初一下册数学知识点:不等式与不等式组
七年级下册数学不等式与不等式组知识点

七年级下册数学不等式与不等式组知识点不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。
2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4.解不等式:求不等式的解集的过程,叫做解不等式。
5.用数轴表示不等式的解集。
二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
例:1.已知不等式3x-a ≤0的正整数解恰是1,2,3,则a 的取值范围是。
2.已知关于x 的不等式组-≥->-1250x a x 无解,则a 的取值范围是。
3.不等式组>+≤+0221042x x 的整数解为。
4.如果关于x 的不等式(a-1)x<a+5和2x<="" 的值为="">5.已知关于x 的不等式组<++>+01234a x xx 的解集为2<="" 的取值范围是="" ,那么a="">6.当x 时,代数式52+x 的值不大于零7.若x <1,则22+-x 0(用“>”“=”或“”号填空) 8.不等式x 27->1,的正整数解是9. 不等式x ->10-a 的解集为x <3,则a 10.若a >b >c ,则不等式组c x b x ax 的解集是11.若不等式组??--3212 b x a x 的解集是-1<="">13.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g14.若不等式组??3 x ax 的解集为x >3,则a 的取值范围是三、一元一次不等式(重点)1.一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
人教版数学七年级下册 不等式与不等式组 课件PPT

②ቊ
− 1 < 0, 两个未知数
> −2,
①ቊ
< 3,
2 + 1 < ,
③ቊ 2
+ 2 > 4,
A. 1 个
最高次为2
B. 2 个
+ 3 > 0,
④ቊ
< −7.
C. 3 个
D. 4 个
x>1
2 − 1 > 1,
2.不等式组 ቊ
的所有整数解的和是 9 .
①每个不等式都是一元一次不等式;
②含有同一个未知数;
③不等式的个数不少于2.
8.一元一次不等式组的解集
解集的公共部分
一般地,几个不等式的_________________,叫做由它们所组成的
不等式组的解集.
“公共部分”是指同时满足不等式组中每一个不等式的解集的
部分.如果组成不等式组的各个不等式的解集没有公共部分,则
18 个学生,就有一名老师少带 4 个学生.为了安全,每辆客车上至
少要有 2 名老师.(1)参加此次研学旅行活动的老师和学生各有多少
人?
解:(1)设老师有 x 人,学生有 y 人.
17 = − 12,
= 16,
依题意得 ቊ
解得 ቊ
= 284.
18 = + 4,
答:此次参加研学旅行活动的老师有 16 人,学生有 284 人.
由题意得获得的利润为 y=50x+45(80-x),
当 x=40时,y=3800;
当 x=41时,y=3805;
当 x=42时,y=3810;
当 x=43时,y=3815;
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
人教版数学七年级下册知识重点与单元测-第九章9-5《不等式与不等式组》章末复习(能力提升)

第九章不等式与不等式(组)9.5 《不等式与不等式组》章末复习(能力提升)【要点梳理】知识点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式例1.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a >b >0,则<. . 【答案与解析】解:(1)若由b ﹣3a <0,移项即可得到b <3a ,故正确; (2)如果﹣5x >20,两边同除以﹣5不等号方向改变,故错误; (3)若a >b ,当c=0时则 ac 2>bc 2错误,故错误; (4)由ac 2>bc 2得c 2>0,故正确;(5)若a >b ,根据c 2+1,则 a (c 2+1)>b (c 2+1)正确. (6)若a >b >0,如a=2,b=1,则<正确. 故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.例2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
七年级下册数学不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。
不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。
2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。
4、解不等式:求不等式的解集的过程,叫做解不等式。
5、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。
规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。
⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(321(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。
用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。
用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。
用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。
新人教七年级数学下册 第九章不等式与不等式组全章讲与练

第九章不等式与不等式组第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集.二、知识概要1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式.2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集.4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式.5.不等式的性质:性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6.三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求X围等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:(1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小.(2)“>”读作“大于”,表示其左边的量比右边的量大.(3)“<”读作“小于”,表示其左边的量比右边的量小.(4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量.(5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?(1)找准题中不等关系的两个量,并用代数式表示.(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.(3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来.根据下列关系列不等式:a的2倍与b的的和不大于2a+ b.“不大于”就是“小于或等于”.列不等式为:2a+b≤3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在X围内则用实心点表示,若边界点不在X围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x>-3;x≤2.