陕西省2018届高三(重点班)第一次大检测数学试题(理)含答案
【全国通用-2018高考推荐】高三数学(理科)考前一模检测试题及答案解析

2018年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种5.执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.77.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+128.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.99.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°10.函数y=的图象大致为()A.B.C.D.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .14.展开式中不含x4项的系数的和为.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= .16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【考点】集合的包含关系判断及应用.【专题】计算题.【分析】根据B⊆A,利用分类讨论思想求解即可.【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A,=1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.【点评】本题考查集合的包含关系及应用.注意空集的讨论,是易错点.2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】设出复数z,代入,它的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式.【解答】解:由题意得z=ai.(a∈R且a≠0).∴==,则a+2=0,∴a=﹣2.有z=﹣2i,故选D【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q【考点】复合命题的真假.【专题】计算题;转化思想;综合法;简易逻辑.【分析】由函数的翻折和平移,得到命题p假,则¬p真;由函数的奇偶性,对轴称和平移得到命题q假,则命题¬q真,由此能求出结果.【解答】解:函数y=2﹣a x+1的图象可看作把y=a x的图象先沿轴反折,再左移1各单位,最后向上平移2各单位得到,而y=a x的图象恒过(0,1),所以函数y=2﹣a x+1恒过(﹣1,1)点,所以命题p假,则¬p真.函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1各单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,命题p∧¬q为真命题.故选:D.【点评】本题考查命题的真假判断,是中档题,解题时要认真审题,注意得复合命题的性质的合理运用.4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种【考点】计数原理的应用.【专题】计算题.【分析】本题是一个分步计数问题,A只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把A排列,程序B和C实施时必须相邻,把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列.【解答】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果根据分步计数原理知共有2×48=96种结果,故选C.【点评】本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,注意排列过程中的相邻问题,利用捆绑法来解,不要忽略被捆绑的元素之间还有一个排列.5.执行如图所示的程序框图,输出s 的值为( )A .﹣B .C .﹣D .【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k 的值,当k=5时满足条件k >4,计算并输出S 的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k >4,k=3不满足条件k >4,k=4不满足条件k >4,k=5满足条件k >4,S=sin =,输出S 的值为.故选:D .【点评】本题主要考查了循环结构的程序框图,属于基础题.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.7【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x ﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.【点评】本题主要考查线性规划的基本知识,用图解法解决线性规划问题时,利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.7.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+12【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.【点评】本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.8.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.9【考点】基本不等式;数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.【解答】解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.【点评】本题考查了⊥⇔=0、基本不等式的性质,属于基础题.9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°【考点】正弦定理;余弦定理.【专题】解三角形.【分析】利用正弦定理以及两角和差的正弦公式进行化简即可.【解答】解:由1+=.得1+=.即cosAsinB+sinAcosB=2sinCcosA,即sin(A+B)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,即A=,∵a=2,c=2,∴a>c,即A>C,由正弦定理得,即,∴sinC=,即C=45°,故选:D【点评】本题主要考查解三角形的应用,根据正弦定理以及两角和差的正弦公式进行化简是解决本题的关键.10.函数y=的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据函数的定义域,特殊点的函数值符号,以及函数的单调性和极值进行判断即可.