抽样是从总体中按照一定的规律选择样本,如每隔一定的间隔选择一个个体。
分层抽样则是将总体分成若干个层次,然后从每个层次中随机抽取样本。
整群抽样是将总体划分为若干个群体,然后随机选择部分群体作为样本。