广西专用2019年中考数学复习第四章图形的认识4.4多边形与平行四边形试卷部分课件
中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
2019届中考数学复习第四章图形的认识4.5多边形与平行四边形试卷部分课件

面积比为
.
答案 3∶4
解析 如图,过点M作MP⊥BC于点P,过点A作AQ⊥BC于点Q,
∵在平行四边形ABCD中,O是两条对角线的交点, ∴△AOE≌△COF. ∵∠B=30°,AB=AC, ∴∠ACB=∠B=30°. ∵AC⊥EF, ∴在Rt△OFC中,设OF=x,则OC= x 3,FC=2x.
下来同上.
8.(2016河北,22,9分)已知n边形的内角和θ=(n-2)×180°. (1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n;若不对,
说明理由;
(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x. 解析 (1)甲对,乙不对. (2分) ∵θ=360°,∴(n-2)×180=360. 解得n=4. (3分) ∵θ=630°,∴(n-2)×180=630,解得n= .
1 ①∠DCF= ∠BCD; 2
②EF=CF;
③S△BEC=2S△CEF; 答案 ①②④
④∠DFE=3∠AEF.
解析 ①∵F是AD的中点,∴AF=FD, ∵在▱ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF, ∵AD∥BC,∴∠DFC=∠BCF, ∴∠DCF=∠BCF,
1 ∠BCD,故①正确; ∴∠DCF= 2
考点二
平行四边形
1.(2018内蒙古呼和浩特,8,3分)顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥ CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是
平行四边形”这一结论的情况共有 (
A.5种 B.4种 C.3种 D.1种
)
2019届中考数学复习第四章图形的认识4.4多边形与平行四边形试卷部分课件

6.(2015天津,17,3分)如图,在正六边形ABCDEF中,连接对角线AC,BD,CE,DF,EA,FB,可以得到 一个六角星.记这些对角线的交点分别为H,I,J,K,L,M,则图中等边三角形共有 个.
答案 8 解析 题图中的等边三角形可分为两大类:第一类:分别以B,A,F,E,D,C为顶点的小等边三角
7.(2018湖北黄冈,20,8分)如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF, CD=DE,∠CBF=∠CDE,连接AF,AE.
(1)求证:△ABF≌△EDA;
(2)延长AB与CF相交于点G.若AF⊥AE,求证:BF⊥BC.
证明 (1)∵四边形ABCD是平行四边形,∴AB=CD=DE,BF=BC=AD,∠ABC=∠ADC, 又∠CBF=∠CDE,∴∠ABF=∠ADE,
1 2
答案 15
解析 由作图知AQ平分∠DAB,在▱ABCD中,AB∥CD,所以∠DAQ=∠BAQ=∠DQA,所以DQ
=DA=BC=3.因为DQ=2QC,所以DC=4.5,所以平行四边形ABCD的周长为2×(4.5+3)=15.
5.(2017湖北武汉,13,3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接 BE.若AE=AB,则∠EBC的度数为 .
360 30
)
答案 B 由题意得,该正多边形的每个外角均为30°,则该正多边形的边数是 =12.故选B.
4.(2016湖南长沙,4,3分)六边形的内角和是 ( A.540° B.720°
)
C.900°
D.360°
答案 B ∵n边形的内角和是(n-2)· 180°,∴六边形的内角和为(6-2)×180°=720°,故选B.
中考数学一轮教材复习-第四章 三角形 平行四边形与多边形

是
72
度.
(第五章 四边形和多边形)
考点1 多边形(10年1考)
1-1 [2024遵义十一中模拟改编]风铃,又称铁马,古称“铎”,常见于中国
传统建筑屋檐下[如图(1)].如图(2),是六角形风铃的平面示意图,其
底部可抽象成正六边形ABCDEF,连接CF,则∠AFC的度数为
A.45°
B.60°
C.110°
D.135°
F在BC的延长线上,且CF=BE.
(1)求证:四边形AEFD是平行四边形.
(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.
(第五章 四边形和多边形)
(1)证明:∵四边形ABCD是矩形, (2)如图,连接DE.
∴AD∥BC,AD=BC.
∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
E,AF⊥CD 于点F
1.两组对边分别①平行 ,即AD//BC,AB∥CD
行
2.两组对边分别相等,即AD=BC,AB=CD
四
3.两组对角分别② 相等 ,即∠BAD=
边
形
性
质
∠BCD, ∠ABC= ∠ADC
4.对角线互相平分,即AO=CO,BO=DO
5.平行四边形是③中心 对称图形,
对称中心是两条对角线的交点
(2)在▱ABCD中,AB=CD,
∴CD∥BE.
在▱DBEC中,CD=BE,∴AB=BE.
∵CE∥BD,
∵CE⊥AC,∴BC=AB=BE=5,
∴四边形DBEC为平行四边形.