【解答】解:由lnx≠0得,x>0且x≠1,当0<x<1时,lnx<0,此时y<0,排除B,C,函数的导数f′(x)=,由f′(x)>0得lnx>1,即x>e此时函数单调递增,由f′(x)<0得lnx<1且x≠1,即0<x<1或1<x<e,此时函数单调递减,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数的性质,利用定义域,单调性极值等函数特点是解决本题的关键.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用三角形面积公式,可把△BCF与△ACF的面积之比转化为BC长与AC长的比,再根据抛物线的焦半径公式转化为A,B到准线的距离之比,借助|BF|=求出B点坐标,得到AB方程,代入抛物线方程,解出A点坐标,就可求出BN与AE的长度之比,得到所需问题的解.【解答】解:∵抛物线方程为y2=2x,∴焦点F的坐标为(,0),准线方程为x=﹣,如图,设A(x1,y1),B(x2,y2),过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则|BF|=x2+=2,∴x2=2,把x2=2代入抛物线y2=2x,得,y2=﹣2,∴直线AB过点M(3,0)与(2,﹣2)方程为2x﹣y﹣6=0,代入抛物线方程,解得,x1=,∴|AE|=+=5,∵在△AEC中,BN∥AE,∴===,故选:A【点评】本题主要考查了抛物线的焦半径公式,侧重了学生的转化能力,以及计算能力.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解答】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .【考点】二倍角的正弦;同角三角函数间的基本关系;诱导公式的作用.【专题】三角函数的求值.【分析】利用诱导公式化简已知等式的左边求出tanα的值,再利用同角三角函数间的基本关系得到sinα=2cosα,且sinα与cosα异号,两边平方并利用同角三角函数间的基本关系求出cos2α与sin2α的值,进而求出sinαcosα的值,最后利用二倍角的正弦函数公式即可求出sin2α的值.【解答】解:∵tan(π﹣α)=﹣tanα=﹣=2,即=﹣2<0,∴sinα=﹣2cosα,两边平方得:sin2α=4cos2α,∵sin2α+cos2α=1,∴cos2α=,sin2α=,∴sin2αcos2α=,即sinαcosα=﹣,则sin2α=2sinαcosα=﹣.故答案为:﹣【点评】此题考查了二倍角的正切函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.14.展开式中不含x4项的系数的和为0 .【考点】二项式系数的性质.【专题】计算题.【分析】给二项式中的x赋值1,得到展开式的所有项的系数和;利用二项展开式的通项公式求出通项,令x的指数为4求出展开式中x4的系数,利用系数和减去x4的系数求出展开式中不含x4项的系数的和.【解答】解:令x=1求出展开式的所有的项的系数和为1展开式的通项为令得r=8所以展开式中x4的系数为1故展开式中不含x4项的系数的和为1﹣1=0故答案为:0【点评】本题考查解决展开式的系数和问题常用的方法是赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= π.【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的概率公式,以及利用积分求出阴影部分的面积即可得到结论.【解答】解:根据题意,阴影部分的面积为==1﹣cosa,矩形的面积为,则由几何概型的概率公式可得,即cosa=﹣1,又a∈(0,2π),∴a=π,故答案为:π【点评】本题主要考查几何概型的概率的计算,根据积分的几何意义求出阴影部分的面积是解决本题的关键.16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是②③.【考点】命题的真假判断与应用.【专题】概率与统计;推理和证明.【分析】根据抽样方法的定义,可判断①;根据相关系数与相关性的关系,可判断②;根据相关系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②正确;在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位,故③正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④错误;故正确的命题是:②③,故答案为:②③【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.【考点】数列的求和;等差关系的确定.【专题】综合题;等差数列与等比数列.【分析】(Ⅰ)由已知,令n=1可求T1,然后利用已知变形可得:T n•T n﹣1=2T n ﹣1﹣2T n(n≥2),变形即可证明(Ⅱ)由等差数列,可求,进而可求a n,代入即可求解b n,结合数列的特点考虑利用裂项求和【解答】解:(Ⅰ)∵T n=2﹣2a n∴T1=2﹣2T1∴∴由题意可得:T n•T n﹣1=2T n﹣1﹣2T n(n≥2),所以∴数列是以为公差,以为首项的等差数列(Ⅱ)∵数列为等差数列,∴,∴,∴,∴==【点评】本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式及数列的裂项求和方法的应用.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)利用频率分布直方图能求出随机抽取的市民中年龄段在[30,40)的人数.(Ⅱ)由频率公布直方图知100×0.15=15,100×0.05=5,由此能求出抽取的8人中[50,60)年龄段抽取的人数.(Ⅲ)X的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X的分布列和X的数学期望.【解答】解:(Ⅰ)1﹣10×(0.020+0.025+0.015+0.005)=0.35,100×0.35=35,即随机抽取的市民中年龄段在[30,40)的人数为35.…(Ⅱ)100×0.15=15,100×0.05=5,所以,即抽取的8人中[50,60)年龄段抽取的人数为2.…(Ⅲ)X的所有可能取值为0,1,2.;;.所以X的分布列为X 0 1 2PX的数学期望为.…【点评】本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定;二面角的平面角及求法.【专题】空间角;空间向量及应用.【分析】(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC (II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A﹣PB﹣E的大小.【解答】解:(Ⅰ)∵D、E分别为AB、AC中点,∴DE∥BC.∵DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.…(Ⅱ)连接PD,∵PA=PB,D为AB中点,∴PD⊥AB.….