余弦定理测试题(小题详解)
高一数学余弦定理试题答案及解析

高一数学余弦定理试题答案及解析1.在△ABC中,设AD为BC边上的高,且AD = BC,b,c分别表示角B,C所对的边长,则的取值范围是____________.【答案】.【解析】因为BC边上的高AD=BC=a,所以,则,又,所以,其中有tanA=2,又由基本不等式有所以的取值范围.【考点】三角形的面积公式,辅助角公式,余弦定理,基本不等式,正弦函数的定义域与值域.2.已知ABC的重心为G,内角A,B,C的对边分别为a,b,c,若,则角A为()A.B.C.D.【答案】A【解析】由于是的重心,,.代入得由于不共线,【考点】平面向量共线定理和余弦定理的应用.3.△中,若,则△的形状为()A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形【答案】B【解析】由,结合余弦定理得,即有,此题也可运用正弦定理化边为角,从角来判定三角形的形状,可能不及运用余弦定理简便【考点】余弦定理和三角形形状的判定.4.在中,已知,则 .【答案】【解析】由得,由余弦定理,所以,即,在中,,那么.【考点】1.余弦定理;2.特殊角的三角函数值.5.在△ABC中,角A、B、C的对边分别为a、b、c,已知向量,,.(1)求角C的大小; (2)若,求角A的值.【答案】(1);(2)【解析】解题思路:(1)利用平面向量的垂直的判定得出三角形的三边的关系式,在利用余弦定理求角;(2)利用三角形的三角关系进行消元,使其变为关于角A的式子,再恒等变形求角的正弦值,结合角的范围求角.规律总结:对于以平面向量为载体考查三角函数问题,要正确利用平面向量知识化为三角函数关系式,再利用三角函数的有关公式进行变形.注意点:利用三角函数值求角时,一定要结合角所在的范围求角.试题解析:(1) 由整理得即又又因为,所以(2) 因为,所以故由即,所以.即.因为故所以【考点】1.平面向量垂直的判定;2余弦定理;3.三角恒等变换.6.某货轮在航行中不幸遇险,发出呼救信号,我海军护卫舰在A处获悉后,测得该货轮在北偏东45º方向距离为10海里的C处,并测得货轮正沿北偏东105º的方向、以每小时9海里的速度向附近的小岛靠拢.我海军护卫舰立即以每小时21海里的速度前去营救;则护卫舰靠近货轮所需的时间是小时.【答案】.【解析】由题意可画出如下示意图,假设经过小时处护卫舰靠近了货轮,则可得,,,∴在,由余弦定理可得:.【考点】余弦定理的运用.7.在△ABC中,,则A等于().A.60°B.120°C.30°D.150°【答案】B【解析】根据余弦定理:,根据,可得,所以在三角形中.【考点】余弦定理.8.已知的三条边的边长分别为4米、5米、6米,将三边都截掉米后,剩余的部分组成一个钝角三角形,则的取值范围是()A.05B.15C.13D.14【答案】C【解析】新三角形的三边分别为,其中边长为的边对的角最大记为角,所以角为钝角。
(完整版)余弦定理练习题及答案

积累巩固1.已知a ,b ,c 是∆ABC 中角A ,B ,C 的对边,若a =21,b =5,c =4,则A =.3,b =3,c =30︒,则A =.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知a =3.在△ABC 中,三个角A ,B ,C 的对边边长分别为a =3,b =4,c =6,则bc cos A +ca cos B +ab cos C 的值为.4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为.5.在△ABC 中,已知a =1,b =7,B =60°,求边C .延伸拓展6.在△ABC 中,已知a =2,b =2,A =45°,解此三角形.7.已知a 、b 、c 分别是∆ABC 的三个内角A 、B 、C 所对的边,若∆ABC 面积S∆ABC=3,c =2,A =60︒,求a 、b 的值.28.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a ⋅cos 2.C A 3+c ⋅cos 2=b ,求证:2229.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b +c =a +3bc ,求:(1)A 的大小;(2)2sin B cos C -sin(B -C )的值.10.设∆ABC 的内角A,B,C 的对边分别为a,b,c,且A=60o ,c=3b.求:(1)222cos B cos C a的值;(2)的值.+c sin B sin C 创新应用11.在△ABC 中,a 、b 是方程x -23x +2=0的两根,且2cos(A +B )=1.求:(1)角C 的度数;(2)c ;(3)△ABC 的面积.12.已知A 、B 、C 为∆ABC 的三内角,且其对边分别为a 、b 、c ,若2cos B cos C -sin B sin C =1.2(1)求A ;(2)若a =23,b +c =4,求∆ABC 的面积.13.当甲船位于A 处时获悉,在其正东方方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,试问乙船直接赶往B 处救援最少要走多少海里?参考答案b 2+c 2-a 21=,∠A =60o .1.60解析:cos A =2bc 2o 2.解:由余弦定理可得c 2=3+9-2⨯3⨯3cos30o =3,解得c =a =3⇒A =C =30o (或).616+36-99+36-1616+9-36613.解:由余弦定理,所求式=++=.22224.解:设顶角为C ,因为l =5c ,∴a =b =2c ,由余弦定理得πa 2+b 2-c 24c 2+4c 2-c 27cos C ===.2ab 2⨯2c ⨯2c 85.解:由余弦定理得(7)2=1+c 2-2c cos60°,∴c 2-c -6=0,解得c 1=3,c 2=-2(舍去);∴c =3.6.解:由a 2=b 2+c 2-2bc cos A 得22=(2)2+c 2-22c cos45°,∴c 2-2c -2=0,解得c =1+3或c =1-3(舍去);∴c =1+3.c 2+a 2-b 222+(1+3)2-(2)23又cos B ===,且B 为三角形内角;2ca 22×2×(1+3)∴B =30°;∴C =180°-(A +B )=180°-(45°+30°)=105°.7.解:ΘS∆ABC=1bc sin A =3,∴1b ⋅2sin 60︒=3,得b =12222由余弦定理得a =b +c -2bc cos A =1+2-2⨯1⨯2⋅cos60︒=3,∴a =2222223.8.证明:由已知得:,∴,∴,∴,即222.9.解:(1)由余弦定理得a b c2bccosA,b2c2a23bc3故cosA,所以A.2bc2bc26(2)2sinB cosC sin(B C)2sin B cos C(sinB cos C cos B sinC)sinB cos C cos B sinC1sin(B C)sin(A)sin A.210.解:(1)由余弦定理得1117a7 a2b2c22b cosA(c)2c22g cg cg c2.3329c3(2)由余弦定理及(1)的结论有72212c c(c)a c b539. cosB2ac7272g cg c3222故sin B1cos2B1253. 282772122c c ca2b2c2919,同理可得cosC2ab71272g cg c33sin C1cos2C1133. 2827从而cosB cosC5114333. sinB sin C39911.解:(1)∵2cos(A +B )=1,∴cos C =-21,∴角C 的度数为120°.2(2)∵a 、b 是方程x -23x +2=0的两根,∴由求根公式计算得a +b =23,ab =2,222由余弦定理得c =a +b -2ab cos C =(a +b )-2ab (cos C +1)=12-2=10.2∴c =10.(3)S =13ab sin C =.2212.解:(1)Θcos B cos C -sin B sin C =又Θ0<B +C <π,∴B +C =22211,∴cos(B +C )=;223;ΘA +B +C =π,∴A =π2π.3(2)由余弦定理得a =b +c -2bc ⋅cos A ,∴(23)=(b +c )-2bc -2bc ⋅cos 222π,3即12=16-2bc -2bc ⋅(-),∴bc =4;12∴S∆ABC=113bc ⋅sin A =⋅4⋅=3.222o o o 13.解:在△ABC 中,∠BAC =90+30=120,∴BC =AB 2+AC 2-2AB g AC cos A =202+102-2⨯20⨯10cos120o =107.答:乙船直接赶往B 处救援最少要走107海里.。
高考正弦定理和余弦定理练习题及答案

高考正弦定理和余弦定理练习题及答案一、选择题1. 已知△ABC中,a=c=2,A=30°,则b=A. 错误!B. 2错误!C. 3错误!D. 错误!+1答案:B解析:∵a=c=2,∴A=C=30°,∴B=120°.由余弦定理可得b=2错误!.2. △ABC中,a=错误!,b=错误!,sin B=错误!,则符合条件的三角形有A. 1个B. 2个C. 3个D. 0个答案:B解析:∵a sin B=错误!,∴a sin B<b=错误!<a=错误!,∴符合条件的三角形有2个.3.2010·天津卷在△ABC中,内角A,B,C的对边分别是a,b,c.若a2-b2=错误! bc,sin C=2错误!sin B,则A=A.30° B.60°C.120° D.150°答案:A解析:利用正弦定理,sin C=2错误!sin B可化为c=2错误!b.又∵a2-b2=错误!bc,∴a2-b2=错误!b×2错误!b=6b2,即a2=7b2,a=错误!b.在△ABC中,cos A=错误!=错误!=错误!,∴A=30°.4.2010·湖南卷在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<bC.a=b D.a与b的大小关系不能确定答案:A解析:由正弦定理,得错误!=错误!,∴sin A=错误!=错误!>错误!.∴A>30°.∴B=180°-120°-A<30°.∴a>b.5. 如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为A. 错误!B. 错误!C. 错误!D. 错误!答案:D解析:方法一:设三角形的底边长为a,则周长为5a,∴腰长为2a,由余弦定理知cosα=错误!=错误!.方法二:如图,过点A作AD⊥BC于点D,则AC=2a,CD=错误!,∴sin错误!=错误!,∴cosα=1-2sin2错误!=1-2×错误!=错误!.6. 2010·泉州模拟△ABC中,AB=错误!,AC=1,∠B=30°,则△ABC的面积等于A. 错误!B. 错误!C. 错误!或错误!D. 错误!或错误!答案:D解析:∵错误!=错误!,∴sin C=错误!·sin30°=错误!.∴C=60°或C=120°.当C=60°时,A=90°,S△ABC=错误!×1×错误!=错误!,当C=120°时,A=30°,S△ABC=错误!×1×错误!sin30°=错误!.即△ABC的面积为错误!或错误!.二、填空题7.在△ABC中,若b=1,c=错误!,∠C=错误!,则a=________.答案:1解析:由正弦定理错误!=错误!,即错误!=错误!,sin B=错误!.又b<c,∴B=错误!,∴A=错误!.∴a=1.8.2010·山东卷在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b =2,sin B+cos B=错误!,则角A的大小为________.答案:错误!解析:∵sin B+cos B=错误!,∴sin B+错误!=1.又0<B<π,∴B=错误!.由正弦定理,知错误!=错误!,∴sin A=错误!.又a<b,∴A<B,∴A=错误!.9. 2010·课标全国卷在△ABC中,D为边BC上一点,BD=错误!DC,∠ADB=120°,AD=2.若△ADC的面积为3-错误!,则∠BAC=________.答案:60°解析:S△ADC=错误!×2×DC×错误!=3-错误!,解得DC=2错误!-1,∴BD=错误!-1,BC=3错误!-1.在△ABD中,AB2=4+错误!-12-2×2×错误!-1×cos120°=6,∴AB=错误!.在△ACD中,AC2=4+2错误!-12-2×2×2错误!-1×cos60°=24-12错误!,∴AC=错误!错误!-1,则cos∠BAC=错误!=错误!=错误!,∴∠BAC=60°.三、解答题10. 如图,△OAB是等边三角形,∠AOC=45°,OC=错误!,A、B、C三点共线.1求sin∠BOC的值;2求线段BC的长.解:1∵△AOB是等边三角形,∠AOC=45°,∴∠BOC=45°+60°,∴sin∠BOC=sin45°+60°=sin45°cos60°+cos45°sin60°=错误!.2在△OBC中,错误!=错误!,∴BC=sin∠BOC×错误!=错误!×错误!=1+错误!.11. 2010·全国Ⅱ卷△ABC中,D为边BC上的一点,BD=33,sin B=错误!,cos ∠ADC=错误!,求AD.解:由cos∠ADC=错误!>0知B<错误!,由已知得cos B=错误!,sin∠ADC=错误!,从而sin∠BAD=sin∠ADC-B=sin∠ADC cos B-cos∠ADC sin B=错误!×错误!-错误!×错误!=错误!.由正弦定理得错误!=错误!,AD=错误!=错误!=25.12. 2010·安徽卷设△ABC是锐角三角形,a,b,c分别是内角A,B,C所对边长,并且sin2A=sin错误!sin错误!+sin2B.1求角A的值;2若错误!·错误!=12,a=2错误!,求b,c其中b<c.解:1因为sin2A=错误!错误!+sin2B=错误!cos2B-错误!sin2B+sin2B=错误!,所以sin A=±错误!.又A为锐角,所以A=错误!.2由错误!·错误!=12,可得cb cos A=12.①由1知A=错误!,所以cb=24.②由余弦定理知a2=c2+b2-2cb cos A,将a=2错误!及①代入,得c2+b2=52,③③+②×2,得c+b2=100,所以c+b=10.因此c,b是一元二次方程t2-10t+24=0的两个根.解此方程并由c>b知c=6,b=4.。