∴AE=10.
∵AC=8,∴CE= 2 − 2 =6,
中考数学总复习《45多边形与平行四边形》试题训练及解析.doc

第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
(广西专用)2019年中考数学复习 第四章 图形的认识 4.2 三角形及其全等(试卷部分)课件

答案 C 由题意知∠ACD=∠A+∠B=60°+40°=100°,因为CE平分∠ACD,所以∠ACE=∠ECD
= 1 ∠ACD= 1 ×100°=50°.
2
2
思路分析 由外角的性质可以求得∠ACD=100°,再由CE平分∠ACD可得∠ECD=50°.
2.(2018百色,5,3分)顶角为30°的等腰三角形三条中线的交点是该三角形的 ( ) A.重心 B.外心 C.内心 D.中心
AB
DE,
BC EF,
∴△ABC≌△DEF.
(2)∵∠A+∠B+∠BCA=180°,∠A=55°,∠B=88°,
∴∠BCA=180°-55°-88°=37°,
∵△ABC≌△DEF,
∴∠F=∠BCA=37°.
评析 本题考查了三角形全等的判定方法、全等三角形的对应角相等以及三角形内角和定 理.
AE∥BC,从而有∠EAC=∠C,故选项A、B、C均正确;因为AB>AC,所以∠ABC≠∠ACB,即∠
DAE≠∠EAC,故选项D错误,故选D.
思路分析 由作图痕迹可知,在三角形ABC的外角∠CAD内画了一个新角∠DAE,且∠DAE= ∠B,由此得到其他相关的结论.
5.(2016河池,4,3分)下列长度的三条线段不能组成三角形的是( ) A.5,5,10 B.4,5,6 C.4,4,4 D.3,4,5 答案 A ∵5+5=10,∴5,5,10不能组成三角形. 方法总结 判断能否组成三角形的简便方法是看较小的两条边长的和是否大于第三条边长.
A.50° B.70° C.75° D.80° 答案 B 因为直线DE是AC的垂直平分线,所以AD=DC,所以∠DAC=∠C=25°,所以∠ADC=1 80°-(25°+25°)=130°.因为∠ADC=∠B+∠BAD,所以∠BAD=∠ADC-∠B=130°-60°=70°,故选B.
广西南宁市2019年中考[数学]考试真题与答案解析
广西南宁市2019年中考[数学]考试真题与答案解析一、选择题本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数是无理数的是( )AB .C .D .2.下列图形是中心对称图形的是( )A .B .C .D .3. 2020年2月至5月,由广西教育厅主办,南宁市教育局承办的广西中小学“空中课堂”是同期全国服务中小学学科最齐、学段最全、上线最早的线上学习课程,深受广大师生欢迎.其中某节数学课的点击观看次数约次,则数据用科学记数法表示为( )A .B .C .D .4. 下列运算正确的是( )A .B .C .D .5. 以下调查中,最适合采用全面调查的是( )A .检测长征运载火箭的零部件质量情况B .了解全国中小学生课外阅读情况C .调查某批次汽车的抗撞击能力D .检测某城市的空气质量105-889000889000388.910⨯488.910⨯58.8910⨯68.8910⨯22422x x x +=3232x x x ⋅=()322x x =75222x x x ÷=6. 一元二次方程的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定7. 如图,在中,,观察图中尺规作图的痕迹,则的度数为( )A .B .C .D .8. 一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A.B .C .D .9. 如图,在中,高,正方形一边在上,点分别在上,交于点则的长为( )A .B .C .D .2210x x -+=ABC V ,80BA BC B =∠=︒DCE ∠60o 65o 70o 75o16141312ABC V 120,BC =60AD =EFGH BC ,E F ,AB AC AD EF ,N AN 1520253010. 甲、乙两地相距提速前动车的速度为提速后动车的速度是提速前的倍,提速后行车时间比提速前减少则可列方程为( )A.B .C .D .11. 《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1、2(图2为图1的平面示意图),推开双门,双门间隙的距离为寸,点和点距离门槛都为尺(尺寸),则的长是( )A .寸B .寸C .寸 D .寸12. 如图,点是直线上的两点,过两点分别作轴的平行线交双曲线于点.若,则的值为( )600,km /,vkm h 1.220,min 60016003 1.2v v -=60060011.23v v =-60060020 1.2v v-=600600201.2v v=-,kun CD 2C D AB 1110=AB 50.552101104,A B y x =,A B x ()10y x x=>,C D AC =223OD OC -A .B .C .D .二、填空题13.如图,在数轴上表示的的取值范围是_.14.计算.15.某射击运动员在同一条件下的射击成绩记录如下:射击次数“射中环以上”的次数“射中环以上”的频率(结果保留小数点后两位)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率是(结果保留小数点后一位).16.如图,某校礼堂的座位分为四个区域,前区共有排, 其中第排共有个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有排,则该礼堂的座位总数是__.17.以原点为中心,把点逆时针旋转得到点则点的坐标为___.18.如图,在边长为的菱形中,,点分别是上的动点,且与交于点.