∵DE∥BC,BC⊥AB,∴DE⊥AB…又∵PD∩DE=D,PD,DE⊂平面PDE∴AB⊥平面PDE…∵PE⊂平面PDE,∴AB⊥PE…(Ⅲ)∵AB⊥平面PDE,DE⊥AB…如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,则B(1,0,0),P(0,0,),E(0,,0),∴=(1,0,),=(0,,).设平面PBE的法向量,∴令得…∵DE⊥平面PAB,∴平面PAB的法向量为.…设二面角的A﹣PB﹣E大小为θ,由图知,,所以θ=60°,即二面角的A﹣PB﹣E大小为60°…【点评】本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(1)通过椭圆的离心率,直线与圆相切,求出a,b即可求出椭圆的方程.(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程,利用韦达定理,结合点E,F到直线AB的距离分别,表示出四边形AEBF的面积,利用基本不等式求出四边形AEBF面积的最大值时的k值即可.【解答】解:(1)由题意知:=∴=,∴a2=4b2.…又∵圆x2+y2=b2与直线相切,∴b=1,∴a2=4,…故所求椭圆C的方程为…(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程整理得:(k2+4)x2=4,故.①…又点E,F到直线AB的距离分别为,.…所以四边形AEBF的面积为==…===,…当k2=4(k>0),即当k=2时,上式取等号.所以当四边形AEBF面积的最大值时,k=2.…【点评】本题考查直线与椭圆的位置关系,圆锥曲线的综合应用,考查分析问题解决问题的能力,转化思想以及计算能力.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【专题】综合题;导数的综合应用.【分析】(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b,利用当时,函数f(x)有极大值,建立方程,即可求得实数b、c的值;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立,分类讨论,求出函数的最大值,即可求实数a的取值范围.【解答】解:(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b∵当时,函数f(x)有极大值,∴f′()=﹣++b=0,f()=﹣++c=,∴b=0,c=0;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立由(Ⅰ)知,①﹣1≤x<1时,f′(x)=﹣3x(x﹣),函数在(﹣1,0)上单调递减,在(0,)上单调递增,在(,1)上单调递减∵f(﹣1)=2,f()=,∴﹣1≤x<1时,f(x)max=2,;②2≥x≥1时,f′(x)=,1°、a>0,函数在[1,2]上单调递增,f(x)max=f(2)=aln2,∴或,∴<a≤或0<a≤;2°、a≤0,函数在[1,2]上单调递减,f(x)max=f(1)=aln1=0,∴2≥3a﹣7,∴a≤3,∴a≤0综上,实数a的取值范围是a≤.【点评】本题考查导数知识的运用,考查函数的绝对值,考查函数的最值,考查分类讨论的数学思想,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.【考点】与圆有关的比例线段;相似三角形的判定;相似三角形的性质.【专题】选作题.【分析】(I)先证明△BCD∽△CED,可得,从而问题得证;(II)OD⊥AC,设垂足为F,求出CF=,利用DC2=CF2+DF2,建立方程,即可求得⊙O 的半径.【解答】(I)证明:连接OD,OC,由已知D是弧AC的中点,可得∠ABD=∠CBD∵∠ABD=∠ECD∴∠CBD=∠ECD∵∠BDC=∠EDC∴△BCD∽△CED∴∴CD2=DE•DB.(II)解:设⊙O的半径为R∵D是弧AC的中点∴OD⊥AC,设垂足为F在直角△CFO中,OF=1,OC=R,CF=在直角△CFD中,DC2=CF2+DF2∴∴R2﹣R﹣6=0∴(R﹣3)(R+2)=0∴R=3【点评】本题是选考题,考查几何证明选讲,考查三角形的相似与圆的性质,属于基础题.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.【考点】点的极坐标和直角坐标的互化;两点间的距离公式.【专题】计算题.【分析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l 的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.【解答】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0 ∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…【点评】本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)通过讨论x的范围得到相对应的f(x)的表达式,从而证明出结论;(2)利用分段函数解析式,分别解不等式,即可确定不等式的解集.【解答】解:(1)当x≤﹣1时,f(x)=3,成立;当﹣1<x<2时,f(x)=﹣2x+1,﹣4<﹣2x<2,∴﹣3<﹣2x+1<3,成立;当x≥2时,f(x)=﹣3,成立;故﹣3≤f(x)≤3;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当x≤﹣1时,x2﹣2x≤3,∴﹣1≤x≤2,∴x=1;当﹣1<x<2时,x2﹣2x≤﹣2x+1,∴﹣1≤x≤1,∴﹣1<x≤1;当x≥2时,x2﹣2x≤﹣3,无解;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综合上述,不等式的解集为:[﹣1,1].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查绝对值函数,考查分类讨论的数学思想,确定函数的解析式是关键.。
2018年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
陕西省黄陵中学重点班2018届高三下学期第一次大检测数学理

A. 27 B .
C.
D . 31
6. 函数 f ( x ) A sin( x
) ( 其中 A 0 ,
分 图 象 如 图 所 示 , 将 函 数 f ( x) 的 图 象 (
2 ) 的部 )可得
g ( x ) sin 2 x
4 的图象
A.向右平移 12 个长度单位
B
.向左平移 24 个长度单位
C. 向左平移 12 个长度单位
a sin
b)
(
R ),则 ( c p ) ( d p ) 的最小值为()
3
1
A. 2 B. 1 C. 2 2 1 D. 2
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上) · 2·
前 n 项和的
2
10. 正项数列
a n
前 n 项和为 S n ,且 a n , S n , a n
(n
*
N )成等差数列,
T n 为数列 { bn } 的前 n 项
bn
和,且