正余弦定理练习题(含答案)

A.6B.2 C.3 D .26 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .42 B .43 C .46 D.3233.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135°B .135°C .45°D .以上答案都不对.以上答案都不对 4.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6B .6∶5∶1 C .6∶1∶5 D .不确定.不确定 解析:选A.由正弦定理知sin A ∶sin B ∶sin C =a ∶b ∶c =1∶5∶6. 5.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.146.在△ABC 中,若cos A cos B =b.已知△ABC 中,AB =3,AC =1,∠B =30°,则△ABC C.32或3 D.34或3、b 、c .若c =2,b =6,B =120°,则a 等于( ) A.6 B .2 C.3 D.2 9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3,则A =________. 10.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 11.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.13.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C =________,c =________. 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C=________. 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解. 的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值.20.△ABC 中,ab =603,sin B =sin C ,△ABC 的面积为153,求边b 的长.的长.1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) a,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形.等腰三角形或直角三角形 7的面积为( ) A.32B.3428.△ABC 的内角A 、B 、C 的对边分别为a 17.如图所示,货轮在海上以40 40 km/h km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°A2,求A 、B 及b 、c . 19.(2009年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C 所对应的边分别为a 、b,那么26 6 6 =3-A.3 B.2 5 c 2+3bc =3A.π B.π C.π或5π D.π或2π =3,c A.3 .23 C.323 3,则边32=13,则=a +b -c 1为3,则(3-(3∶1023x 为2=2sin 的面积为1sin =5,-π)A.6B.2 3 6 应用正弦定理得:=,求得== 6. 42 43 46 D.32= 6. 3,42,则角由正弦定理=得:==2,又∵=2,则B.1 D.1,由=得=2×2×sin 30°sin 30°=中,若cos A =,则△∵=sin B ,∴cos A =sin B ,π. 3A.3 B.3 C.3或3 D.3或3D.=,求出=3,∵1AB ,6A.6 C.3 D.2 由正弦定理得6=2,= 2. 3,π,则=2=1. A =csin C, 所以sin A =a ·sin C c =12. 又∵a <c ,∴A <C =π3,∴A =π6. 答案:π610.在△ABC 中,已知a =433,b =4,A =30°,则sin B =________. 解析:由正弦定理得a sin A =bsin B ⇒sin B =b sin A a =4×12433=32. 答案:3211.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 解析:C =180°-120°-30°=30°,∴a =c ,由a sin A =b sin B 得,a =12×12×sin30°sin30°sin120°=43, ∴.在△ABC 中,A =60°,a =63,b =12,S △ABC =183,则a +b +csin A +sin B +sin C=________,c =________. 解析:由正弦定理得a +b +c sin A +sin B +sin C =a sin A =63sin60°=12,又S △ABC =12bc sin A ,∴12×12×12×sin60°sin60°sin60°××c =183, ∴c =6. 答案:12 6 14.已知△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,a =1,则a -2b +csin A -2sin B +sin C =________. 解析:由∠A ∶∠B ∶∠C =1∶2∶3得,∠A =30°,∠B =60°,∠C =90°, ∴2R =a sin A =1sin30°=2,又∵a =2R sin A ,b =2R sin B ,c =2R sin C , ∴a -2b +c sin A -2sin B +sin C =2R s in A -2sinB +sin C sin A -2sin B +sin C =2R =2. 答案:2 15.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________. 解析:由解析:由正弦定理正弦定理得:a sin a +c =8 3. 答案:83 12.在△ABC 中,a =2b cos C ,则△ABC 的形状为________.解析:由正弦定理,得a =2R ·sin A ,b =2R ·sin B , 代入式子a =2b cos C ,得,得 2R sin A =2·2·22R ·sin B ·cos C , 所以sin A =2sin B ·cos C ,即sin B ·cos C +cos B ·sin C =2sin B ·cos C , 化简,整理,得sin(B -C )=0. ∵0°<B <180°,0°<C <180°, ∴-180°<B -C <180°, ∴B -C =0°,B =C . 答案:答案:等腰三角形等腰三角形13解析:依题意,sin C =223,S △ABC =12ab s in C =43,解得b =2 3. 答案:23 16.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解.组解.解析:∵b sin C ==BC ·sin ∠ABCsin A =20sin30°sin45°=102(km).即货轮到达C 点时,与灯塔A 的距离是102 2 km. km. 18.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a =23,sin C 2cos C 2=14,sin B sin C =cos 2A2,求A 、B 及b 、c . 解:由sin C 2cos C 2=14,得sin C =12,又C ∈(0,π),所以C =π6或C =5π6. 由sin B sin C =cos 2A2,得,得sin B sin C =12[1-cos(B +C )], 即2sin B sin C =1-cos(B +C ), 即2sin B sin C +cos(B +C )=1,变形得,变形得 cos B cos C +sin B sin C =1, 即cos(B -C )=1,所以B =C =π6,B =C =5π6(舍去),A =π-(B +C )=2π3. 由正弦定理a sin A =b sin B =csin C ,得,得b =c =a sin B sin A =23×1232=2. 故A =2π3,B =π6,b =c =2. 19.(2009所对应的边分别为a 、b 、c ,且cos cos 22A =35,sin B =1010.(1)求A +B 的值;(2)若a -b =2-1,求a ,b ,c 的值.的值. 43×12=23且c =2,∴c <b sin C ,∴此三角形无解.,∴此三角形无解. 答案:0 17.如图所示,货轮在海上以40 km/h 的速度沿着方位角(指从正北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时后船到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?的距离是多少?解:在△ABC 中,BC =40×12=20,∠ABC =140°-110°=30°,∠ACB =(180°-140°140°))+65°=105°, 所以∠A =180°-(30°+105°105°))=45°, 由正弦定理得AC 年高考四川卷)在△ABC 中,A 、B 为锐角,角A 、B 、C=10,=1-sin 2B =310. =3,∴=5,25,25×310-5×10=2. π. 3π2==得5a =10b =2c 2b =5-b =2-,∴2=2-=2,c = 5. 603×3×sin =1,∴∠3,sin A =sin B ,∴215. 21,那么6 6 46 AC =AB 2+BC 2-2AB ·BC cos B = 42+62-2×2×4×4×4×6×6×13=6. .在△ABC 中,a =2,b =3A.3 2 C.5 2(3-2×((32. +3bc ==-3bc 2bc =-32,:603153=1153115. 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B =3ac ,则∠B 的值为( ) A.π6B.π3C.π6或5π6D.π3或2π3解析:选D.由(a 2+c 2-b 2)tan B =3ac 2-b 22ac =32·1tan B =32·cos Bsin B . 显然∠B ≠π2,∴sin B =32.∴∠B =π3或2π3. 5.在△ABC 中,a 、b 、c 分别是A 、B 、C 的对边,则a cos B +b cos A 等于( ) A .a B .b +2m 2>c 2+2cm +m 2=(c +m )2, ∴三角形各角均为锐角,即新三角形为锐角三角形.∴三角形各角均为锐角,即新三角形为锐角三角形.7.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1 ) A .2 B .-2 C .4 D .-4 解析:选A.S △ABC =3=12|AB →|·|·||AC →|·|·sin sin A=12×4×4×1×1×1×sin sin A , ∴sin A =32,又∵△ABC 为锐角三角形,为锐角三角形,∴cos A =12,∴AB →·AC →=4×4×1×1×12=2. 8.在△ABC 中,b =3,c =3,B =30°,则a 为( ) A.3 B .23 C.3或23 D .2 解析:选C.在△ABC 中,由余弦定理得b 2=a 2+c 2-2ac cos B ,即3=a 2+9-33a , ∴a 2-33a +6=0,解得a =3或2 3. 9.已知△ABC π3. 在△ABD 中,中,AD =AB 2+BD 2-2AB ·BD cos B= 1+4-2×2×1×1×1×2×2×12= 3. 答案:3 10.△ABC 中,sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10,求最大角的度数.,求最大角的度数. 解:∵sin A ∶sin B ∶sin C =(3-1)∶(3+1)∶10, ∴a ∶b ∶c =(3-1)∶(3+1)∶10. 设a =(3-1)k ,b =(3+1)k ,c =10k (k >0),,联想到余弦定理,代入得到余弦定理,代入得cos B =a 2+c C .c D .以上均不对.以上均不对解析:选C.a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc =2c 22c=c . 6.如果把.如果把直角三角形直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形三角形 B .直角三角形.直角三角形 C .钝角三角形.钝角三角形 D .由增加的长度决定.由增加的长度决定 解析:选A.设三边长分别为a ,b ,c 且a 2+b 2=c 2. 设增加的长度为m ,则c +m >a +m ,c +m >b +m ,又(a +m )2+(b +m )2=a 2+b 2+2(a +b )m ,△ABC 的面积为3,则AB →·AC →的值为( 的三个的三个内角内角满足2B =A +C ,且AB =1,BC =4,则边BC 上的上的中线中线AD 的长为________.