当点从点运动到点时,则点的运动路径长为__.54x =204010020040010009153378158321 80190.750.830.780.790.800.80812010()3,4M 90︒,N N ABCD 60C ∠=︒,E F ,AB AD ,AE DF DE =BF P E A B P三、解答题19. 计算:.20.先化简,再求值:,其中.21.如图,点在一条直线上,.求证:;连接,求证:四边形是平行四边形.22.小手拉大手,共创文明城.某校为了了解家长对南宁市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取份答卷,并统计成绩(成绩得分用表示,单位:分),收集数据如下:整理数据:()()213142--+÷-⨯11x x x x +⎛⎫÷- ⎪⎝⎭3x =,,,B E C F ,,AB DE AC DF BE CF ===()1ABC DEF V V ≌()2AD ABED 20x 90,82,99,86,98,96,90,100,89,8387,88,81,90,93,100,100,96,92,1008085x ≤<8590x ≤<9095x ≤<95100x ≤≤34a8分析数据:平均分中位数众数根据以上信息,解答下列问题:直接写出上述表格中的值;该校有名家长参加了此次问卷测评活动,请估计成绩不低于分的人数是多少?请从中位数和众数中选择一个量, 结合本题解释它的意义.23.如图,一艘渔船位于小岛的北偏东方向,距离小岛的点处,它沿着点的南偏东的方向航行.渔船航行多远距离小岛最近(结果保留根号) ?渔船到达距离小岛最近点后,按原航向继续航行到点处时突然发生事故,渔船马上向小岛上的救援队求救,问救援队从处出发沿着哪个方向航行到达事故地点航程最短,最短航程是多少(结果保留根号)?24.倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某机器92bc()1,,a b c ()2160090()3B 30o 40nmile A A 15o ()1B ()2B C B B人公司研发出型和型两款垃圾分拣机器人,已知台型机器人和台型机器人同时工作共分拣垃圾吨,台型机器人和台型机器人同时工作共分拣垃圾吨.台型机器人和台型机器人每小时各分拣垃圾多少吨?某垃圾处理厂计划向机器人公司购进一批型和型垃圾分拣机器人,这批机器人每小时一共能分拣垃圾吨.设购买型机器人台,型机器人台,请用含的代数式表示;机器人公司的报价如下表:型号原价购买数量少于台购买数量不少于台型万元/台原价购买打九折型万元/台原价购买打八折在的条件下,设购买总费用为万元,问如何购买使得总费用最少?请说明理由.25.如图,在中,以为直径的交于点连接且连接并延长交的延长线于点与相切于点.求证:是的切线:连接交于点,求证:;A B 2A 5B 2h 3.63A 2B 5h 8()11A 1B ()2A B 20A a 104()5a ≤≤B b a b ()33030A 20B 12()2w w ACE V AC O e CE ,D ,AD ,DAE ACE ∠=∠OD AE ,P PB O e B ()1AP O e ()2AB OP F FAD DAE V :V若,求的值.26.如图1,在平面直角坐标系中,直线与直线相交于点点是直线上的动点,过点作于点点的坐标为连接.设点的纵坐标为的面积为.当时,请直接写出点的坐标;关于的函数解析式为其图象如图2所示,结合图1、2的信息,求出与的值;在上是否存在点,使得是直角三角形?若存在,请求出此时点的坐标和的面积;若不存在,请说明理由.()312tan OAF ∠=AEAP1:1l y x =+2:2l x =-,D A 2l A 1AB l ⊥,B C ()0,3,,AC BC A ,t ABC V s ()12t =B ()2s t ()()215,15,44115,15t bt t t s a t t ⎧+-<->⎪=⎨⎪+--<<⎩或a b ()32l A ABC V A ABC V答案解析一、选择题123456789101112二、填空题12、[解析]设点,则为点为,则为两边同时平方,得ADCDABBCBACC(),A aa C 1,a a⎛⎫⎪⎝⎭B (),b b D 1,b b⎛⎫ ⎪⎝⎭11,BD b AC ab a∴=-=-AC =Q 11a b a b ⎫∴-=-⎪⎭22113a b a b ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭222211232a b a b ⎛⎫∴+-=-- ⎪⎝⎭22222211,OC a OD b a b=+=+Q18、[解析]方法一: 连接易证:得则四点共圆为的外接圆易求半径得从而点的路径长为 [此题还有特殊值法等多种技巧]三、解答题19.[答案]解:原式20.[答案]解:原式()22232OC OD ∴-=-2234OD OC -=∴,BD ,BFD DEA V V ≌60,BPE ∠=︒120,BPD ∠=︒180,C DPB ∴∠+∠=︒C B PD ∴、、、O ∴e CBD V Oe 2,R BD ==120,DOB ∠=︒P 120423603R ππ︒⋅=︒()1932=+÷-⨯()16=+-5=-211x x x x x ⎛⎫+=÷- ⎪⎝⎭当时,原式21.[答案]证明:即证明:四边形是平行四边形22.[答案](人)众数:在统计的问卷的成绩中,得分的人数最多.23. [答案]从点作垂线交于点.()()111x x x x x +=⋅+-11x =-3x =11312==-()1,BE CF =Q ,BE EC CF EC ∴+=+,BC EF =,AB DE AC DF==Q ()ABC DEF SSS ∴≅V V ()2()ABC DEF SSS ≅QV V ,B DEF ∴∠=∠//,AB DE ∴,BE DF =Q ∴ABED ()15,91,100a b c ===()()258200.65+÷=16000.651040⨯=()3100()1B AC BD AC D因为垂线段最短,上的点距离点最近,即为所求.