1
2
a n ,对任意 n
A.1 B.2
C.3 D.4
N * 总有 T n
K (K
*
N ) ,则 K 的最小值为()
f ( x)
A . {0,1,2} B . {0,1} C .{1,2} D . {1} 2.命题“ ? x∈ R, x3- 2x+ 1= 0”的否定是. A . ? x∈ R, x3- 2x+ 1≠ 0 C. ? x∈R ,x3- 2x+ 1= 0
B .不存在 x∈ R, x3- 2x+ 1≠ 0 D . ? x∈ R, x3- 2x+ 1≠ 0
)
①与去年同期相比, 2017 年上半年五个省的 GDP 总 量 均实现了增长;
陕西省汉中市2018届高三上学期第一次教学质量检测数学(理)试卷(含答案)

汉中市2018届高三年级教学质量第一次检测考试数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共五页。
满分150分。
考试时间120分钟。
注意事项:1.答题前,考生先将自己的姓名、准考证号等项在密封线内填写清楚。
2.选择题,请按题号用2B 铅笔填涂方框,非选择题,除作图可使用2B 铅笔外,其余各题请按题号用0.5毫米黑色签字笔书写,否则作答无效。
3.按照题号在对应的答题区域内作答,超出各题答题区域的答案无效,在草稿纸、试题上答题无效。
4.保持字体工整,笔迹清晰,卷面清洁,不折叠。
第I 卷(共60分)一. 选择题:(本题共12个小题,每小题5分共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.已知集合{}0,2,4,|,,,0b M N x x a M b M a a ⎧⎫===∈∈≠⎨⎬⎩⎭且,则集合M N I =( ) A .B .C .D .2.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( ) A .-4+i B .5 C . -5 D .-4-i3.下列三个命题: ①2>x 是211<x 的充分不必要条件; ②33,6,,≠≠≠+∈b a b a R b a 或则若设;③命题p :存在R x p x x R x ∈⌝<++∈:任意则使得,01,0200都有012≥++x x其中真命题是( )A. ①②B.②③C. ①③D. ①②③4.按照此程序运行,则输出k 的值是 ( )X=3 K=0 DOx=2x+1 k=k+1LOOP UNTIL X>16第4题A .4B .5C .2D .35.某空间几何体的三视图如图,且已知该几何体的体积为36π,则其表面积为( ) A. 332π+ B.32π C. 3234π+ D. 334π+6.若1cos(),(0,),432ππαα+=∈则sin α的值为( )A.426- B. 426+ C. 718 D.237.已知直线a 和平面,αβ满足,,,l a a αβαβ=⊄⊄I 且a 在,αβ内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( )A .相交或平行B .相交或异面C .平行或异面D .相交、平行或异面 8.已知函数()2sin(2)6f x x π=+,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .12x π=B .4x π=C . 3x π=D .23x π=9.若实数,x y 满足条件202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,则231x y z x +-=-的最大值( )A .B .4 C. D .10.已知P 是ABC 内部一点,且=,在ABC 内部随机取点M ,则点M 取自ABP内的概率为( )A .23 B . 13 C .12 D .16是椭圆22221(0)x y a b a b +=>>的左右焦点,A 是椭圆上的点,212F A F A c •=u u u r u u u u r (c 为椭圆的半焦距),则椭圆离心率的取值范围是( )A .33(0,] B .32[,]32 C .23[]22, D .3[12,) 12.设实数,,,a b c d 满足2ln 10,1,11a a cb d b d --≠≠-==+且,22)()a c b d -+-则(的最小值是() A . 2 B .1 C .12 D .14第II 卷(非选择题,共90分)二.填空题:(本题共4个小题,每小题5分共20分) 13.若||25nnx dx -=⎰(其中0n >),则()21nx -的展开式中2x 的系数为 .14已知函数log (2)2a y x m n =--+恒过定点(3,2),其中01,,a a m n >≠且均为正数,则1112m n++的最小值是 . 15.已知数列{}n a 中,11a =,{}n a 的前n 项和为n S ,当2n ≥时,有221nn n na a S S =-成立,则2017S = .16.设F 是双曲线C: 221169x y -=的右焦点,P 是C 左支上的点,已知A (3,8),则PAF 周长的最小值是 .三.解答题:共70分,解答应写出文字说明,证明过程或演算步骤。
2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
2018年高考理科数学试题(含全国1卷、2卷、3卷)带参考答案

有
种. (用数字填写答案)
16. 已知函数 f( x) =2sinx+sin2x ,则 f(x)的最小值是
.
三 . 解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题, 每个试题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。
(一)必考题:共 60 分。 17. ( 12 分)
A、-12 B 、-10 C 、10 D 、12 5、设函数 f (x)=x3+(a-1 ) x2+ax . 若 f(x)为奇函数,则曲线 y= f(x)在点( 0,0)处的Biblioteka 切线方程为( )2
A.y= -2x
B.y= -x C.y=2x D.y=x
6、在 ? ABC中, AD为 BC边上的中线, E 为 AD的中点,则 =( )
5
如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取 20 件产品作检验,再根
据检验结果决定是否对余下的所有产品做检验,设每件产品为不合格品的概率都为
P
( 0<P<1),且各件产品是否为不合格品相互独立。
( 1)记 20 件产品中恰有 2 件不合格品的概率为 f(P),求 f(P)的最大值点
A.
-
B.
-
C.
+
D.
+
7、某圆柱的高为 2,底面周长为 16,其三视图如右图。圆柱表面上的点 M在正视图上的对应 点为 A,圆柱表面上的点 N 在左视图上的对应点为 B,则在此圆柱侧面上, 从 M到 N 的路径中, 最短路径的长度为( )
A. 2 B. 2 C. 3 D. 2 8. 设抛物线 C:y2=4x 的焦点为 F,过点( -2 ,0)且斜率为 的直线与 C 交于 M,N 两点,则 · =( ) A.5 B.6 C.7 D.8