解析:∵2B =A +C ,A +B +C =π,∴B ==-1,3,=1ab =3,∴===11,7,=-132,43=1,∴=22. 1ab 431·32·22=432 3. 答案:23 = =49+25-36 19,-19) ±12,又∵=21或61. 答案:21或61 ,则角1ab ==·1ab4=78. 答案:723x +2=0的两根,且2cos(A +B )=1,求AB 的长.解:∵A +B +C =π且2cos(A +B )=1,∴cos(π-C )=12,即cos C =-12. 又∵a ,b 是方程x 2-23x +2=0的两根,的两根,∴a +b =23,ab =2. ∴AB 2=AC 2+BC 2-2AC ·BC ·cos C=a 2+b 2-2ab (-12) =a 2+b 2+ab =(a +b )2-ab =(23)2-2=10, ∴AB =10. 18.已知△ABC AC =2+1,BC +AC =2AB , 两式相减,得AB =1. (2)由△ABC 的面积12BC ·AC ·sin C =AC 2+BC 2-AB 22AC ·BC=A C +BC 2-2AC ·BC -AB 22AC ·BC =12,所以C =60°60°. . 19.在△ABC 中,BC =5,AC =3,sin C =2sin A . (1)求AB 的值;的值;(2)求sin(2A -π4)的值.的值.解:(1)在△ABC 中,由正弦定理AB sin C =BCsin A ,得AB =sin Csin A BC =2BC =2 5. (2)在△ABC 中,根据余弦定理,得中,根据余弦定理,得cos A =AB 2+AC 2-BC 22AB ·AC =255, 于是sin A =1-cos 2A =55. 从而sin 2A =2sin A cos A =45, cos 2A =cos 2 A -sin 2 A =35. 所以sin(2A -π4)=sin 2A cos π4-cos 2A sin π4=210. 则îïíïìk 2+k -12-k +12<0k +k -1>k +1⇒2<k <4, ∴k =3,故三边长分别为2,3,4,∴最小角的∴最小角的余弦余弦值为32+42-222×2×3×3×817.在△ABC 中,BC =a ,AC =b ,a ,b 是方程x 2-的周长为2+1,且sin A +sin B =2sin C . (1)求边AB 的长;的长; (2)若△ABC 的面积为16sin C ,求角C 的度数.的度数. 解:(1)由题意及由题意及正弦定理正弦定理得AB +BC +=16sin C ,得BC ·AC =13, 由余弦定理得cos C=. sin C ,所以=,得sin C =,。
专题4-3 正余弦定理与解三角形小题归类-(解析版)

专题4-3 正余弦定理与解三角形小题归类目录一、热点题型归纳【题型一】正余弦定理 .............................................................................................................................. 2 【题型二】求角 .......................................................................................................................................... 3 【题型三】判断三角形形状 ...................................................................................................................... 4 【题型四】面积与最值 .............................................................................................................................. 6 【题型五】周长与最值 .............................................................................................................................. 8 【题型六】角的最值 .................................................................................................................................. 9 【题型七】最值 ........................................................................................................................................ 11 【题型八】切弦互化求最值 .................................................................................................................... 13 【题型九】解三角形应用题 .................................................................................................................... 14 二、真题再现 ............................................................................................................................................ 17 三、模拟检测 .. (22)正余弦定理(1)正弦定理:a sin A =b sin B =csin C =2R ,其中R 为 外接圆半径 ;注意:正弦定理变式与性质:①边化正弦:a =2R sin A ,b =2R sin B ,c =2R sin C ; ②正弦化边:sin A sin B sin C =c2R ; ③a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;④a +b +csin A +sin B +sin C= 2R ;(2)余弦定理:①a 2=b 2+c 2-2bc cos_A ; ②b 2=c 2+a 2-2ca cos_B ; ③c 2=a 2+b 2-2ab cos_C 注意:变式:①cos A =b 2+c 2-a 22bc;②cos B =c 2+a 2-b 22ac;③cos C =a 2+b 2-c 22ab(3)三角形面积 :①S △ABC =12ab sin C =12bc sin A =12ac sin B =abc4R②S △ABC =12(a +b +c )·r (r 是切圆的半径) 三角形中:①sin(A +B )=sin C ,cos(A +B )=-cos C ;②sinA +B 2=cosC 2, cos A +B 2=sin C2;③三角形中,任何一个角的正弦值恒大于0;④a >b ⇔A >B ⇔sin A >sin B ⇔cos A <cos B .【题型一】正余弦定理【典例分析】(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤ 【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得. 【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B ,又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭, 所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b a c ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D1..(2022·江西·丰城九中高三开学考试(文))已知ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且656cos a c b C =+,则cos B =( )A .78B .56C .34D .23【答案】B【分析】根据题意,利用正弦定理边化角,由三角形内角和定理,展开化简得cos B . 【详解】由656cos a c b C =+,边化角得6sin 5sin 6sin cos A C B C =+, 又()sin sin A B C =+,所以()6sin 5sin 6sin cos B C C B C +=+, 展开得6sin cos 6cos sin 5sin 6sin cos B C B C C B C +=+,所以6cos sin 5sin B C C =, 因为sin 0C >,所以5cos 6B =.故选:B . 2.(2023·全国·高三专题练习)在ABC 中,60,3,90C AC B ==>,则ba 的可能取值为( ) A .23B .43 C .53D .73【答案】D【分析】通过正弦定理将所求表达式表示为关于A 的三角函数,求出范围即可得结果. 【详解】因为60,3,90C AC B ==>,所以030A <<,0tan A <<1tan A >()1sin sin sin 11222sin sin sin 2tan A AA C bB a A A A A +====>,则b a 的可能取值为73,故选:D. 3.面积(无最值型)【题型二】求角【典例分析】(2022·山西吕梁·三模(文))在ABC 中,内角,,A B C 的对边分别为,,a b c ,若()(),6b c b c ac C π+-==,则B =( ) A .6πB .3π C .2π D .23π 【答案】B【分析】由22b c ac =+结合余弦定理以及正弦定理的边化角公式得出sin 2sin cos sin A C B C -=,再由内角和定理以及三角恒等变换得出B .【详解】由()()b c b c ac +-=得22b c ac =+,结合余弦定理2222cos b a c ac B =+-,可得2cos a c B c -=,再由正弦定理得sin 2sin cos sin A C B C -=,因为()()sin 2sin cos sin 2sin cos sin A C B B C C B B C -=+-=-, 所以()sin sin B C C -=,所以B C C -=,得2B C =.因为6C π=,所以3B π=.【变式演练】1.(2022·全国·高三专题练习)已知在ABC中,30,1B a b ===,则A 等于( ) A .45 B .135C .45或135D .120 【答案】C【分析】根据正弦定理,结合三角形中的边角关系,即可求得答案.【详解】由正弦定理sin sina b A B=,得1sin 2sin 12a B Ab ===, 因为1,(0,π)a b A ==∈,故45A =或135, 故选:C2.(2022·全国·高三专题练习)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知()22a b c =+-,则sin 4C π⎛⎫+= ⎪⎝⎭( )A B C .2D .1【答案】A【分析】根据三角形面积公式及余弦定理化简条件求角C ,由此可求sin 4C π⎛⎫+ ⎪⎝⎭.【详解】因为()22a b c =+-,又in 12s S ab C =,所以222sin 2C ab a b c -=+-,22212a b c C ab +--=,又222cos 2a b c C ab+-=cos 1C C -=,所以1sin 62C π⎛⎫-= ⎪⎝⎭,又()0,C π∈,所以3C π=,所以sin =sin sin cos cos sin 4343434C πππππππ⎛⎫⎛⎫++=+= ⎪ ⎪⎭⎝⎭所以sin 44C π⎛⎫+= ⎪⎝⎭A.3.(2023·全国·高三专题练习)已知ABC 的内角,,A B C 的对边分别为,,a b c ,设22(sin sin )sin (2sin B C A B C +=+2sin 0A B -=,则sin C = ( )A .12B C D 【答案】C【分析】根据给定条件利用正弦定理角化边,求出角A ,再求出角B 即可计算作答.【详解】在ABC 中,由22(sin sin )sin (2sin B C A B C +=+及正弦定理得:22()(2b c a bc +=+,即222b c a +-=,由余弦定理得:222cos 2b c a A bc +-==0180A <<,解得135A =,2sin 0A B -=得1sin 2B A ==,显然090B <<,则30B =,15C =,所以6sin sin(6045)sin 60cos 45cos 60sin 454C -=-=-=. 故选:C【题型三】判断三角形形状【典例分析】(2023·全国·高三专题练习)在ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,若222a b c -=且cos sin =b C a B ,则ABC 是( ) A .