易求:在中,易证答:从处沿南偏东出发,最短行程24.[答案]解:设台每小时分拣吨,台每小时分拣吨,依题意得:解得依题意得:AC D BAD )45,4540BAD AD BD ABsin mile ∠=︒==︒==()2Rt BDCV BD tan C DC ∠===30,C ∴∠=︒)30BD BC nmile sin ∴==︒15,60DBE DBC ∠=︒∠=︒45EBC DBC DBE ∴∠=∠-∠=oB 45o ()11A x 1B y ()()225 3.65328x y x y +=⎧⎪⎨+=⎪⎩0.40.2x y =⎧⎨=⎩()20.40.220,a b ÷=与是一次函数的关系,当时,当时,当时,综上,购买台,台,费用最少25.[答案]证明:为直径又为的切线连为圆的切线又弧弧()()()200.91210023545200.9120.81002303520120.810021,,,030a a a W a a a a a a ⨯+⨯-<≤⎧⎪=⨯+⨯-<≤⎨⎪⨯+⨯-≤≤⎩W a 1045a ≤<3545,45a a <≤=930min W =3035,35a a ≤≤=918min W =1030,10a a ≤<=968min W =35A 30B W ()1AC Q 90,ADC ∴∠=︒90,ACE CAD ∴∠+∠=︒90DAE DAC ∠+∠=o,OA AP ∴⊥AP ∴O e ()2,OB ,PA PB Q ,PA PB ∴=,OB OA OP OP ==()OBP OAP SSS ∴≅V V ,BOD DOA ∠=∠∴AD ∴DB =又在中,设:,故且即26. [答案]依题有,当时,故得当时,达到最大值,则代入得,FAD ACE ∴∠=∠,OF AB ∴⊥,ACE DAE ∠=∠Q ,90FAD DAE AFD ADE ∴∠=∠∠=∠=o ()FAD DAE AA ∴V :V ()3Rt OFA V 12tan OAF ∠=,2,OF x AF x OA ===2AP OA ==)1DF OD OF OA OF x =-=-=Q FAD DAEV :V ,FAD DAE ACE ∴∠=∠=∠,tan ACE tan FAD ∴∠=∠AE DF AC AF ==)(15AE x ⇒==AE AP ∴==()111,22B ⎛⎫- ⎪⎝⎭()27t =4,s =215774,44b ⨯+-=1b =-2t =S 11193232224OAC OBC S S S =-=⨯⨯-⨯⨯=V V S ()()921254a +-=解得若为的直角顶点,则此时的方程为,令得,此时若为的直角顶点,过作垂线交于则在中,由勾股定理得14a =-()3)i A ABC V 1//,AC l AC 3y x =+2x =-()12,1A -AC ==122ABC S ==V )ii C ABC V B 2l 2l (),2,E A t -()1312,,2,1,,222t t t E D B ---⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭Rt ABC V 222AC BC AB +=即解得:或此时或;或当为的直角顶点,此种情况不存在,当在上方时为锐角,当在下方时,为钝角,故不存在()222222313123322222t t t t t t ----⎛⎫⎛⎫⎛⎫⎛⎫+-++-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭212270t t ⇒-+=3t =9t =()22,3A -()32,9A -122ABC S AC BC =⨯⨯=V 1102ABC S =⨯=V )iii B ABC V A D ABC ∠A D ABC ∠。
2019年广西中考数学真题试卷 (含答案和解析)
2019年广西北部湾经济区中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,毎小题3分,共36分,在毎小题给出的四个选项中只有一项是符合要求的)1.(3分)如果温度上升2℃记作+2℃,那么温度下降3℃记作()A.+2℃B.﹣2℃C.+3℃D.﹣3℃【解答】解:上升2℃记作+2℃,下降3℃记作﹣3℃;故选:D.2.(3分)如图,将下面的平面图形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【解答】解:面动成体,直角三角形绕直角边旋转一周可得圆锥,长方形绕一边旋转一周可得圆柱,那么所求的图形是下面是圆锥,上面是圆柱的组合图形.故选:D.3.(3分)下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.4.(3分)2019年6月6日,南宁市地铁3号线举行通车仪式,预计地铁3号线开通后日均客流量为700000人次,其中数据700000用科学记数法表示为()A.70×104B.7×105C.7×106D.0.7×106【解答】解:700000=7×105;故选:B.5.(3分)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.6.(3分)下列运算正确的是()A.(ab3)2=a2b6B.2a+3b=5abC.5a2﹣3a2=2D.(a+1)2=a2+1【解答】解:2a+3b不能合并同类项,B错误;5a2﹣3a2=2a2,C错误;(a+1)2=a2+2a+1,D错误;故选:A.7.(3分)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.8.(3分)“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.9.(3分)若点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【解答】解:∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=﹣1时,y1>0,∵2<3,∴y2<y3<y1故选:C.10.