陕西省西安市2018届高三上学期第一次考试数学(理)试题word版有答案
市一中高三第一次模拟考试数学(理)试题命题人:孙丽荣一、选择题(每小题5分,共60分)1.已知i 为虚数单位,复数z 满足(1+i )z=(1﹣i )2,则|z|为( ) A .2B .1C .21D .222.若M={x|﹣2≤x ≤2},N={x|y=log 2(x ﹣1)},则M ∩N=( ) A .{x|﹣2≤x <0} B .{x|﹣1<x <0} C .{﹣2,0} D .{x|1<x ≤2}3.某几何体的三视图如图所示,则该几何体的体积为( )A .4+2πB .8+2πC .4+πD .8+π4.下列命题中:①“∃x 0∈R ,x 02﹣x 0+1≤0”的否定; ②“若x 2+x ﹣6≥0,则x >2”的否命题; ③命题“若x 2﹣5x+6=0,则x=2”的逆否命题; 其中真命题的个数是( ) A .0个 B .1个 C .2个 D .3个 5.设f (x )=⎪⎩⎪⎨⎧≥-<-2x ),1x (log 2x ,e 2231x ,则f (f (2))的值为( )A .0B .1C .2D .36.执行右上如图的程序框图,若程序运行中输出的一组数是(x ,﹣12),则x 的值为( )A .27B .81C .243D .729 7.已知函数f (x )=cos (2x ﹣)+2cos 2x ,将函数y=f (x )的图象向右平移个单位,得到函数y=g (x )的图象,则函数y=g (x )图象的一个对称中心是( ) A .(﹣,1) B .(﹣,1) C .(,1) D .(,0)8.已知向量与的夹角为,||=,则在方向上的投影为( )A .B .C .D .9.已知实数x ,y 满足不等式组,若目标函数z=kx+y 仅在点(1,1)处取得最小值,则实数k 的取值范围是 ( )A .(﹣1,+∞)B .(﹣∞,﹣1)C .(1,+∞)D .(﹣∞,1) 10.四个大学生分到两个单位,每个单位至少分一个的分配方案有( ) A .10种 B .14种 C .20种 D .24种11.在区间[0,1]上随机选取两个数x 和y ,则y >2x 的概率为( ) A .41 B .21 C .43 D .3112.已知双曲线1by a x 2222=-(a >0,b >0)的左、右焦点分别为F 1、F 2,且F 2为抛物线y 2=24x 的焦点,设点P 为两曲线的一个公共点,若△PF 1F 2的面积为366,则双曲线的方程为( )A .127y 9x 22=-B .19y 27x 22=-C .19y 16x 22=-D .116y 9x 22=-二、填空题(每小题5分,共20分) 13.已知幂函数y=x a 的图象过点(3,9),则的展开式中x 的系数为 .14.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列,若a 2+a 3=8,则数列{a n }的前n 项和S n = .为 . 16.定积分⎰-10(2x 1-+x)dx 的值为 .三、解答题(每小题12分,共70分. 解答应写出文字说明、证明过程或演算步骤)17. (本小题满分12分) 在锐角△ABC 中, =(1)求角A ; (2)若a=,求bc 的取值范围.18. (本小题满分12分)如图,三棱锥P ﹣ABC 中,PA=PC ,底面ABC 为正三角形. (Ⅰ)证明:AC ⊥PB ;(Ⅱ)若平面PAC ⊥平面ABC ,AC=PC=2,求二面角A ﹣PC ﹣B 的余弦值. 19.(本小题满分12分)甲乙两队参加奥运知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分。
陕西省2018年高三教学质量检测试题(一)理数试题+Word版含答案
2018年陕西省高三教学质量检测试题(一)数学(理)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合2{|90}A x x =-<,{|}B x x N =∈,则A B I 中元素的个数( )A .0B .1C .2D .32.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数理论里非常重要,被誉为“数学中的天桥”,根据欧拉公式可知,2i e 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知命题:p 对任意x R ∈,总有20x >;:q “1x >”是“2x >”的充分不必要条件,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝4.已知等差数列{}n a 的前n 项和为n S ,且3512a a =g ,20a =.若10a >,则20S =( )A .420B .340 C.-420 D .-3405.设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()||sgn f x x x =的图像大致是( )A .B . C. D .6.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种 C.9种 D .8种7.若变量,x y 满足约束条件1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则2z x y =-的最大值为( )A .4B .3 C.2 D .18.已知ABC ∆与BCD ∆均为正三角形,且4AB =.若平面ABC 与平面BCD 垂直,且异面直线AB 和CD 所成角为θ,则cos θ=( )A .15-B .15 C. 14- D .149.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数a y x =,[0,)x ∈+∞是增函数的概率为( )A .47 B .45 C. 35 D .3410.已知P 为ABC ∆所在平面内一点,0AB PB PC ++=u u u r u u u r u u u r ,||||||2AB PB PC ===u u u r u u u r u u u r ,则ABC ∆的面积等于( )A 3B .23 C. 33 D .4311.过双曲线22221(0,0)x y a b a b-=>>的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P .若M 为线段FP 的中点,则双曲线的离心率是( )A 2B 3 C.2 D 512.若函数2()ln f x ax x x =--存在极值,且这些极值的和不小于4ln2+,则a 的取值范围为( )A .[2,)+∞B .[22,)+∞ C. [23,)+∞ D .[4,)+∞第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题,每小题5分,共20分)13.若直线20x y c -+=是抛物线24x y =的一条切线,则c = .14.若函数()f x ax b =+,[4,]x a a ∈-的图像关于原点对称,则函数()a g x bx x =+,[4,1]x ∈--的值域为 .15.