等腰直角三角形 B .等边三角形 C .等腰三角形D .直角三角形【答案】A【分析】由222a b c -=结合余弦定理可求得π4A =,由cos sin =b C a B 结合正弦定理可求得π4C =,从而可判断出三角形的形状【详解】由222a b c -=,得222b c a +-,所以由余弦定理得222cos 2b c a A bc +-===, 因为(0,π)A ∈,所以π4A =,因为cos sin =b C a B ,所以由正弦定理得sin cos sin sin B C A B =,因为sin 0B ≠,所以πcos sin sin 4C A ===,因为(0,π)C ∈,所以π4C =,所以πππππ442B AC =--=--=,所以ABC 为等腰直角三角形, 故选:A【变式演练】1..(2021·广东·高三阶段练习)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+,若2sin sin sin B C A =,则△ABC 的形状是( ) A .等腰三角形 B .直角三角形C .等边三角形D .等腰直角三角形【答案】C【分析】先依据条件222b c a bc +=+求得π3A =,再利用2sin sin sinBC A =可以求得b c =,从而判断△ABC 的形状是等边三角形【详解】△ABC 中,222b c a bc +=+,则2221cos 222b c a bc A bc bc +-=== 又0πA <<,则π3A =由2sin sin sin B C A =,可得2a bc =,代入222b c a bc +=+则有222b c bc bc bc +=+=,则()20b c -=,则b c = 又π3A =,则△ABC 的形状是等边三角形故选:C2.(2023·全国·高三专题练习)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若cos cos a bA B=,222c a b ab =+-,则ABC ∆是( )A .钝角三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】B【分析】利用正余弦定理可确定边角关系,进而可判定三角形形状.【详解】在ABC ∆中,由正弦定理得sin sin a bA B =,而cos cos a b A B =,△ sin sin cos cos A B A B=,即tan tan A B =,又△A 、B 为ABC ∆的内角,△A B =,又△222c a b ab =+-,△222ab a b c =+-,△由余弦定理得:2221cos 22a b c C ab +-==,△3C π=,△ABC ∆为等边三角形.故选:B.3.(2023·全国·高三专题练习)已知三角形ABC ,则“222cos cos cos 1A B C +->”是“三角形ABC 为钝角三角形”的( )条件.A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要 【答案】A【分析】利用同角的三角函数的基本关系式、正余弦定理可判断两个条件之间的推出关系,从而可得正确的选项.【详解】因为222cos cos cos 1A B C +->,故2221sin 1sin 1sin 1A B C -+--+>, 故222sin sin sin C A B >+,故222c a b >+,故222cos 02a b c C ab+-=<,而C 为三角形内角,故C 为钝角,但若三角形ABC 为钝角三角形,比如取2,63C B A ππ===,此时2221cos cos cos 14A B C +-=<,故222cos cos cos 1A B C +->不成立,故选:A.【题型四】面积与最值【典例分析】(2021·江苏·高三课时练习)在锐角三角形ABC 中,cos 2B B +=,且满足关系式cos cos sin sin 3sin B C A Bb c C +=,则ABC ∆的面积的最大值为( )AB .C .D .【答案】Ccos 2B B +=结合同角三角函数基本关系,可求出B ,根据正余弦定理由cos cos sin sin 3sin B C A Bb c C +=可得b ,再利用余弦定理及均值不等式求ac 最大值,代入面积公式即可.cos 2B B +=得cos 2B B =,所以2221cos sin 44sin B B B B =+=+-,即2(2sin 0B =,解得sin B =由锐角三角形知3B π=,cos cos sin sin 3sin B C A Bb c C+=, 22222222a c b a b c abc abc +-+-∴+=,即222a abc =b =2222126cos 122a c b ac B ac ac ac+--∴=≥=-,当且仅当a c =时等号成立,解得12ac ≤,11sin 1222ABC S ac B ∆=≤⨯=当且仅当a c =时等号成立,故选:C【变式演练】1.(2020·全国·高三课时练习)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c,b =且ABC ∆面积为222)S b a c --,则ABC ∆面积S 的最大值为( ) A.2 B.4-C.8-D.16-【答案】B【解析】由已知利用三角形的面积公式可求tan B ,可得cos B ,sin B 的值,由余弦定理,基本不等式可求8(23)ac -,根据三角形的面积公式即可求解其最大值. 【详解】解:222331()(2cos )sin12122S b a c ac B ac B =--=-=,tan B ∴=,56B π=,cos B=,1sin 2B =, 又22b =228(23)a c ac =++,88(223ac∴=+, 当且仅当a c =时取等号,111sin 8(24222ABC S ac B ∆∴=⨯⨯=- ∴面积S 的最大值为4-B .2.(2023·全国·高三专题练习)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若22a bkab +=,则△ABC的面积为22c 时,k 的最大值是( )A .2BC .4D .【答案】B【分析】由三角形的面积公式,可得2sin c ab C =, 根据余弦定理,可得22sin 2cos a b ab C ab C +=+,则整理出以k 为函数值的三角函数,根据三角函数的性质,可得k 的最值.【详解】由题意得21sin 22ABC c S ab C ==,所以2sin c ab C =,又因为2222cos c a b ab C =+-,所以2222cos sin 2cos a b c ab C ab C ab C +=+=+,所以()22sin 2cos a b k C CC abϕ+==++,其中tan 2ϕ=,且0k >, 所以k 的取值范围为(,故选:B. 3.(2023·全国·高三专题练习)在ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,若8,sin 2sin cos 0ac B C A =+=,则ABC 面积的最大值为( ) A .1 B .3 C .2 D .4 【答案】C【分析】根据sin 2sin cos 0B C A +=利用三角恒等变换和正余弦定理得到2222b a c =-,再根据余弦定理和基本不等式可得cos B 的范围,由此得B 的范围,从而得到sin B 的最大值,从而根据1sin 2ABC S ac B =可求△ABC 面积的最大值.【详解】sin 2sin cos 0B C A +=,()sin 2sin cos 0A C C A ∴++=,即sin cos cos sin 2sin cos 0A C A C C A ++=, 即sin cos 3cos sin 0A C A C +=,则2222223022b a c b c a a c ab bc+-+-⋅+⨯⨯=,理得2222b a c =-, △2222222223232cos 2244a ca c a cb ac ac B ac ac ac ac -+-+-+====当且仅当a 2=3c 2⇔c =√√3a =√8√3时取等号,π10sin 62B B ⎛⎤∴∈∴ ⎥⎝⎦,,, 则111sin 82222ABCS ac B =⨯⨯=.故选:C .【题型五】周长与最值【典例分析】(2022·全国·高三专题练习)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sin cos 6A A π⎛⎫++ ⎪⎝⎭4b c +=,则ABC ∆周长的取值范围是( )A .[)6,8B .[]6,8C .[)4,6D .[]4,6【答案】A【分析】利用三角函数恒等变换的应用化简已知可得3sin A π+=(),结合A 的范围可求A ,再由余弦定理求得2163a bc =- ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围.【详解】△ sin 6A cos A π⎛⎫++ ⎪⎝⎭12sinA sinA ∴-=可得:3sin A π+=()40333A A ππππ∈+∈(,),(,),2 33A ππ∴+=,解得3A π=,△4b c +=, △由余弦定理可得222222163a bccosA b c bc bc bc =-=+--=-(),△由4b c +=,b c +≥,得04bc ≤<,△2416a ≤<,即24a ≤<.△ABC 周长4[68L a b c a =++=+∈,) .故选:A .【变式演练】1.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sinA +cos(A +π6)=√32,b +c =4,则ABC ∆周长的取值范围是 A .[6,8) B .[6,8] C .[4,6) D .(4,6]【答案】A 【分析】利用三角函数恒等变换的应用化简已知可得sin (A +π3)=√32,结合A 的范围可求A ,再由余弦定理求得a 2=16−3bc ,再由基本不等式,求得bc 的范围,即可得到a 的范围,进而可求周长的范围. 【详解】△sinA +cos(A +π6)=√32,∴sinA +√32cosA −12sinA =√32,可得:sin (A +π3)=√32,∵A ∈(0,π),A +π3∈(π3,4π3),∴A +π3=2π3,解得A =π3,△b +c =4,△由余弦定理可得a 2=b 2+c 2−2bccosA =(b +c )2−2bc −bc =16−3bc ,△由b +c =4,b +c ≥2√bc ,得0<bc ≤4,△4≤a 2<16,即2≤a <4. △ABC 周长L =a +b +c =a +4∈[6,8) .故选A .2.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sinsin 2B Cb a B +=,a =△ABC 周长的最大值为________.【答案】【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故b c +≤b c ==.故△ABC 周长的最大值为a b c ++故答案为:3.(2022·全国·高三专题练习)在三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin Aa ==,则该三角形周长的最大值为___________.【分析】利用正弦定理化简式子,求出tan B 的值,进而求出B 的大小,由余弦定理结合基本不等式即可求出a c +≤.【详解】由正弦定理变形有:sin sin A B a b =,又因为sin A a ==sin B B =,则tan 3B B π=2=1b ===又因为()()()()222222212cos 3344a cb ac ac B a c ac a c a c +=+-=+-≥+-⋅=+,所以()2264464a cb ac +≤=⨯=⇒+≤ “a c =”时取等.则该三角形周长的最大值为a b c ++==.【题型六】角的最值【典例分析】(2022·全国·高三专题练习(理)(文))已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2c sin C =(a +b )(sin B -sin A ),则当角C 取得最大值时,B =( ) A .3π B .6πC .2π D .23π【答案】D 【分析】利用正弦定理化简已知条件,结合余弦定理与基本不等式求得C 的最大值,再通过三角形的形状,即可求得此时对应的B .【详解】由正弦定理得2c 2=(a +b )(b -a ),即b 2-a 2=2c 2.又cos C =2222a b c ab +-=2234a b ab +当且仅当3a 2=b 2,即b 时,cos C C 取到最大值6π.当b 时,3a 2-a 2=2c 2,则a =c .所以A =C =6π,从而B =π-A -C =23π.故选:D .【变式演练】1.(2022·安徽淮南·一模(文))在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()322213f x x bx a c x =+++无极值点,则角B 的最大值是( )A .34πB .2πC .4π D .6π【答案】A【分析】由题知()()22220f x x bx a c '=+++=无解或有两个相等的解,即()()222240b a c ∆=-+≤,再由余弦定理得角B 的范围.