(3分)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×30【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,11.(3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A.3.2米B.3.9米C.4.7米D.5.4米【解答】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=x tan65°,∴BF=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.12.(3分)如图,AB为⊙O的直径,BC、CD是⊙O的切线,切点分别为点B、D,点E为线段OB上的一个动点,连接OD,CE,DE,已知AB=2,BC=2,当CE+DE的值最小时,则的值为()A.B.C.D.【解答】解:延长CB到F使得BF=BC,则C与F关于OB对称,连接DF与OB相交于点E,此时CE+DE=DF值最小,连接OC,BD,两线相交于点G,过D作DH⊥OB于H,则OC⊥BD,OC=,∵OB•BC=OC•BG,∴,∴BD=2BG=,∵OD2﹣OH2=DH2=BD2﹣BH2,∴,∴BH=,∴,∵DH∥BF,∴,∴,故选:A.二、填空题(本大题共6小题,每嗯题3分,共18分)13.(3分)若二次根式有意义,则x的取值范围是x≥﹣4.【解答】解:x+4≥0,∴x≥﹣4;故答案为x≥﹣4;14.(3分)因式分解:3ax2﹣3ay2=3a(x+y)(x﹣y).【解答】解:3ax2﹣3ay2=3a(x2﹣y2)=3a(x+y)(x﹣y).故答案为:3a(x+y)(x﹣y)15.(3分)甲,乙两人进行飞镖比赛,每人各投6次,甲的成绩(单位:环)为:9,8,9,6,10,6.甲,乙两人平均成绩相等,乙成绩的方差为4,那么成绩较为稳定的是甲.(填“甲”或“乙”)【解答】解:甲的平均数=(9+8+9+6+10+6)=8,所以甲的方差=[(9﹣8)2+(8﹣8)2+(9﹣8)2+(6﹣8)2+(10﹣8)2+(6﹣8)2]=,因为甲的方差比乙的方差小,所以甲的成绩比较稳定.故答案为甲.16.(3分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD =24,则AH=.【解答】解:∵四边形ABCD是菱形,∴BO=DO=4,AO=CO,AC⊥BD,∴BD=8,∵S菱形ABCD=AC×BD=24,∴AC=6,∴OC=AC=3,∴BC==5,∵S菱形ABCD=BC×AH=24,∴AH=;故答案为:.17.(3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为26寸.【解答】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.18.(3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD 之间的等量关系式为AB2=AC2+BD2.【解答】解:过点A作AE∥CD,截取AE=CD,连接BE、DE,如图所示:则四边形ACDE是平行四边形,∴DE=AC,∠ACD=∠AED,∵∠AOC=60°,AB=CD,∴∠EAB=60°,CD=AE=AB,∴△ABE为等边三角形,∴BE=AB,∵∠ACD+∠ABD=210°,∴∠AED+∠ABD=210°,∴∠BDE=360°﹣(∠AED+∠ABD)﹣∠EAB=360°﹣210°﹣60°=90°,∴BE2=DE2+BD2,∴AB2=AC2+BD2;故答案为:AB2=AC2+BD2.三、解答题共(本大题共8小题,共66分,解答应写岀文字说明,证明过程或演算步骤)19.(6分)计算:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2.【解答】解:(﹣1)2+()2﹣(﹣9)+(﹣6)÷2=1+6+9﹣3=13.20.(6分)解不等式组:,并利用数轴确定不等式组的解集.【解答】解:解①得x<3,解②得x≥﹣2,所以不等式组的解集为﹣2≤x<3.用数轴表示为:21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,﹣2),C(3,﹣3)(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出与△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(﹣2,﹣1).22.(8分)红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:分数60708090100人数班级1班016212班113a13班11422分析数据:平均数中位数众数1班8380802班83c d3班b8080根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?【解答】解:(1)由题意知a=4,b =×(90+60+70+80+80+80+80+90+100+100)=83,2班成绩重新排列为60,70,80,80,80,90,90,90,90,100,∴c==85,d=90;(2)从平均数上看三个班都一样;从中位数看,1班和3班一样是80,2班最高是85;从众数上看,1班和3班都是80,2班是90;综上所述,2班成绩比较好;(3)570×=76(张),答:估计需要准备76张奖状.23.(8分)如图,△ABC是⊙O的内接三角形,AB为⊙O直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O 于点D,连接BD.