第三节、错题剖析一、去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19.错解: 去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.二、去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6.错解: 去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解: 移项,得4x+2x<-9-5,即6x<-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解: 去分母,得6x-2x-5>14,解得诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,解得五、不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x.错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以x>【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a≤0.【例7】求不等式的非负整数解.错解及分析:整理得,3x≤16,所以故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5.【例8】解不等式3-5(x-2)-4(-1+5x)<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,所以【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6,即11x<-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7x-4x<-9+6,即3x<-3,所以x<-1.【例10】解不等式错解及分析:去分母,得3+2(2-3x)≤5(1+x).即11x≥2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2(2-3x)≤5(1+x).即11x≥29,所以【例11】解不等式6x-6≤1+7x.错解及分析:移项,得6x-7x≤1+6.即-x≤7,所以x<-7.将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7x<1+6.即-x≤7,所以x≥-7.【例12】解关于x的不等式m(x-2)>x-2.错解: 化简,得(m-1)x>2(m-1),所以x>2.诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0.正解: 化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例13】解不等式(a-1)x>3.错解:系数化为1,得x>.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,x>;②当a=1时,0×x>3,不等式无解;③当a-1<0时,x<.【例14】不等式组的解集为 .错解:两个不等式相加,得 x-1<0,所以x<1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0<x<【例15】解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2,所以 5x-3>3x-2.移项,得5x-3x>-2+3.解得 x>.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x>的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x>不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解:由5x-3>4x+2,得x>5.由4x+2>3x-2,得x>-4.综合x>5和x>-4,得原不等式组的解集为x>5.【例16】解不等式组错解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组无解.【例17】解不等式错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解:去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x>-1-3合并,得-13x>-4系数化为1,得【例18】若不等式组的解集为x>2,则a的取值X围是().A. a<2B. a≤2C. a>2D. a≥2错解及分析:原不等式组可分为得a<2,故选A.当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.【例19】解不等式组错解:②-①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.所以原不等式组的解集为x<-3.第四节、思维点拨一、巧用乘法【例1】解不等式0.125x<3.【思考与分析】此不等式是一元一次不等式的一般形式,只需不等式两边同时除以0.125,就可以化系数为“1”,但是较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷.解:两边同乘以8,得x<24.二、巧去分母【例2】解不等式【思考与分析】常规方法是先去分母,但仔细观察就会发现,可先进行移项.解:移项,得合并同类项,得x≥-1.【例3】解不等式【思考与分析】常规方法是去分母,两边同乘以分母的最小公倍数.但我们会注意到“0.25×4=1,0.5×2=1”,则利用分数的性质,对左边第一项分子、分母同乘以4,第二项分子、分母同乘以2,这样就可以化去分母并且系数为整数.解:利用分数的性质(即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2),得8x+4-2(x-2)≤2,去括号,得8x+4-2x+4≤2,移项,合并同类项,得6x≤-6两边同时除以6得x≤-1.三、根据已知条件取特殊值【例4】设a、b是不相等的任意正数,又x=,则x、y这两个数一定是() A.都不大于2B.都不小于2C.至少有一个大于2D.至少有一个小于2【思考与分析】不妨取a=1,b=3,得x=10,y=从而排除A、B,再取a=3,b=4,得,从而排除D,故选C.答案:C.【反思】用特殊值法解选择题时,如果所取的特殊值使部分选项取得相同的结果,则应另选特殊值再验,直至选出答案.四、根据数轴取特殊值【例5】不等式组的解集在数轴上表示出来是如下图中的()【思考与分析】本题的常规方法是先解不等式组,然后再对照各选项选出正确答案,由于这样做要解不等式组,比较麻烦.仔细观察各选项中的数轴,有两个特殊数2,-1,不妨先取x=2,代入不成立,故可排除A、B.再取x=0,代入不成立,又可排除C,从而选D,这样做不仅节省了时间,而且又减少了出错的机会﹒答案:D.【反思】用特殊值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案﹒比较两个数或两个代数式的大小,可以运用求差法:如果a-b>0,则a>b;如果a-b<0,则a<b.运用求差法比较大小的一般步骤是:(1)作差;(2)判断差的符号;(3)确定大小.【例6】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小.解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y.因为x>y,所以10x>10y,即10x-10y>0.所以-(8-10x)>-(8-10y).又由题意得-(8-10x)>0,即x>,所以x最小的正整数值为1.