【详解】解:因为()()322213f x x bx a c x =+++无极值点,所以()()22220f x x bx a c '=+++=无解或有两个相等的解,所以()()222240b a c ∆=-+≤,所以222cos 2a c b B ac +-=≥,因为()0,B π∈,所以304B π<≤.故选:A2. 2.(2022·全国·江西师大附中模拟预测(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2sin sin sin a A c C b B +=,则角A 的最大值为( )A .π6B .π4C .π3D .2π3【答案】A【分析】根据正弦定理先将角化边,再运用余弦定理和基本不等式得到cos A 的范围进而得到最后的结果 【详解】因为2sin sin sin a A c C b B += 所以2222a c b +=,进而可得2222a b c =-2222222221()32cos 224b c b c b c a b c A bc bc bc+--+-+===因为223b c +≥=,当且仅当b =时等号成立所以cos A ≥=又因为(0,)A π∈所以角A 的最大值为6π故选:A3.已知锐角△ABC 中,角、、A B C 对应的边分别为a b c 、、,△ABC的面积)222S a b c =+-,若24)tan bc a b B -=(, 则c 的最小值是ABCD【答案】C 【详解】分析:利用余弦定理列出关系式,代入已知等式中,并利用三角形面积公式化简求出C 的度数,再对24)tan bc a b B -=(进行化简整理,最后利用基本不等式求得.详解:)2221cos sin 2S a b c C ab C =+-==,即tan C =,6C π∴=.又A B C π++=,56A B π∴+=,又△ABC 为锐角三角形,∴025062B B πππ<<<-<,解得32B ππ<<, ∴)tan B ∈+∞,又24)tan bc a b B -=(,5sin 24246tan 242424242424sin sin B bc a a sinA B c c c b b B Bπ⎛⎫- ⎪-⎝⎭∴==-=-=-, 即1tan 24242tan B c B ⎛=- ⎝⎭1224tan tan c B B ∴-+≥=,当且仅当12tan tan B B =,即tan B =.24c ∴-≥c ≥故选C.【题型七】最值【典例分析】在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知6B π=且1ABC S =△,则22a cca c ac a +++的最小值为( )A .12B .2C .14D .4 四川省成都市成都市石室中学2020-2021学年高三下学期期中数学试题 【答案】A【分析】由1sin 2ABC S ac B =△可解得4ac =,结合基本不等式,知24a c ac +=;经过变形化简可将原式整理为222()2()a c a c ac ca c ac a ac a c +-+=+++,令t a c =+,则[4t ∈,)+∞,2818()()44t f t t t t-==-,结合函数的单调性即可得解.【详解】由1sin 2ABC S ac B =△可知,11122ac =⨯,解得4ac =,由基本不等式得,24a c ac +=.22222()2()()()()a c a c a c a c acca c ac a c a c a c a ac a c ac a c ++-+=+==++++++, 令t a c =+,则[4t ∈,)+∞,∴222818()()44a c t f t t ca c ac a t t-+===-++,在[4,)+∞上单调递增, ()min f t f ∴=(4)12=,即22a c ca c ac a +++的最小值为12. 故选:A .【变式演练】1..锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2sinA(acosC +ccosA)=√3a ,则cb 的取值范围是( ) A .(12,2)B .(√33,2√33)C .(1,2)D .(√32,1)【答案】B【分析】根据正弦定理,结合2sinA(acosC +ccosA)=√3a 可求得角B .又由三角形为锐角三角形,求得角C 的取值范围,即可求解.【详解】由正弦定理得,2sinA(sinAcosC +sinCcosA)=√3sinA ⇒sin(A +C)=√32⇒B =π3又∵A,C ∈(0,π2)∴π6<C <π2⇒12<sinC <1⇒c b=sinC sinB=2√33sinC ∈(√33,2√33) 故选B.2.在锐角ABC ∆中,A =2B ,则ABAC 的取值范围是A .(−1,3)B .(1,3)C .(√2,√3)D .(1,2)【答案】D【分析】根据在锐角ABC ∆中,每个角都是锐角确定B 的范围,利用正弦定理以及三倍角的正弦公式,化简表达式,求出范围即可.【详解】在锐角ABC ∆中,{0<2∠B <π20<∠B <π20<π−3∠B <π2可得π6<∠B <π4,cosB ∈(√22,√32),cos 2B ∈(12,34),所以由正弦定理可知AB AC=cb =sinC sinB=sin3B sinB=3sinB−4sin 3BsinB=3−4sin 2B =4cos 2B −1∈(1,2),故选D.3.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,设△ABC 的面积为S,若222c a b S --b a 的取值范围为A .(0,+∞)B .(1,+∞) C .(0D.)+∞【答案】A 【分析】根据222c a b S --=2222a b c C ab +-=,可得cos C C =,可得tan C =可得23C π=,再利用正弦定理可得sin sin b B a A =,12,根据A 的范围可得答案.【详解】由222c a b S --=得2221sin2a b c ab C +-= ,所以2222a b c C ab +-=,所以cos C C =,所以tan C =又0C π<<,所以23C π=, 所以sin()sin cos cos sin )sin 333sin sin sin A A A b B a A A A πππ--===1sin 122sin 2A AA -=,因为03A π<<,所以0tan A <<所以1tan A >所以102b a >=, 所以ba 的取值范围为(0,)+∞.故选:A【题型八】切弦互化求最值【典例分析】ABC 中,角,,A B C 的对边长分别为a,b,c ,若acosB −bcosA=35c ,则tan (A −B )的 最大值为 ( )A .43B .1C .34D 【全国百强校】黑龙江省鹤岗市第一中学2019届高三上学期第二次月考数学(理)试题 【答案】C 【分析】利用正弦定理,将已知等式化简整理得sinAcosB =4sinBcosA ,两边同除以cosAcosB ,得到tanA =4tanB ,利用两角差的正切公式,得tan (A −B )=31tanB+4tanB,最后利用基本不等式求最值 . 【详解】∵acosB −bcosA =35c ,∴结合正弦定理与sinC =sin (A +B ),可得sinAcosB −sinBcosA =35(sinAcosB +cosAsinB ),整理得sinAcosB =4sinBcosA , 同除以cosAcosB ,得tanA =4tanB ,由此可得tan (A −B )=tanA−tanB 1+tanAtanB =3tanB 1+4tan 2B =31tanB+4tanB ,∵A,B 是三角形内角,且tan A 与tan B 同号,∴A,B 都是锐角,即tanA >0,tanB >0,∴tan (A −B )=31tanB+4tanB ≤34,当且仅当1tanB=4tanB ,即tanB =12时,tan (A −B )的最大值为34,故选C.【变式演练】1.在ABC ∆中,若111tan tan tan B C A+=,则cos A 的取值范围为 A .20,3⎛⎤ ⎥⎝⎦B .2,13⎡⎫⎪⎢⎣⎭C .10,3⎛⎤ ⎥⎝⎦D .1,13⎡⎫⎪⎢⎣⎭【答案】B 【详解】分析:由已知等式正切化为弦,可得2sin cos sin sin AA B C=,结合正弦定理、余弦定理以及基本不等式求得cos A的最小值,从而可得结果.详解:111tan tan tan B C A +=,cos cos cos sin sin sin B C A B C A ∴+=,可得sin cos cos sin sin cos sin sin sin sin sin C B C B A A B C B C A +==, 2sin cos sin sin A A B C ∴=,又22,cos sin sin sin a b c a R A A B C bc ====,22222b c a a bc bc+-∴=,可得2223a b c =+,222222222223cos 22333b c b c b c a b c bc A bc bc bc bc ++-+-+∴===≥=,cos A ∴的取值范围是2,13⎡⎫⎪⎢⎣⎭,故选B. 2.在ABC 中,,,a b c 分别是角,,A B C 的对边,若a 2+b 2=2014c 2,则2tanA⋅tanBtanC(tanA+tanB)的值为A .2013B .1C .0D .2014【答案】A 【分析】由a 2+b 2=2014c 2,利用余弦定理可得a 2+b 2﹣c 2=2013c 2=2abcosC .利用三角函数基本关系式和两角和的正弦公式、正弦定理可得2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2即可得出.【详解】△a 2+b 2=2014c 2,△a 2+b 2﹣c 2=2013c 2=2abcosC . △2tanA⋅tanBtanC(tanA+tanB)=2sinA cosA ⋅sinBcosB sinC cosC (sinA cosA +sinBcosB)=2sinAsinBcosC sinCsin(A+B)=2abcosCc 2=2013.故答案为:A3.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若ABC ∆为锐角三角形,且满足22b a ac -=,则1tanA−1的取值范围是A .⎛ ⎝⎭B .(1,√2)C .(2√33,√2) D .(1,+∞)【答案】A根据余弦定理以及正弦定理化简条件得A 、B 关系,再根据二倍角正切公式以及函数单调性求范围. 【详解】因为b 2−a 2=ac ,所以c 2−2accosB =ac ∴c −2acosB =a ∴sinC −2sinAcosB =sinA,sin(A +B)−2sinAcosB =sinA,∴sin(B −A)=sinA ∴B −A =A,B =2A因此1tanA−1tanB=1tanA−1tan2A=1tanA−1−tan 2A 2tanA=1+tan 2A 2tanA=12(tanA +1tanA), 因为ΔABC 为锐角三角形,所以0<A <π2,0<B =2A <π2,0<C =π−B −A =π−3A <π2∴π6<A <π4,√33<tanA <1因为y =12(x +1x )在(√33,1)上单调递减,所以1tanA−1tanB∈(1,2√33),选A.【题型九】解三角形应用题【典例分析】(2022·江苏·高三课时练习)如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小,若15,25,30AB cm AC cm BCM ==∠=︒,则tan θ的最大值是( ).(仰角θ为直线AP 与平面ABC 所成的角)A B C D 【答案】D【分析】由题可得,20BC =,过P 作PP BC '⊥,交BC 于P ',连接'AP ,则tan PP AP θ'=',设(0)BP x x '=>,分类讨论,若P '在线段BC 上,则20CP x '=-,可求出PP '和'AP ,从而可得出2320tan 225xx θ-=+,利用函数的单调性,可得出0x =时,取得最大值;若P '在CB 的延长线上,同理求出PP '和'AP ,可得出220tan 225x x θ+=+454x =时,函数取得最大值;结合两种情况的结果,即可得出结论.【详解】解:15,25AB cm AC cm ==,AB BC ⊥,由勾股定理知,20BC =,过点P 作PP BC '⊥交BC 于P ',连结'AP ,则tan PP AP θ'=',设(0)BP x x '=>,若P '在线段BC 上,则20CP x '=-,由30BCM ∠=︒,得tan30)PP CP x ''=︒-,在直角ABP '△中,AP '220tan 225x x θ-∴+令y =,则函数在[0x ∈,20]单调递减,0x ∴=时,;若P '在CB 的延长线上,tan30)PP CP x ''=︒+,在直角ABP '△中,AP '220tan 225xx θ+∴+22(20)225x y x +=+,则0y '=可得454x =. 故答案为:539.【变式演练】1.(2022·全国·高三课时练习)如图,某城市有一条公路从正西方MO 通过市中心O 后转向东北方ON ,为了缓解城市交通压力,现准备修建一条绕城高速公路L ,并在,MO ON 上分别设置两个出口,A B ,若AB 部分为直线段,且要求市中心O 与AB 的距离为20千米,则AB 的最短距离为( )A .)201千米B .)401千米C .)201D .)401【答案】D【分析】使用余弦定理及基本不等式,得到(22AB ab ≥,使用正弦定理及三角恒等变换得到ab ≥AB 的最短距离. 