(1)求证:∠BAD=∠CBD;(2)若∠AEB=125°,求的长(结果保留π).【解答】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:连接OD,∵∠AEB=125°,∴∠AEC=55°,∵AB为⊙O直径,∴∠ACE=90°,∴∠CAE=35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴的长==π.24.(10分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?【解答】解:(1)设每袋国旗图案贴纸为x元,则有,解得x=15,经检验x=15时方程的解,∴每袋小红旗为15+5=20元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买b袋小红旗恰好与a袋贴纸配套,则有50a:20b=2:1,解得b=a,答:购买小红旗a袋恰好配套;(3)如果没有折扣,则W=15a+20×a=40a,依题意得40a≤800,解得a≤20,当a>20时,则W=800+0.8(40a﹣800)=32a+160,即W=,国旗贴纸需要:1200×2=2400张,小红旗需要:1200×1=1200面,则a==48袋,b==60袋,总费用W=32×48+160=1696元.25.(10分)如图1,在正方形ABCD中,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B 作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,当点E运动到AB中点时,连接DG,求证:DC=DG;(3)如图3,在(2)的条件下,过点C作CM⊥DG于点H,分别交AD,BF于点M,N,求的值.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,∴△ABF≌△BCE(ASA);(2)证明:如图2,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE=a,在Rt△CEB中,根据面积相等,得BG•CE=CB•EB,∴BG=a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CHD=∠CGB=90°,∴△CHD≌△BGC(AAS),∴CH=BG=a,∴GH=CG﹣CH=a=CH,∵DH=DH,∠CHD=∠GHD=90°,∴△DGH≌△CDH(SAS),∴CD=GD;(3)解:如图3,过点D作DQ⊥CE于Q,S△CDG=•DQ•CG=CH•DG,∴CH==a,在Rt△CQD中,CD=2a,∴DH==a,∵∠MDH+∠HDC=90°,∠HCD+∠HDC=90°,∴∠MDH=∠HCD,∴△CHD∽△DHM,∴=,∴HM=a,在Rt△CHG中,CG=a,CH=a,∴GH==a,∵∠MGH+∠CGH=90°,∠HCG+∠CGH=90°,∴∠CGH=∠CNG,∴△GHN∽△CHG,∴,∴HN==a,∴MN=HM﹣HN=a,∴=26.(10分)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,﹣1).(1)直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F(﹣6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.【解答】解:由抛物线C1:y1=x2+x可得A(﹣2,﹣1),将A(﹣2,﹣1),D(6,﹣1)代入y2=ax2+x+c得,解得,∴y2=﹣+x+2,∴B(2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE⊥AB,k BE•k AB=﹣1,∴k BE=﹣1,直线BE解析式为y=﹣x+5联立,解得x=2,y=3或x=6,y=﹣1,∴E(6,﹣1);②若A为直角顶点,AE⊥AB,同理得AE解析式:y=﹣x﹣3,联立,解得x=﹣2,y=﹣1或x=10,y=﹣13,∴E(10,﹣13);③若E为直角顶点,设E(m,﹣m2+m+2)由AE⊥BE得k BE•k AE=﹣1,即,,,(m﹣1)2(m﹣6)(m+2)=﹣16(m+2)(m﹣2),(m+2)(m﹣2)[(m﹣2)(m+6)+16]=0,∴m+2=0或m﹣2=0,或(m﹣2)(m+6)+16=0(无解)解得m=2或﹣2(不符合题意舍去),∴点E的坐标∴E(6,﹣1)或E(10,﹣13);(3)∵y1≤y2,∴﹣2≤x≤2,设M(t,),N(t,),且﹣2≤t≤2,易求直线AF的解析式:y=﹣x﹣3,过M作x轴的平行线MQ交AF于Q,则Q(﹣),S1=QM•|y F﹣y A|=设AB交MN于点P,易知P(t,t+1),S2=PN•|x A﹣x B|=2﹣S=S1+S2=4t+8,当t=2时,S的最大值为16.。
2019年中考数学专题《四边形》复习试卷含答案解析
2019年中考数学专题复习卷: 四边形一、选择题1.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形2.正十边形的每一个内角的度数为()A. B.C.D.3.在四边形ABCD中,∠A,∠B,∠C,∠D度数之比为1:2:3:3,则∠B的度数为()A. 30°B. 4 0°C. 80°D. 120°4.如图,在▱ABCD中,对角线AC与BD交于点D,若增加一个条件,使▱ABCD成为菱形,下列给出的条件正确的是()A. AB=ADB. AC=BDC. ∠ABC=90° D. ∠ABC=∠ADC5.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是()。
A.35°B.45°C.55°D.65°6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()。