【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一X全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢?【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+70%a=,光明旅行社的收费为3a×80%=.因为-=>0,所以实际上光明旅行社的收费较低.【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手.五、巧去括号【例8】【思考与分析】观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便.解:去中括号,得去分母,得 3x+60<28+8x,移项,合并同类项,得-5x<-32,【思考与分析】观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便.解:去小括号,得六、巧用“整体思想”【例9】解不等式:【思考与分析】观察题目中括号内外可知都有相同的项:2x-1,我们把2x-1视为整体,再去中括号和分母,则可使运算简捷.解: 3(2x-1)-9(2x-1)-9<5.合并同类项得-6×(2x-1)<14.解得反思:我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便. 【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【思考与分析】根据题意,只有小组赛中的积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少.(1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线;(2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线;(3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线.由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系.第五节、竞赛数学【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 .【思考与分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式.解:原不等式去分母,得3(2+x)≥2(2x-1),去括号,移项,合并同类项,得-x≥-8,即x≤8.满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11.这些整数的和为(-9)+(-10)+(-11)=-30.【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么().【思考与分析】这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案.解:关于x的方程3(x+4)=2a+5的解为关于x的方程的解为由题意得,解得.因此选D.【例3】如果,2+c>2,那么().A. a-c>a+cB. c-a>c+aC. ac>-acD. 3a>2a【思考与分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案.解: 由所以a<0.由2+c>2,得c>0,则有-c<c.两边都加上a,得a-c<a+c,排除A;由a<0,c>0,得ac<0,-ac>0,从而ac<-ac,排除C;由a<0,两边都加上2a,得3a<2a,排除D.答案应该选B,事实上,由a<0,得-a>0,从而-a>a,两边同时加上c,可得c-a>c+a.【例4】四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 .【思考与分析】由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出.解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2.由<19,解得7<m<9.由于m为整数,所以m=8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为102-72=51.从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点.一个实数a的绝对值记作∣a∣,指的是由a所惟一确定的非负实数:含绝对值的不等式的性质:(1)∣a∣≥∣b∣b≤|a|或b≥-|a|,∣a∣≤∣b∣∣b∣≤a≤∣b∣;(2)∣a∣-∣b∣≤∣a+b∣≤∣∣a∣+∣b∣;(3)∣a∣-∣b∣≤∣a-b∣≤∣a∣+∣b∣.由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.【例5】解不等式|x-5|-|2x+3|<1.【分析】关键是去掉绝对值符号前后的变号.分三个区间讨论:解:(1)当当x≤时,原不等式化为-(x-5)-[-(2x+3)]<1,解得x<-7,结合x≤,故x<-7是原不等式的解;(2)当<x≤5时,原不等式化为-(x-5)-(2x+3)<1,解得是原不等式的解;(3)当x>5时,原不等式化为:x-5-(2x+3)<1,解得x>-9,结合x>5,故x>5是原不等式的解.综合(1),(2),(3)可知,是原不等式的解.第六节、本章训练基础训练题1.不等式x+3<6的非负整数解为().A. 1,2B. 1,2,3C. 1,2,0D. 1,2,3,02.已知三个连续奇数的和不超过27且大于10,这样的数组共有().A. 1个B. 2个C. 3个D. 4个3.的值不小于-2,则a的取值X围是().+2x的值不大于8-的值,那么x的正整数解是 .5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠?6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C2. B3. C4. 1,2,35.解:设还可以买x根火腿肠.由题意我们可列不等式5×3+2x≤26,解得因为x必须为正整数,所以x=1,2,3,4,5.答:小明还可以买火腿肠的数目不超过5根.6.解:17<x<18.提高训练题2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值X围.3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行?4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10%.小明说:“可降价100元.”小英说:“可降价150元.”小华说:“降价不能超过112元.”你同意他们谁的说法?5. 巧解下列不等式:(1) 0.375x-2≤0.5x(2)(4)6. 解下列不等式:(1) 9-2(x-2)≥6(2) 12-3x<8-2x7. 已知答案2.解:由题意得我们可列不等式≥85,解得x≥87.3.解:设小明准备了x元钱.我们由题意可列不等式≥5.解得x≥510.所以准备510元或准备610元都可以.4.解:设降价x元.5. (1)x≥-16(提示:不等式两边同乘8);我们可以由题意列不等式398-x-260≥260×10%.解得x≤112.所以小明和小华的说法是正确的.强化训练题1. 若实数a>1,则实数M=a,N=的大小关系是().A. P>N>M B. M>N>PC. N>P>M D. M>P>N2. 若0<a<1,则下列四个不等式中正确的是().3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有().① b+c>0;② a+b>a+c;③ bc>ac;④ ab>ac.A.1个B.2个 C.3个 D.4个.4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20%,去年物价涨幅为15%,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55%,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x=().A. 6B. 7C. 8D. 96.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15%,并可用本和利再投资其他商品,则月末又可获利10%;如等到月末出售可获利30%,但需要支付仓储费用700元.请问根据商场资金多少,如何购销获利较多?7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。