【详解】在ABC 中,135AOB ∠=︒,设,AO a BO b ==,则(222222cos1352AB a b ab a b ab =+-︒=+≥,当且仅当a b =时取等号,设BAO α∠=,则45ABO α∠=︒-,又O 到AB 的距离为20千米,所以20sin a α=,()20sin 45b α=︒-,故()400sin sin 45ab αα=︒-(22.5α=︒时取等号),所以)221600216001AB ≥=,得)401AB ≥,故选:D2.在一座尖塔的正南方地面某点A ,测得塔顶的仰角为2230'︒,又在此尖塔正东方地面某点B ,测得塔顶的仰角为6730︒',且A ,B 两点距离为540m ,在线段AB 上的点C 处测得塔顶的仰角为最大,则C 点到塔底O 的距离为( ) A .90m B .100m C .110m D .270m 【答案】A 【分析】作出图示,根据正切的二倍角公式和解直角三角形求得塔的高度,再运用等面积法可求得选项. 【详解】如下图所示,设,,OC z OA x OB y ===,则222540x y +=,22.5,67.5OAP OBP ∠=∠=,则22tan 22.5tan 4511tan 22.5==-,解得tan 22.521=,22tan 67.5tan13511tan 67.5==--,解得tan 67.52+1=,所以222540+=,解得z =所以1x ==)y ==要使点C 处测得塔顶的仰角为最大,则需tan PCO ∠最大,也即需OC 最小,所以OC AB ⊥,又1122ABOSOA OB AB OC =⨯⨯=⨯⨯,即(90540OA OB OC AB ⨯===, 所以C 点到塔底O 的距离为90m ,故选:A.3..某制冷设备厂设计生产一种长方形薄板,如图所示,长方形ABCD 的周长为4米,沿AC 折叠使B 到B′位置,AB′交DC 于P ,研究发现,当ΔADP 的面积最大时最节能,则最节能时ABCD 的面积为A .3−2√2B .C .2(√2−1)D .2【答案】C 【分析】本题可以先通过设AB 、DP 分别为x 、y ,再通过题目所给信息以及AD 2+DP 2=PA 2得出x 、y 之间的关系,然后通过ΔADP 的面积列出算式,当其最大时求出AB 的值,最后得出结果. 【详解】设AB 为x ,DP 为y ,因为四边形ABCD 是周长为4的长方形,AB 为x 所以AD 为2−x ,DC 为x , 因为DP 为y ,所以PC 为x −y , 由题意可知,PC =PA ,所以有AD 2+DP 2=PA 2,即(2−x )2+y 2=(x −y )2,化简得y =2−2x , 所以S ΔADP =12(2−x )(2−2x ),化简得S ΔADP =3−(2x +2),所以当x =√2时ΔADP 面积最大,此时S ABCD =√2(2−√2)=2(√2−1),故选C .1.(2020·山东·高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C sin cos c B A =,则tan A 等于( )A .3B .13-C .3或13- D .-3或13【答案】A【分析】利用余弦定理求出tan 2C =,并进一步判断4C π>,由正弦定理可得sin()sin A C B +=⇒=,最后利用两角和的正切公式,即可得到答案;【详解】222sin cos tan 222a b c CC C ab +-==⇒=,4C π∴>,2sin sin sin a b cR A B C===,sin sin cos sin sin cos A B C C B A B ∴⋅⋅+⋅⋅,sin()sin A C B ∴+=⇒=4B π∴=, tan 1B ∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 2.(2021·全国·高考真题(文))在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A.1 B C D .3 【答案】D【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D.3.(2020·全国·高考真题(文))在△ABC 中,cos C =2,AC =4,BC =3,则tan B =( )A B .C .D .【答案】C【分析】先根据余弦定理求c ,再根据余弦定理求cos B ,最后根据同角三角函数关系求tan .B 【详解】设,,AB c BC a CA b ===22222cos 916234933c a b ab C c =+-=+-⨯⨯⨯=∴=2221cos sin tan 29a c b B B B ac +-==∴===故选:C4.(2014·江西·高考真题(文))在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若32a b =,则2222sin sin sin B AA-的值为( )A .19B .13 C .1 D .72【答案】D【分析】根据正弦定理边化角求解即可.【详解】由正弦定理有22222222sin sin 221sin B A b a b A a a --⎛⎫==- ⎪⎝⎭.又3322b a b a =⇒=, 故297212142b a ⎛⎫-=⨯-= ⎪⎝⎭.故选:D5.(2020·全国·高考真题(理))在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( )A .19B .13C .12D .23【答案】A【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC =根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =.故选:A.6.(2019·全国·高考真题(文))△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =A .6B .5C .4D .3 【答案】A【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得 22222141313cos ,,,46422422b c a c c c b A bc bc c +---==∴=-∴=∴=⨯=,故选A .7.·湖南·高考真题(文))在△ABC 中,,BC=2,B =60°,则BC 边上的高等于A B C D 【答案】B2sin 60sin A A A =⇒==所以sin sin()sin cos cos sin C A B A B A B =+=+=则BC 边上的高h C ===,应选答案B .点睛:解答本题的思路是先运用正弦定理求出cos A ,再运用两角和的正弦公式求得sin C =,再解直角三角形可求得三角形的高h C =,从而使得问题获解.8.(2018·全国·高考真题(理))ABC 的内角A B C ,,的对边分别为a ,b ,c ,若ABC 的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π6【答案】C【详解】分析:利用面积公式12ABC S absinC =和余弦定理2222a b c abcosC +-=进行计算可得.详解:由题可知222124ABC a b c S absinC +-==所以2222absinC a b c +-=由余弦定理2222a b c abcosC +-=所以sinC cosC =()C 0,π∈C 4π∴=故选C.9.(2022·浙江·高考真题)我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =a ,b ,c 是三角形的三边,S是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【分析】根据题中所给的公式代值解出.【详解】因为S =S10.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当AC AB取得最小值时,BD =________.1##-【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++44≥=- 当且仅当311m m+=+即1m =时,等号成立,所以当ACAB取最小值时,31m =-.故答案为:31-.11.(2022·上海·高考真题)在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为________【分析】运用正弦定理及余弦定理可得解.【详解】根据余弦定理:22212cos 4922372BC AB AC AB AC BAC =+-⋅∠=+-⨯⨯⨯=,得BC =△ABC 3sin 3=.故答案为 12.(2021·全国·高考真题(理))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c 60B =︒,223a c +=,则b =________. 【答案】【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解.【详解】由题意,1sin 2ABC S ac B ==,所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =.故答案为:13.(2020·江苏·高考真题)在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是________.【答案】185或0 【分析】根据题设条件可设()0PA PD λλ=>,结合32PA mPB m PC ⎛⎫=+- ⎪⎝⎭与,,B D C 三点共线,可求得λ,再根据勾股定理求出BC ,然后根据余弦定理即可求解.【详解】△,,A D P 三点共线,△可设()0PA PD λλ=>,△32PA mPB m PC ⎛⎫=+- ⎪⎝⎭,△32PD mPB m PC λ⎛⎫=+- ⎪⎝⎭,即32m m PD PB PC λλ⎛⎫-⎪⎝⎭=+,若0m ≠且32m ≠,则,,B D C 三点共线,△321m m λλ⎛⎫-⎪⎝⎭+=,即32λ=,△9AP =,△3AD =,△4AB =,3AC =,90BAC ∠=︒,△5BC =,设CD x =,CDA θ∠=,则5BD x =-,BDA πθ∠=-.△根据余弦定理可得222cos 26AD CD AC xAD CD θ+-==⋅,()()()222257cos 265x AD BD AB AD BD x πθ--+--==⋅-,△()cos cos 0θπθ+-=,△()()2570665x x x --+=-,解得185x =,△CD 的长度为185.当0m =时, 32PA PC =,,C D 重合,此时CD 的长度为0, 当32m =时,32PA PB =,,B D 重合,此时12PA =,不合题意,舍去.故答案为:0或185. 14.(2020·全国·高考真题(理))如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB △AC ,AB △AD ,△CAE =30°,则cos△FCB =______________.【答案】14-【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值.【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC ,同理得BD BF BD ∴==ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=,1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.15.(2019·全国·高考真题(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin A +a cos B =0,则B =___________.【答案】34π.【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得sin sin sin cos 0B A A B +=.(0,),(0,)A B ∈π∈π,sin 0,A ∴≠得sin cos 0B B +=,即tan 1B =-,3.4B π∴=故选D .【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养.采取定理法,利用转化与化归思想解题.忽视三角形内角的范围致误,三角形内角均在(0,)π范围内,化边为角,结合三角函数的恒等变化求角.16.(2019·全国·高考真题(理))ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC的面积为__________.【答案】【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =解得c c ==-2a c ==11sin 22ABC S ac B ∆==⨯=1.(2022·江西·模拟预测(文))在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足1cos A A +=,sin 6cos sin A B C =,则bc的值为( )A .1B .1+C .1+D .1+【答案】A【分析】由题设化简1cos A A +=可得120A =︒,余弦定理结合sin 6cos sin A B C =可得(1b c =,即可得出答案.【详解】由题设可得22sin cos 222A A A =,即tan 2A ,则120A =︒,故由余弦定理可得222a b c bc =++;。
余弦定理40道基础题必练题含详解

利用余弦定理可求 ab 的值,从而可求三角形的面积.