A.20B.24C.40D.487.如图,在矩形ACBO中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为()A. -B.C. -2 D. 28.如图,在菱形ABCD中,点E,F,G,H分别是边AB,BC,CD和DA的中点,连接EF,FG,GH和HE,若EH=2EF,则下列结论正确的是()A. AB=EFB. AB=2EF C. AB=EF D. AB=EF9.如图,菱形的对角线,相交于点,,,则菱形的周长为()A. 52 B . 48 C.40 D.2010.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B.C.D.11.已知图2是由图1七巧板拼成的数字“0”,己知正方形ABCD的边长为4,则六边形EFGHMN的周长为()A. B.C.D. 1212.如图,在正方形ABCD外侧,作等边△ADE,AC,BE相交于点F,则∠BFC为()A. 75°B.60° C. 5 5° D. 45°二、填空题13.四边形的外角和是________度.14.如图,在边长为2的菱形ABCD中,∠D=60°,点E、F分别在边AB、BC上.将△BEF沿着直线EF翻折,点B恰好与边AD的中点G重合,则BE的长等于________15.如图,在菱形ABCD中,AC=6cm,BD=8cm,则菱形ABCD的高AE为________cm.16.如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17.如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴上,且点A坐标为(0,4),BC在x轴正半轴上,点C在B点右侧,反比例函数(x>0)的图象分别交边AD,CD于E,F,连结BF,已知,BC=k,AE= CF,且S四边形ABFD=20,则k=________.18.如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________19. 如图,在平行四边形ABCD中,对角线AC、BD相交于点0,AB=OB,点E、点F分别是OA、OD的中点,连接EF,∠CEF=45°EM⊥BC于点M,EM交BD于点N,FN= ,则线段BC的长为________.20.如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为________.(结果保留π)三、解答题21.如图,,,,在一条直线上,已知,,,连接.求证:四边形是平行四边形.22.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°。
2019年中考数学一轮复习 第四章 图形的认识 4.4 多边形与平行四边形(试卷部分)优质课件
n
又每一条边都相等,则△ABE是等腰三角形,故∠ABE=∠AEB=36°. 解题关键 本题主要考查多边形内角与外角的知识,解答本题的关键是求出正五边形的内角, 比较简单.
中考数学 (江苏专用)
§4.4 多边形与平行四边形
1
五年中考
A组 2014-2018年江苏中考题组
考点1 多边形
1.(2018南京,6,2分)用一个平面去截正方体(如图),下列关于截面(截出的面)的形状的结论:①可 能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中正确 结论的序号是 ( )
A.①② B.①④ C.①②④ D.①②③④
答案 B 用平面去截正方体,所得的截面可能为三角形、四边形、五边形、六边形,而三角 形只能是锐角三角形,不可能是直角三角形和钝角三角形.故选B.
解题关键 本题考查了正方体的截面,掌握正方体的截面的四种情况是解题的关键.
2
2.(2017苏州,7,3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为 ( )
14
5.(2015镇江,8,2分)如图,在▱ABCD中,E为AD的中点,BE、CD的延长线相交于点F.若△DEF的
面积为1,则▱ABCD的面积等于
4.(2018宿迁,12,3分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是
.
答案 8
解析 设多边形的边数为n,根据题意,得 (n-2)·180=3×360, 解得n=8. 则这个多边形的边数是8.
4
5.(2018南京,15,2分)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1-∠2=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点二
平行四边形
1.(2018玉林,8,3分)在四边形ABCD中:①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,从以上条件 中选择两个使四边形ABCD为平行四边形的选法共有 ( A.3种 B.4种 C.5种 D.6种 )
答案 B 根据平行四边形的判定,符合条件的选法共有4种,分别是①②,①③,②④,③④. 方法总结 平行四边形的判定条件主要有四类:两组对边分别平行;两组对边分别相等;一组 对边平行且相等;对角线互相平分.
∴∠ACB=90°. ∴∠ACD=∠CAB=30°,即①正确. ∵AC⊥BC,∴S▱ABCD=AC· BC,即②正确. 在Rt△ACB中,∠ACB=90°,∠CAB=30°, ∴AC= 3 BC.
1 BC. ∵AO=OC,AE=BE,∴OE= 2
∴OE∶AC= 1
∶( 3 BC)= 3 ∶6,即③正确. BC 2
思路分析 (1)由已知得∠B=∠D,AB=CD,要证△ABF≌△CDE,只需再找一组对应角,由AF∥ CE,CE平分∠BCD进行推导. (2)求∠B,即求∠D,在△DCE中求解即可.