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,2MA AB BC ===,则该鳖臑的外接球的表面积为 .16.已知ABC ∆的内角,,A B C 的对边分别是,,a b c ,且222()a b c +-(cos cos )a B b A ⋅+abc =,若2a b +=,则c 的取值范围为 .三、解答题(本大题分必考题和选择题两部分,满分70分.解答应写出文字说明、证明过程或演算过程)(一)必考题(共5小题,每小题12分,共60分)17.已知在递增等差数列{}n a 中,12a =,3a 是1a 和9a 的等比中项.(1)求数列{}n a 的通项公式;(2)若1(1)n nb n a =+,n S 为数列{}n b 的前n 项和,求100S 的值. 18.如图,四棱柱1111ABCD A B C D -的底面ABCD 是菱形,AC BD O =I ,1AO ⊥底面ABCD ,2AB =,13AA =.(Ⅰ)证明:平面1ACO ⊥平面11BB D D ; (Ⅱ)若60BAD ∠=︒,求二面角1B OB C --的余弦值.19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在A 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关?(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.②将频率视为概率,从A 市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为X ,求X 的数学期望和方差.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. 参考数据:20.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 和2F ,由4个点(,)M a b -,(,)N a b ,2F 和1F 333.(Ⅰ)求椭圆的方程;(Ⅱ)过点1F 的直线和椭圆交于两点,A B ,求2F AB ∆面积的最大值.21.设函数()ln k f x x x=+,k R ∈. (Ⅰ)若曲线()y f x =在点(,())e f e 处的切线与直线20x -=垂直,求()f x 的单调递减区间和极小值(其中e 为自然对数的底数);(Ⅱ)若对任何120x x >>,1212()()f x f x x x -<-恒成立,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 的参数方程为cos sin x t y αα=⎧⎨=⎩,(0,t α>为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程sin()34πθ+=.(Ⅰ)当1t =时,求曲线C 上的点到直线l 的距离的最大值;(Ⅱ)若曲线C 上的所有点都在直线l 的下方,求实数t 的取值范围.23.选修4-5:不等式选讲已知函数()|21||1|f x x x =-++.(Ⅰ)解不等式()3f x ≤.(Ⅱ)记函数()()|1|g x f x x =++的值域为M ,若t M ∈,证明2313t t t+≥+.试卷答案一、选择题1-5:DBDDC 6-10:ABDCB 11、12:AC二、填空题13.-4 14. 1[2,]2-- 15. 12π 16. [1,2)三、解答题17.解:(Ⅰ)由{}n a 为等差数列,设公差为d ,则1(1)n a a n d =+-.∵3a 是1a 和9a 的等比中项,∴2319a a a =,即2(22)2(28)d d +=+,解之,得0d =(舍),或2d =. ∴1(1)2n a a n d n =+-=. (Ⅱ)11111()(1)2(1)21n n b n a n n n n ===-+++. 12100n S b b b =+++=L 111111(1)2223100101-+-++-L 1150(1)2101101=-=. 18.(Ⅰ)证明:∵1AO ⊥平面ABCD ,BD ⊂平面ABCD ,∴1AO BD ⊥. ∵ABCD 是菱形,∴CO BD ⊥.∵1AO CO O =I ,∴BD ⊥平面1A CO . ∵BD ⊂平面11BB D D ,∴平面1ACO ⊥平面11BB D D . (Ⅱ)∵1AO ⊥平面ABCD ,CO BD ⊥,以O 为原点,OB u u u r ,OC u u u r ,1OA uuu r 方向为,,x y z 轴正方向建立如图所示空间直角坐标系.∵2AB =,13AA =,60BAD ∠=︒,∴1OB OD ==,3OA OC ==22116OA AA OA -.则(1,0,0)B ,3,0)C ,(0,3,0)A -,16)A , ∴113,6)BB AA ==u u u r u u u r ,113,6)OB OB BB ++=u u u u r u u u r u u u r .设平面1OBB 的法向量为(,,)n x y z =r ,∵(1,0,0)OB =u u u r ,13,6)OB =u u u u r , ∴0360x x y z =⎧⎪⎨=⎪⎩. 令2y ,得2,1)n =-r .同理可求得平面1OCB 的法向量为(6,0,1)m =-u r . ∴21cos ,2173n m <>=⨯r u r . 19.解:(Ⅰ)由列联表可知,22200(70406030) 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯. ∵2.198 2.072>,∴能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. (Ⅱ)①依题意,可知所抽取的10名30岁以上网民中,经常使用共享单车的有60106100⨯=(人),偶尔或不用共享单车的有40104100⨯=(人). 则选出的3人中至少2人经常使用共享单车的概率为21364633101023C C C P C C =+=.②由22⨯列联表,可知抽到经常使用共享单位的频率为1301320020=, 将频率视为概率,即从A 市市民中任意抽取1人, 恰好抽到经常使用共享单车的市民的概率为1320. 由题意得13(10,)20X B :,∴1313()10202E X =⨯=;13791()10202040D X =⨯⨯=. 20.解:(Ⅰ)由条件,得b ==3a c +=. 又223a c -=,解得2a =,1c =. ∴椭圆的方程22143x y +=. (Ⅱ)显然,直线的斜率不能为0,设直线方程为1x my =-,直线与椭圆交于11(,)A x y ,22(,)B x y , 联立方程221431x y x my ⎧+=⎪⎨⎪=-⎩,消去x 得,22(34)690m y my +--=. ∵直线过椭圆内的点,无论m 为何值,直线和椭圆总相交. ∴122634m y y m +=+,122934y y m =-+. ∴21212121||||||2F AB S F F y y y y ∆=-=-===令211t m =+≥,设1()9f t t t =+,易知1(0,)3t ∈时,函数()f t 单调递减,1(,)3t ∈+∞函数单调递增,∴当211t m =+=,设0m =时,min 10()9f t =,2F AB S ∆的最大值为3. 