不等式与不等式组的知识点

不等式与不等式组的知识点不等式与不等式组的知识点一、不等式的定义不等式是数学中用来表示两个数之间的大小关系的一种符号,他们通常使用箭头或相等号和符号连接。
在不等式中,将数字分为“左边”和“右边”,而箭头或符号则指示左边的数字要大于、小于、等于或不等于右边的数字。
例如,5<7表示5小于7,3>2表示3大于2,4≠8表示4不等于8,以及6≤9表示6小于或等于9。
二、不等式组的定义不等式组是指多个不等式组成的数学结构,能够用来描述一个特定的解决方案。
例如,在x + 2y ≥ 6 和 x - y ≤ 4 的不等式组中,每个不等式都有一个独立的变量,即x和y,并且它们之间具有相互作用,即它们可以用来确定一个特定的解决方案。
三、不等式与不等式组的解决方法1.解不等式解不等式是指求出满足不等式的所有可能的解的过程。
首先,需要确定不等式的类型,因为不同类型的不等式有不同的解决方法。
其次,需要对不等式进行消去或求解,使其右边的数字变为0。
最后,根据不等式的类型,求出所有可能的解。
2.解不等式组解不等式组是指求出满足不等式组中所有不等式的解的过程。
首先,需要将不等式组中的不等式进行消去或求解,使其右边的数字变为0。
其次,根据消去后的不等式,对不等式组中的变量进行求值,以确定其解。
最后,需要检查求得的解是否满足不等式组中的所有不等式,如果满足,则该解即为不等式组的解。
四、不等式与不等式组的应用1.不等式的应用不等式在日常生活中有着广泛的应用,例如可以用来确定某个数字是否在一定范围之内,也可以用来确定某个数字是否等于另一个数字。
例如,可以使用不等式来判断温度是否低于20度,由此可以判断是否需要加衣服。
此外,还可以使用不等式来确定某个数字是否等于另一个数字,例如可以用来判断两个数字是否相等。
2.不等式组的应用不等式组在商业、金融、经济和其他领域的应用非常广泛,例如在金融领域,可以使用不等式组来判断投资是否能够获得最大的收益;在经济领域,可以使用不等式组来判断某项投资是否会产生最大的利润等。
人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。
(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下册数学知识点:不等式与不等式组不等式与不等式组是初一下学期学习的第六章内容,我们整理了关于一元一次不等式的知识结构图、有关不等式、不等式的解、不等式的解集等知识定义和经典例题。
通过对本篇知识点的学习,相信同学们会结合实例体会运用不等式解决实际问题的过程,同学们加紧时间学习吧!
初一下册数学知识点:不等式与不等式组
第九章不等式与不等式组
【一】目标与要求
1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;
2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;
3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。
【二】知识框架
【三】重点
理解并掌握不等式的性质;
正确运用不等式的性质;
建立方程解决实际问题,会解ax+b=cx+d类型的一元一次方程; 寻找实际问题中的不等关系,建立数学模型;
一元一次不等式组的解集和解法。
【四】难点
一元一次不等式组解集的理解;
弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;
正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。
【五】知识点、概念总结
1.不等式:用符号,,,表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号,连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号),连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-12的解集是x3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)与不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定义域被【解析】式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定义域被【解析】式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性质:
(1)如果xy,那么yy;(对称性)
(2)如果xy,y那么x(传递性)
(3)如果xy,而z为任意实数或整式,那么x+z(加法那么)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
(5)如果xy,z0,那么xzy如果xy,z0,那么xz
(6)如果xy,mn,那么x+my+n(充分不必要条件)
(7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次幂y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10. 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
了一个一元一次不等式组。
12.解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。
(也可以说成是下结论) 13.解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X-1,X2 ,不等式组的解集是X2
(2)小于小于取小的(小小小);
例如:X-4,X-6,不等式组的解集是X-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14.解不等式组的口诀
(1)同大取大
例如,x2,x3 ,不等式组的解集是X3
(2)同小取小
例如,x2,x3 ,不等式组的解集是X2
(3)大小小大中间找
例如,x2,x1,不等式组的解集是1
(4)大大小小不用找
例如,x2,x3,不等式组无解
15.应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,•根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。
【四】经典例题
例1当x 时,代数代2-3x的值是正数。
例2一元一次不等式组的解集是 ( )
例3方程组的解为负数,求k的取值范围。
例4某种植物适宜生长在温度为18℃~20℃的山区,山区海拔每升高100米,气温下降0。
5℃,现在测出山脚下的平均气温为22℃,问该植物种在山的哪一部分为宜?(假设山脚海拔为0米)
例5某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年)。
年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元。
(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可进入该园林的次数最多的购票方式。
(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算。