6.(2016钦州,21,8分)如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF. (1)求证:BF=DC;
S1 =1 080 .3 ∴ = 故选B. S2
1 800
5
方法技巧
n R2 S扇= ,当半径相等时,面积之比即为相应的圆心角度数之比. 360
3.(2016桂林,16,3分)正六边形的每个外角是 答案 60
度.
解析 多边形的外角和为360°,且正多边形各外角相等,则正六边形的每个外角都是360°÷6=60°.
1 AG. ∵AG⊥DE,∴OA= 2
在Rt△AOD中,OA= = 2=4,
AD OD2
52 32
∴AG=2AO=8.
故选B.
3.(2016河池,8,3分)如图,在▱ABCD中,∠ABC的平分线交AD于点E,∠BED=150°,则∠A的大小 为 ( )
A.150° B.130° C.120° D.100°
中考数学
(广西专用)
§4.4 多边形与平行四边形
五年中考 五年中考 A组 2014-2018年广西中考题组
考点一 多边形
) 1.(2017柳州,8,3分)如图,这个五边形ABCDE的内角和等于 (
A.360° B.540° C.720° D.900° 答案 B 由多边形内角和公式得180°(n-2)=540°. 解题关键 熟记多边形内角和公式是解题关键.
(2)求证:四边形ABFD是平行四边形.
证明 (1)∵DE是△ABC的中位线, ∴CE=BE.
在△CDE和△BFE中,
∴△CDE≌△BFE. ∴BF=DC. (2)∵DE是△ABC的中位线,
1 AB. ∴DE∥AB,DE= 2
CE BE , CED BEF , DE FE ,
可求∠A的度数.
评析 灵活运用平行四边形的性质是解题关键.
4.(2016贵港,12,3分)如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD 于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:
①∠ACD=30°;②S▱ABCD=AC· BC;③OE∶AC= 3∶6;④S△OCF=2S△OEF.成立的有 (
)
Hale Waihona Puke A.1个 B.2个 C.3个 D.4个
答案 D ∵四边形ABCD是平行四边形,∠ABC=60°, ∴∠ADC=∠ABC=60°,∠BCD=120°.
∵CE平分∠BCD交AB于点E,
∴∠DCE=∠BCE=60°. ∴△CBE是等边三角形. ∴BE=BC=CE.
∵AB=2BC,∴AE=BC=CE.
2.(2016玉林,11,3分)如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设 正八边形内侧八个扇形(无阴影部分)面积之和为S1,正八边形外侧八个扇形(阴影部分)面积之
1 和为S2,则 = (
S S2
)
3 A. 4 3 B. 5 2 C. 3
D.1
答案 B ∵正八边形的内角和为(8-2)×180°=1 080°, ∴正八边形内侧八个扇形对应的圆心角之和为1 080°, ∴正八边形外侧八个扇形对应的圆心角之和为360°×8-1 080°=1 800°,
∵AO=OC,AE=BE,∴OE∥BC. ∴△OEF∽△BCF.∴ = = .
OEF ∴ = = .
EF CF
OE BC
1 2
S S OCF
EF CF
1 2
∴S△OCF=2S△OEF,即④正确.故选D.
5.(2016百色,22,8分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC 于点F.
2.(2017河池,11,3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则 AG的长是 ( )
A.6 B.8 C.10 D.12
答案 B 连接EG,设AG与DE交于点O.
由题意知AD=AE,∠1=∠2,
1 DE=3, ∴AG⊥DE,OD= 2
∵四边形ABCD是平行四边形, ∴CD∥AB,∴∠2=∠3, ∴∠1=∠3,∴AD=DG.
答案 C ∵∠BED=150°,∴∠AEB=30°.在▱ABCD中, AD∥BC,∴∠CBE=∠AEB=30°.∵BE平分∠ABC,∴∠ABE=∠CBE=30°,∴∠A=180°-∠ABE∠AEB=120°.故选C. 思路分析 由∠BED的度数可求出∠AEB的度数,再求得∠ABE的度数,最后由三角形内角和
(1)求证:△ABF≌△CDE;
(2)如图,若∠1=65°,求∠B的大小.
解析 (1)证明:∵四边形ABCD是平行四边形, ∴AD∥BC,AB=CD,∠B=∠D.
∵CE平分∠BCD,∴∠2=∠3.
∵AD∥BC,∴∠1=∠2.∵AF∥CE,∴∠2=∠4.∴∠1=∠4. ∴△ABF≌△CDE.
(2)∵AD∥BC,∴∠2=∠1. ∴∠3=∠1=65°.∴∠D=180°-65°×2=50°. ∴∠B=50°.