21.解:(Ⅰ)由条件得21'()(0)k f x x x x=->, ∵曲线()y f x =在点(,())e f e 处的切线与直线20x -=垂直, ∴此切线的斜率为0,即'()0f e =,有210k e x -=,得k e =. ∴221'()(0)e x e f x x x x x-=-=>,由'()0f x <得0x e <<,由'()0f x >得x e >. ∴()f x 在(0,)e 上单调递减,在(,)e +∞上单调递增.当x e =时,()f x 取得极小值()ln 2e f e e e=+=. 故()f x 的单调递减区间(0,)e ,极小值为2.(Ⅱ)条件等价于对任意120x x >>,1122()()f x x f x x -<-恒成立, 设()()ln (0)k h x f x x x x x x=-=+->, 则()h x 在(0,)+∞上单调递减. ∴21'()10k h x x x=--≤在(0,)+∞上恒成立. 得2211()(0)24k x x x x ≥-+=--+>恒成立. ∴14k ≥(对14k =,'()0h x =仅在12x =时成立). 故k 的取值范围是1[,)4+∞. 22.解:(Ⅰ)直线l 的直角坐标方程为30x y +-=,曲线22:1C x y +=. ∴曲线C 为圆,且圆心O 到直线l的距离d ==. ∴曲线C 上的点到直线l的距离的最大值为12+. (Ⅱ)∵曲线C 上的所有点均在直线l 的下方,∴对R α∀∈,有cos sin 30t αα+-<恒成立.)3αϕ-<(其中1tan tϕ=)恒成立.3.又0t >,∴解得0t <<∴实数t的取值范围为. 23.解:(Ⅰ)依题意,得3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩, 于是得1()333x f x x ≤-⎧≤⇔⎨-≤⎩,或11223x x ⎧-<<⎪⎨⎪-≤⎩,或1233x x ⎧≥⎪⎨⎪≤⎩,解得11x -≤≤.即不等式()3f x ≤的解集为{|11}x x -≤≤.(Ⅱ)()()|1|g x f x x =++=|21||22||2122|3x x x x -++≥---=, 当且仅当(21)(22)0x x -+≤时,取等号,∴[3,)M =+∞. 原不等式等价于2331t t t-+- 22233(3)(1)t t t t t t t-+--+==. ∵t M ∈,∴30t -≥,210t +>. ∴2(3)(1)0t t t-+≥. ∴2313t t t+≥+.。
陕西省黄陵中学(重点班)2018届高三下学期第一次大检测数学(文)试题及答案
111 1正视图侧视图俯视图2018届陕西省黄陵中学(重点班)高三下学期第一次大检测数学(文)试题第Ⅰ卷(共60分)一、选择题(共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.i 为虚数单位,复数12-=i iz 在复平面内对应的点所在象限为 A .第二象限B .第一象限C .第四象限D .第三象限2.已知集合22{|1}23x y A y =+=,集合2{|4}B x y x ==,则A B ⋂=A .3,3⎡⎤-⎣⎦B .0,3⎡⎤⎣⎦C .)3,⎡-+∞⎣D .)3,⎡+∞⎣3.命题p :“R x ∈∃0,02021x x <+”的否定p 为 A .R x ∈∃0,02021x x ≥+B .R x ∈∃0,02021x x >+C .R x ∈∀,x x 212≥+D .R x ∈∀,x x 212<+4.某棱锥的三视图如图所示,则该棱锥的体积为A .61B .31C .41D .1215. 已 知 1sin()23πα+=,(0,)απ∈,则 sin(2)πα+ 等 于 A . 79 B . 79-C . 429D . 429-6. 若 某 几 何 体 的 三 视 图( 单 位 :c m )如 图 所 示 ,其 中 左 视 图 是 一 个 边 长 为 2的 正 三 角 形 , 则 这 个 几 何 体 的 体 积 是 A . 2 c m 3B .3 c m 3C .33 c m 3D . 3 c m 37 . 执 行 如 图 所 示 的 程 序 框 图 , 那 么 输 出 S 的 值 是 A . 2 01 8 B . −1 C .12D . 28.实 数 m ,n 满 足m > n > 0, 则 A . 11m n --pB . m n m n--pC . 11()()22mn fD . 2m mn p9.函数()ln cos f x x x =+(22x ππ-≤≤且0x ≠)的图象大致是( )A .B .C .D .10.已知公比不为1的等比数列{}n a 的前n 项和为n S ,且满足258,2,3a a a 成等差数列,则363S S =( )A .134 B .1312 C .94 D .111211.已知函数()(](]111,1,012,0,1x x x f x x -⎧-∈-⎪+=⎨⎪∈⎩,且()()2g x f x mx m =-+在(]1,1-内有且仅有两个不同的零点,则实数m 的取值范围是( )A .11,4⎛⎤-- ⎥⎝⎦B .(]1,1,4⎛⎫-∞-⋃-+∞ ⎪⎝⎭C .11,4⎡⎫--⎪⎢⎣⎭D .()1,1,4⎡⎫-∞-⋃-+∞⎪⎢⎣⎭12.已知函数()sin 21f x x =-,()()2sin cos 4g x a x x ax =+-,()g x '是()g x 的导数,若存在0,2x π⎡⎤∈⎢⎥⎣⎦,使得()()f x g x '≥成立,则实数a 的取值范围是( )A .(][),10,-∞-⋃+∞B .1,2⎡⎫+∞⎪⎢⎣⎭C .(]1,1,2⎡⎫-∞-⋃+∞⎪⎢⎣⎭D .[)0,+∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13. 设,若复数在复平面内对应的点位于实轴上,则__________. 14. 观察下列各式:,,,,,…,则=_________. 15. ]已知函数的图象关于点对称,记在区间上的最大值为,且在()上单调递增,则实数的最小值是__________. 16.已知点是双曲线:左支上一点, 是双曲线的右焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是________.三、解答题:共70分。
2018届高三上学期期末联考数学(理)试题有答案-精品
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 3 B. 1 C. 2 2
1 1 D.
2
2
二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)
13.在平面直角坐标系 xOy 中,已知抛物线
x 4t 2 ( t 为参数)的焦点为 F ,动点 P 在抛
y 4t
物线 上. 以坐标原点为极点 , x 轴 的非负 半轴为 极轴建 立极坐标系 , 动 点 Q 在圆
A. {0,1,2} B
. {0,1} C
. {1,2} D
. {1}
2.命题“ ? x∈R, x3- 2x+ 1= 0”的否定是.