【详解】
因为 C 120 ,故 c2 a2 b2 2ab cos120 a2 b2 ab ,
而 a b2 c2 4 ,故 c2 a2 b2 2ab 4 a2 b2 ab ,
故 ab 4 ,故三角形的面积为 1 ab sin120 3 4 3 ,
由余弦定理可得: cos A b2 c2 a2 16 36 28 1
2bc
246 2
又 A 0, 所以 A
3
故选:C
4.C
【分析】
答案第 1页,总 21页
利用余弦定理即可求解. 【详解】
在 ABC 中,若 b2 c2 a2 2bc ,
所以 cos A b2 c2 a2 2bc 2 ,
【详解】
依题意,由正弦定理得 c2 2a bb a b a ,
c2 2ab b2 a2 ab , a2 b2 c2 ab , a2 b2 c2 1 ,
2ab
2
即 cos C 1 .由于 0 C ,
2 所以 C 2 .
3
故选:C
3.C
【分析】
由余弦定理求解可得结果. 【详解】
则C ( )
A. 6
B.
或
2
33
C. 2 3
D.
6
或
5 6
3.在 ABC 中,若 AC 4 , AB 6 , BC 2 7 ,则 A ( )
A. 6
B.
4
C.
3
4.在 ABC 中,若 b2 c2 a2 2bc ,则 A ( )
D.
2
A. 90
B.150
C.135
余弦定理练习题及答案
1.在△ABC 中,已知a =4,b =6,C =120°,则边c 的值是( )A .8B .217C .6 2D .219解析:选D.根据余弦定理,c 2=a 2+b 2-2ab cos C =16+36-2×4×6cos 120°=76,c =219.2.在△ABC 中,已知a =2,b =3,C =120°A.5719 C.338 解析:选A.c 2=a 2+b 2-2ab cos C=22+32-2×2×3×cos 120°=19.__________. 2a ,故顶角的余弦值为ABC 的形状.2b =a +c 可转化为2sin B =sin A +sin C .又∵B =60°,∴A +C =120°,∴C =120°-A ,∴2sin 60°=sin A +sin(120°-A ),整理得sin(A +30°)=1,∴A =60°,C =60°.∴△ABC 是正三角形.一、选择题1.在△ABC 中,符合余弦定理的是( )A .c 2=a 2+b 2-2ab cos CB .c 2=a 2-b 2-2bc cos AC .b 2=a 2-c 2-2bc cos AD .cos C =a 2+b 2+c 22ab 解析:选A.注意余弦定理形式,特别是正负号问题.2.(2011年合肥检测)在△ABC 中,若a =10,b =24,c =26,则最大角的余弦值是( ) A.1213 B.513C .0 D.23解析:选C.∵c >b >a ,∴c 所对的角C 0. 3.已知△ABC 的三边分别为2,3,4,则此三角形是( A .锐角三角形 B C .直角三角形 D 解析:选B.∵42=16>22+32=13,∴边长为4( )或2π3个 4个sin A =sin B cos C +sin C cos B =sin(B +C ),显然成立.对于④由正弦定理sin B =sin C sin A +sin A sin C =2sin A sin C ,则不一定成立.6.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( )A.14B.34C.24D.23解析:选B.∵b 2=ac ,c =2a ,∴b 2=2a 2,X k b 1 . c o m∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a=34. 二、填空题7.在△ABC 中,若A =120°,AB =5,BC =7,则AC =________.解析:由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos A ,即49=25+AC 2-2×5×AC ×(-12), AC 2+5AC -24=0.∴AC =3或AC =-8(舍去).答案:38.已知三角形的两边分别为4和5,它们的夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是________.解析:解方程可得该夹角的余弦值为12,由余弦定理得:42+52-2×4×5×12=21,∴第三边长是21.8,则B 的大小是________. C .解得c =5或c =-75(舍). 由余弦定理得cos C =a 2+b 2-c 22ab =16+9-252×4×3=0, ∵0°<C <180°,∴C =90°.11.在△ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边长,若(a +b +c )(sin A +sin B -sin C )=3a sin B ,求C 的大小.解:由题意可知,(a +b +c )(a +b -c )=3ab ,于是有a 2+2ab +b 2-c 2=3ab ,即a 2+b 2-c 22ab =12, 所以cos C =12,所以C =60°. 12.在△ABC 中,b =a sin C ,c =a cos B ,试判断△ABC 的形状.解:由余弦定理知cos B =a 2+c 2-b 22ac,代入c =a cos B , 得c =a ·a 2+c 2-b 22ac,∴c 2+b 2=a 2, ∴△ABC 是以A 为直角的直角三角形.又∵b =a sin C ,∴b =a ·c a,∴b =c , ∴△ABC 也是等腰三角形.综上所述,△ABC 是等腰直角三角形.。
2021年高中数学《余弦定理》精选练习(含答案)
2021年高中数学《余弦定理》精选练习一、选择题1.在△ABC 中,已知a=9,b=23,C=150°,则c 等于( )A.39B.8 3C.10 2D.7 32.在△ABC 中,已知A=30°,且3a=3b=12,则c 的值为( )A.4B.8C.4或8D.无解3.在△ABC 中,已知(a +b +c)(b +c -a)=3bc ,则角A 等于( )A.30°B.60°C.120°D.150°4.在△ABC 中,若a=8,b=7,cos C=1314,则最大角的余弦值是( )A.-15B.-16C.-17D.-185.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若c 2-a 2-b22ab>0,则△ABC( )A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.是锐角或直角三角形6.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b)2-c 2=4,且C=60°,则ab 的值为( )A.43B.8-4 3C.1D.237.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C=120°,c=2a ,则a ,b 大小关系为( )A.a>bB.a<bC.a=bD.不能确定 8.在△ABC 中,有下列关系式:一定成立的有( )①asin B=bsin A;②a=bcos C+ccos B ;③a 2+b 2-c 2=2abcos C ;④b=csin A+asin C. A.1个 B.2个 C.3个 D.4个 9.锐角△ABC 中,b=1,c=2,则a 的取值范围是( )A.1<a<3B.1<a<5C.3<a< 5D.不确定10.在△ABC 中,cos 2B 2=a +c 2c,则△ABC 是( )A.正三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形二、填空题11.在△ABC 中,已知b=60 cm ,c=60 3 cm ,A=π6,则a=________cm ;12.在△ABC 中,a=1,b=2,cos C=14,则c= ;sin A= .13.在△ABC 中,若b=1,c=3,C=2π3,则a=________.14.在△ABC 中,A=120°,AB=5,BC=7,则sin Bsin C 的值为________.三、解答题15.在△ABC 中,a,b,c 分别是角A,B,C 的对边,,且满足错误!未找到引用源。
余弦定理练习题及答案
余弦定理练习题及答案1.已知三角形ABC的边长a=21,b=5,c=4,求角A的大小。
解析:根据余弦定理,cosA=(b^2+c^2-a^2)/(2bc),代入数值计算可得cosA=-61/40,因为-1≤cosA≤1,所以三角形ABC不存在角A,即无解。
2.已知三角形ABC的边长a=3,b=4,c=6,求XXX的值。
解析:根据余弦定理,cosA=(b^2+c^2-a^2)/(2bc),cosB=(a^2+c^2-b^2)/(2ac),cosC=(a^2+b^2-c^2)/(2ab),代入所求式计算可得答案为-11/2.3.已知三角形ABC的边长a=3,b=4,c=6,求边C的长度。
解析:根据余弦定理,cosC=(a^2+b^2-c^2)/(2ab),代入数值计算可得cosC=-1/2,因为0°≤C≤180°,所以C的大小为120°。
再根据正弦定理,c/sinC=a/sinA,代入已知数据可得c=2√3.4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为多少?解析:设等腰三角形的底边长为x,则周长为5x,由等腰三角形的性质可知,其两个等角为(180°-顶角)/2,所以顶角的大小为2(180°-顶角)/2=180°-顶角。
根据余弦定理,cos顶角=[(5x/2)^2+x^2-(5x/2)^2]/(2x^2)=3/4.5.已知三角形ABC的边长a=1,b=7,角B=60°,求边C 的长度。
解析:根据正弦定理,c/sinC=a/sinA,又因为A+B+C=180°,所以角A=180°-60°-arcs in(1/7)≈86.6°。
代入已知数据计算可得c≈7.5.6.已知三角形ABC的边长a=2,b=2,角A=45°,解此三角形。
解析:根据余弦定理,cosB=(a^2+c^2-b^2)/(2ac)=0,即角B为直角。
正余弦定理习题加答案详解超级详细
∴由余弦定理可得:cosC= = = .
