2023年考研数学:16种求极限的方法

合集下载

16种求极限的方法及一般题型解题思路分享

16种求极限的方法及一般题型解题思路分享

千里之行,始于足下。

16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。

在求极限的过程中,有很多种不同的方法可以使用。

本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。

1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。

这种方法适用于对于给定的变量值函数值可以直接计算的状况。

2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。

3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。

4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。

5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。

6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。

7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。

第1页/共3页锲而不舍,金石可镂。

8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。

9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。

这个法则对于解决0/0和∞/∞型的极限问题格外有用。

10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。

11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。

12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。

13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。

14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。

通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。

求函数极限的方法有很多种,以下是几种常见的方法。

对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。

例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。

当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。

例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。

洛必达法则是求未定式极限的重要方法。

如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。

例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。

对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。

通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。

例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。

夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。

如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。

例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法第一篇:高数中求极限的16种方法高数中求极限的16种方法——好东西假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。

树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。

函数的性质表现在各个方面首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致极限分为一般极限还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了你还能有补充么)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提必须是X趋近而不是N趋近(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!必须是0比0 ,无穷大比无穷大当然还要注意分母不能为0 LHopital法则分为3中情况1, 0比0 ,无穷比无穷时候直接用2,0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了 3, 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近0)3, 泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母看上去复杂处理很简单5,无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

各类未定式求极限处理方法(主要针对考研数学)

各类未定式求极限处理方法(主要针对考研数学)

各类未定式求极限处理方法(主要针对考研数学)在求极限的过程中,经常会遇到各种各样的未定式形式,如0/0、∞/∞、0*∞、∞-∞等。

对于这些不定式,我们可以通过一些方法进行处理,从而求出极限的值。

在考研数学中,熟练掌握这些处理方法是非常重要的。

下面,我将介绍一些常见的处理方法。

1. 0/0型:当求极限的时候,遇到0/0型的未定式,我们可以考虑使用洛必达法则进行处理。

设f(x)和g(x)都在其中一点a的一些去心邻域内有定义且可导,且满足f(a)=g(a)=0。

如果极限lim(x→a)f'(x)/g'(x)存在,那么极限lim(x→a)f(x)/g(x)也存在,且两者相等。

这就是洛必达法则。

通过多次应用洛必达法则,可以将0/0型的未定式化简为一个更容易求解的形式。

2. ∞/∞型:当求极限的时候,遇到∞/∞型的未定式,我们可以考虑使用洛必达法则的推广形式来处理。

对于同为正无穷或负无穷的函数f(x)和g(x),如果f(x)/g(x)的极限存在,那么有lim(x→∞)f(x)/g(x) = lim(x→∞)f'(x)/g'(x)。

3.0*∞型:当求极限的时候,遇到0*∞型的未定式,我们可以考虑对函数进行变形。

将0*∞型的表达式转化为一个更有利于求解的形式。

例如,可以将其中的一个因子进行分解或者将整个表达式转化为一个以∞为变量的函数来求极限。

4.∞-∞型:当求极限的时候,遇到∞-∞型的未定式,我们需要使用一些特殊的方法进行处理。

一种常用的方法是通过换元来变换函数,将其化简为一个可以应用洛必达法则的形式。

另一种方法是将该极限转化为一个函数极限求解问题。

例如,可以使用多项式乘法公式对∞-∞型的未定式进行展开化简等。

5.1^∞型:当求极限的时候,遇到1^∞型的未定式,我们可以考虑使用对数函数或指数函数来进行处理。

将1^∞型的表达式转化为一个更容易处理的形式。

对于1^∞型的未定式,可以将其化为0^∞型或∞^0型,进而应用对数和指数的性质进行化简。

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。

求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。

1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。

2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。

3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。

4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。

5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。

6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。

7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。

8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。

9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。

10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。

11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。

12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。

13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。

14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。

15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。

16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。

以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023年考研数学:16种求极限的方法
2023年考研数学:16种求极限的方法
首先对极限的总结如下:
极限的保号性很重要就是说在一定区间内函数的正负与极限一致
1极限分为一般极限,还有个数列极限,〔区别在于数列极限时发散的,是一般极限的一种〕
2解决极限的方法如下:〔我能列出来的全部列出来
了你还能有补充么???〕
1等价无穷小的转化,〔只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限仍然存在〕 e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。

全部熟记
〔x趋近无穷的时候复原成无穷小〕
2落笔他法那么〔大题目有时候会有暗示要你使用这个方法〕
首先他的使用有严格的使用前提
必须是X趋近而不是N趋近〔所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件
〔还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!〕
必须是函数的导数要存在〔假设告诉你g〔x〕,没告诉你是否可导,直接用无疑于找死!!〕必须是0比0无穷大比无穷大
当然还要注意分母不能为0
落笔他法那么分为3中情况
1 0比0无穷比无穷时候直接用
2 0乘以无穷无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了
3 0的0次方1的无穷次方无穷的0次方
对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0〕
3泰勒公式〔含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意〕
E的x展开sina展开cos展开ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决方法
取大头原那么最大项除分子分母看上去复杂处理很简单
5无穷小于有界函数的处理方法
面对复杂函数时候,尤其是正余旋的'复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了
6夹逼定理〔主要对付的是数列极限!〕
这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7等比等差数列公式应用〔对付数列极限〕〔q绝对值符号要小于1〕
8各项的拆分相加〔来消掉中间的大多数〕〔对付的还是数列极限〕
可以使用待定系数法来拆分化简函数
9求左右求极限的方式〔对付数列极限〕例如知道Xn与Xn+1的关系,Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限工程极限值不变化
10 2个重要极限的应用。

这两个很重要对第一个而言是X趋近0时候的sinx与x比值。

地2个就假如x 趋近无穷大无穷小都有对有对应的形式
〔地2个实际上是用于函数是1的无穷的形式〕〔当底数是1的时候要特别注意可能是用地2个重要极限〕
11还有个方法,非常方便的方法
就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样

x的x次方快于x!快于指数函数快于幂数函数快于对数函数〔画图也能看出速率的快慢〕
当x趋近无穷的时候他们的比值的极限一眼就能看出来了12换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中
13假设要算的话四那么运算法那么也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,
就是当你面对题目实在是没有方法走投无路的时候可以考虑转化为定积分。

一般是从0到1的形式。

15单调有界的性质
对付递推数列时候使用证明单调性
16直接使用求导数的定义来求极限,
〔一般都是x趋近于0时候,在分子上f〔x加减麽个值〕加减f〔x〕的形式,看见了有特别注意〕
〔当题目中告诉你F〔0〕=0时候f〔0〕导数=0的时候就是暗示你一定要用导数定义〕。

相关文档
最新文档