A. ? x∈ R, x3- 2x+ 1≠ 0
B.不存在 x∈ R,x3- 2x+ 1≠ 0
C. ?
x∈
R,
x
3
-
2
x+
1
=
0
D. ? x∈R, x3- 2x+ 1≠ 0
1
的最大值为 f ( 1) ,则实数 a 的取值范围是()
x
a 2 ( x 0)
x
A.
[
0,2e2
]
B.
2
(1,2e
]
C.
[
0,2e3
]
D.
(e,2e3
]
12. 已知单位向量 a, b, c, d 满足: a b, | c d | 3, 向量 p 2 2(cos2 a sin 2 b)
( R ),则 (c p) (d p) 的最小值为()
18.列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离
d
(千米)”,“安全间隔距离 d(千米)”与列车的速度 v(千米 / 小时)的平方成正比(比例系
1 数 k=4000 ).假设所有的列车长度 l 均为 0. 4 千米,最大速度均为
车车速多大时,单位时间流量
v
Q= l
+d
7.设 x, y, z 为正实数,且
B
.向左平移
个长度单位
24
D .向右平移
个长度单位
24
,则
A.
B.
C.
D.
的大小关系是
8.设等差数列 an 的前 n 项和为 Sn 已知 a1=9, a2 为整数,且 Sn<S5,则数列
项和的最大值为
A.
B .1
C
.
D.
9. 如图是 2017 年上半年某五省 GDP 情况图,则下列叙述正确的是(
)
①与去年同期相比, 2017 年上半年五个省的 GDP 总量
均实现了增长;
② 2017 年上半年山东的 GDP 总量和增速均居第二;
③ 2016 年同期浙江的 GDP 总量高于河南;
④ 2016 和 2017 年上半年辽宁的 GDP 总量均位列第五 .
A. ①② B. ①③④
C. ③④ D. ①②④
位:元 / 千克)满足关系式: y
a
10 x 6 2 其中 3< x<6, a 为常数,已知销售的价
x3
格为 5 元 / 千克时,每日可以售出该商品 11 千克. (12 分 )
( 1)求 a 的值;
( 2)若该商品的成本为 3 元 / 千克,试确定销售价格 x 的值,使商场每日销售该商品所获
得的利润最大,并求出最大值.
高三重点班 2018 年第一次质量大检测
数学试题(理)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每个小题给出的四个选项中,只
有一项是符合题目要求的. 1.已知全集 U=R,集合 A= {1,2,3,4,5}
, B= [2 ,+∞ ) ,
则图中阴影部分所表示的集合为 ( ) .
( 8cos ) 15 0 上,则 PF PQ 的最小值为 __________.
14. 已知 a b 0 ,则 2a 3
2
的最小值为
.
ab ab
15. 在等腰梯形中, AB ∥ CD , AB 2, AD 1, DAB 60 ,若 BC 3CE, AF AB,
且 AE DF 1, 则 =_______.
a1=l ,则 S5=
A. 27 B .
C.
D . 31
6. 函数 f ( x) A sin( x ) ( 其中 A 0 , 图 象 如 图 所 示 , 将 函 数 f ( x) 的 图 象 (
) 的部分
2
)可得
g( x)sin 2x
的图象
4
A.向右平移 个长度单位
12
C. 向左平移 个长度单位
12
最大?
v0(千米 / 小时).问:列
19.(本大题满分 12 分)已知函数 f ( x) 4x 2x 1 8 ; ( 1)求 f ( f (2)) 的值; ( 2)若 x 2,2 ,求 f (x) 的最大值和最小值.
20. 某商场销售某种商品的经验表明,该商品每日的销售量
y(单位:千克)与销售价格 x(单
21. (本小题满分 12 分)
已知函数 f ( x) ex , g(x) e 2.71828 ,, ) .
a x2 x ,(其中 a R , e为自然对数的底数,
2
(Ⅰ)令 h( x) f ( x) g '( x) ,若 h( x) 0 对任意的 x R 恒成立,求实数 a的值;
(Ⅱ)在( 1)的条件下,设 m为整数,且对于任意正整数
i 3.设 i 是虚数单位,则 1- i 3=
11
1
11
1
A. - i B . 1+ I C. + i D . 1- i
22
2
22
2
4.在等比数列 { an } 中, a1= 8,a4= a3a5,则 a7=
1
1
1
1
A. 16
B.
8
C.
4
D.
2
5.已知数列 an 的前 n 项和 Sn=2+λ an,且
16. 用 0, 1, 2,3, 4 组成没有重复数字的五位偶数,要求奇数不相邻,且 偶数相邻,这样的五位数一共有 _______个 . (用数字作答)
0 不与另外两个
三、解答题 ( 本大题共 6 小题,共 70 分 ) (必选题,每题 12 分) 17.在△ ABC中, a, b, c 分别是角 A、 B、 C的对边,向量 x= (2 a+ c, b) , 向量 y=(cos B,cos C) ,且 x·y= 0. (1) 求 B的大小; (2) 若 b= 3,求 | B→A+→BC| 的最小值.
n, n ( i )n
i1 n
m ,求 m的最小值 .
请考生在 22、 23 两题中任选一题作答,如果多做,则按所做的第一题记分
前n
10. 正项数列
an
前 n 项和为
Sn
,且
an
,
Hale Waihona Puke Sn,2an
(
n
N * )成等差数列, Tn 为数列 {bn} 的前
n 项和,且 bn
1 an2 ,对任意 n
N * 总有 Tn
K (K
N * ) ,则 K 的最小值为()
A.1 B.2
C.3 D.4
11. 若函数 f ( x)
a ln x x2 (x 0)