故答案为: .
14.(2016•抚顺一模)已知△ABC的周长为 +1,且sinA+sinB= sinC,则边AB的长为1.
【解答】解:由题意及正弦定理,得:AB+BC+AC= +1.
BC+AC= AB,
两式相减,可得AB=1.
故答案为:1.
15.(2016•长沙一模)△ABC的周长等于2(sinA+sinB+sinC),则其外接圆半径等于1.
(1)求角A的值;
(2)若a= ,则求b+c的取值范围.
【解答】解:(1)在锐角△ABC中,根据(b﹣2c)cosA=a﹣2acos2 =a﹣2a• ,
利用正弦定理可得(sinB﹣2sinC)cosA=sinA(﹣cosB),
即sinBcosA+cosBsinA=2sinCcosA,即sin(B+A)=2sinCcosA,
【解答】解:(1)∵ .
∴由正弦定理,得 ,化简得cosA= ,
∴A= ;
(2)∵∠B= ,∴C=π﹣A﹣B= ,
可知△ABC为等腰三角形,
在△AMC中,由余弦定理,得AM2=AC2+MC2﹣2AC•MCcos120°,即7= ,
解得b=2,
∴△ABC的面积S= b2sinC= = .
19.(2016•平果县模拟)已知在锐角△ABC中,a,b,c为角A,B,C所对的边,且(b﹣2c)cosA=a﹣2aco模)在△ABC中,a,b,c分别是角A,B,C的对边,且满足acosA=bcosB,那么△ABC的形状一定是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同步分层能力测试题(一)A 组一.填空题(本大题共8小题,每小题5分,共40分)1.在△ABC 中, 若0,则边c= 。
1.a 2=c 2+b 2-2cb ·cosA,代入整理得c 2∴2. 在△ABC 中,已知A=450,B=600,c =1,则a= . 2. 213-。
提示:由A+B+C=180,得 C=1800-450-600=750。
由正弦定理,得 045sin a =075sin 1, ∴a=213-。
3. 在△ABC 中, 已知a=5,b=12,c=13.最大内角为 度。
3.90.提示:cosC=bca cb 2222-+= 222512132512+-⨯⨯=0,C=900. 4. 在△ABC 中,已知b=4,c=8,B=300.则a= 。
4. 23。
提示:(1)由正弦定理,得sin C=bB c sin =430sin 80=1。
所以 C=900, A=1800-900-300=600。
又由正弦定理,得 a=B A b sin sin =0030sin 60sin 4=23。
5. a,b,c 是△ABC 的三边,且B=1200,则a 2+ac+c 2-b 2的值为 .5.0.提示:由余弦定理,得b 2=a 2+c 2-2ac ·cosB= a 2+ac+c 2.6.在△ABC 中,若a=50,b=25 6 , A=45°则B= .6. 60°或120°。
提示:由正弦定理得050sin 45=,,故B=60°或120°。
7.在△ABC 中,有等式:①asinA=bsinB ;②asinB=bsinA ;③acosB=bcosA ;④sin sin sin a b c A B C+=+. 其中恒成立的等式序号为_______________. 7.②④。
提示:①不符合正弦定理;②两边同除以sinAsinB 即为正弦定理;③取A=900,便知等式不成立;④正弦定理结合等比定理可得。
8.在A B C ∆中,c b a ,,分别为三个内角A 、B 、C 所对的边,设向量(),,p a c b =+(),q b a c a =--,若向量//p q ,则角C 的大小为 。
8.3π.【解析】本题是向量与解三角形的综合问题,解决的关键是联想余弦定理求解。
由//p q 得(a+c)(c-a)=b(b-a),即a 2+b 2-c 2=ab.由余弦定理得2221cos ,223a b c C C ab π+-===. 二.解答题(本大题共4小题,共54分)9.在△ABC 中,a=3,,A=300,则角C 及b.9.解:由正弦定理得03sin 30=sinC=.∴C=120 或C=60 。
当C=120 时,B=1800-1200-300=300,b 2=32+()2-2×3× =9,b=3.同理当C=60 ,b=6. 故C=120 b=3。
或C=60 b=6。
10.在ABC ∆中, ⑴ 已知: acosB=bcosA ,试判断ABC ∆形状; ⑵求证:2222cos 2cos 211A B a b a b-=-。
10.解:(1)由正弦定理,得 a=2RsinA,b=2RsinB ,即 acosB =bcosA 。
∴sinA cosB=sinB cosA ,即 sinA cosB- cosA sinB=0, sin(A-B)=0。
∴ A-B=0 ,A=B ,∴ABC ∆为等腰三角形.(2) 证明:左边=222212sin 12sin A B a b ---=2211a b--2(2222sin sin A B a b -)。
由正弦定理,得2222sin sin A B a b =,故2222c o s 2c o s 211A B a b a b -=-成立。
已知: A a sin =B b cos =Cc cos ,试判断ABC ∆形状。
11.在锐角三角形中,边a 、b 是方程x 2-2 3 x+2=0的两根,角A 、B 满足2sin(A+B)- 3 =0,求角C 的度数,边c 的长度.11.解:由2sin(A+B)- 3 =0,得sin(A+B)=32, ∵△ABC 为锐角三角形, ∴A+B=120°, C=60°, 又∵a 、b 是方程x 2-2 3 x+2=0的两根, ∴a+b=2 3 , a ·b=2, ∴c 2=a 2+b 2-2a ·bcosC=(a+b)2-3ab=12-6=6, ∴c= 6 。
12. 在△ABC 中,已知角A 、B 、C 对应的边分别为a 、b 、c ,.且 C=2A .cos A=43 (1)求cosC 和cosB 的值;(2)当227=∙→→BC BA 时,求a 、b 、c 的值. 12.解:(1)cosC=cos2A=2cos 2A-1=81; sinA=47, cosC=873。
∴cosB=-cos(A+C)=sinAsinC-cosAcosC=169。
(2)227=∙→→BC BA 27cos 24.2ac B ac ⇒=⇒= 由正弦定理得32cos sin 2sin 2c a c A A A a =⇒==. 解得a=4,c=6.再由余弦定理知b 2=a 2+c 2-2ac ·cosB= 42+62-48×169=25,b=5.B 组一.填空题(本大题共6小题,每小题5分,共30分)1.在△ABC 中,若BC=5,CA=7,AB=8,则△ABC 的最大角与最小角之和是 。
1.1200.提示:由余弦定理知cosB=22258712582+-=⨯⨯,∴B=600,A+C=1200. 2.在△ABC 中,已知AB=2,∠C=50°,当∠B= 时,BC 的长取得最大值.2.400.提示:由正弦定理知02sin 50sin BC A =,∴BC=02sin sin 50A 。
故当A=900时,BC 最大。
此时B=400.3.在△ABC 中,AB =5,BC =7,AC =8,则AB BC = .. 3. -5.提示:∵ AB BC =-BA BC , BA BC =||||cos BA BC B =2221(||||||)2BA BC AC +-=5, ∴AB BC =-54.不等边三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且最大边a 满足222c b a +<,则角A 的取值范围是 。
4.(3π,2π)。
提示:由余弦定理cosA=bc a c b 2222-+>0,可知A 是锐角。
又a 是最大边,则A 是最大角,故A ∈(3π,2π)。
5.在△ABC 中,已知2sinAcosB=sinC,那么△ABC 一定是 三角形。
5.等腰三角形。
提示:由2sinAcosB=sinC,知2sinAcosB=sin(A+B),∴2sinAcosB=sinAcosB+cosAsinB. ∴cosAsinB-sinAcosB=0.∴sin(B-A)=0. ∴B=A.另解:本题也可以借助正余弦定理来处理,但是稍微繁一点。
6.锐角三角形ABC 中,若2C B ∠=∠,则AB AC的范围是 .6..提示:本题是解三角形问题,解决的关键是利用正弦定理来解决。
sin sin 22cos .sin sin AB C B B AC B B===由锐角三角形ABC 、2C B ∠=∠两个条件可得,cos 2cos 6422B B B ππ<∠<<<< 二.解答题(本大题共2小题,共36分)7.在△ABC 中,已知边c=10, 又知cosA cosB =b a =43,求a 、b 及△ABC 的内切圆的半径。
7.解:由cosA cosB =b a ,sinB sinA =b a ,可得 cosA cosB =sinB sinA,变形为sinAcosA=sinBcosB ∴sin2A=sin2B, 又∵a ≠b, ∴2A=π-2B, ∴A+B=2π. ∴△ABC 为直角三角形. 由a 2+b 2=102和b a =43 ,解得a=6, b=8, ∴内切圆的半径为r=a+b-c 2 =6+8-102=2 8.锐角三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,=(a-b,c), n =(a-c,a+b),且与n 共线。
(I )求角B 的大小;(II )设23cos sin 22C A C y -+=,求y 的最大值及此时∠C 的大小。
8.解(I )∵与共线,∴(a-b)(a+b)-c(a-c)=0, ∴212cos ,222222=-+==-+ac b c a B ac b c a . ∵.3,20ππ=∴<<B B (II )∵.323ππ=+∴=C A ,B )23cos(2cos 123cos sin 22C C C A C y -+-=-+=π ),62sin(12sin 232cos 2112sin 232cos 212cos 1π-+=+-=++-=C C C C C C ∴当262ππ=-C ,即3π=C 时,y 取最大值2。