高数中求极限的16种方法——好东西 )
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高中数学解极限问题的技巧

高中数学解极限问题的技巧在高中数学学习中,极限是一个重要的概念,也是数学分析的基础。
解决极限问题需要一定的技巧和方法,下面我将介绍一些常见的解极限问题的技巧,希望能对高中学生和他们的父母有所帮助。
一、利用代数运算法简化式子在解极限问题中,有时候我们会遇到复杂的式子,难以直接求解。
这时,可以尝试利用代数运算法简化式子,使其更容易处理。
例如,对于形如$\lim_{x \to 0}\frac{\sin x}{x}$的极限问题,我们可以利用泰勒展开公式将$\sin x$展开成$x$的幂级数,然后化简式子,得到$\lim_{x \to 0} \frac{x}{x}=1$。
二、利用等价无穷小替换在解极限问题时,有时候我们可以利用等价无穷小替换来简化计算。
等价无穷小是指当$x$趋于某个特定值时,与之相比的无穷小量。
例如,对于形如$\lim_{x\to 0} \frac{\sin x}{x}$的极限问题,我们可以利用等价无穷小替换$\sin x \approx x$,将原式化简为$\lim_{x \to 0} \frac{x}{x}=1$。
三、利用夹逼定理求解夹逼定理是解极限问题中常用的方法之一。
当我们遇到一个难以直接求解的极限问题时,可以尝试利用夹逼定理来求解。
夹逼定理的核心思想是通过构造两个函数,一个上界函数和一个下界函数,使得这两个函数的极限都等于要求的极限,从而确定极限的值。
例如,对于形如$\lim_{x \to 0} \frac{\sin x}{x}$的极限问题,我们可以利用夹逼定理,构造两个函数$f(x)=x$和$g(x)=\sin x$,显然有$f(x) \leq\frac{\sin x}{x} \leq g(x)$。
当$x$趋于0时,$f(x)$和$g(x)$的极限都等于1,因此根据夹逼定理,$\lim_{x \to 0} \frac{\sin x}{x}=1$。
四、利用洛必达法则求解洛必达法则是解决极限问题中常用的方法之一。
高等数学中函数极限的求法技巧解析

高等数学中函数极限的求法技巧解析
函数极限是高等数学中的重要概念,也是其他数学领域的基础。
在计算函数极限时,有一些常用的技巧和方法,可以帮助我们更快地求解极限问题。
下面是一些常用的函数极限求法技巧。
1. 代入法:当函数极限中存在形如"0/0"或"无穷大/无穷大"的不定型时,可以尝试使用代入法求解。
即将函数中的变量逐渐靠近极限值进行代入,计算出函数在极限点附近的取值,进而得到极限结果。
2. 无穷小代换法:当函数极限中含有无穷大或无穷小的项时,可以使用无穷小代换法进行求解。
即将无穷大或无穷小项替换为相应的无穷小量,对含有无穷大或无穷小的函数进行化简,再进行极限计算。
3. 分子分母除以最高幂次法:当函数极限中含有多项式的幂次较高时,可以尝试使用分子分母除以最高幂次的方法进行化简。
将函数中的每一项均除以该最高幂次,使得函数的分子和分母变为相对较小的多项式,从而更便于求解极限。
4. 辅助函数法:当函数极限较复杂时,可以尝试构造一个辅助函数来辅助求解。
通过适当选择辅助函数,将原函数转化为一个更简单的形式,再求解极限。
5. 夹逼定理:夹逼定理是函数极限求解的重要工具,适用于求解某些特殊的函数极限。
当函数的上下界均存在且极限相等时,可以通过夹逼定理求出函数的极限。
6. 泰勒级数展开法:当函数极限中含有三角函数、指数函数等特殊函数时,可以尝试使用泰勒级数展开法进行求解。
通过将特殊函数展开为无穷级数的形式,可以将原函数转化为一个容易求解的形式,再进行极限计算。
16种求极限的方法及一般题型解题思路分享

千里之行,始于足下。
16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。
在求极限的过程中,有很多种不同的方法可以使用。
本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。
1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。
这种方法适用于对于给定的变量值函数值可以直接计算的状况。
2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。
3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。
4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。
5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。
6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。
7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。
第1页/共3页锲而不舍,金石可镂。
8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。
9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。
这个法则对于解决0/0和∞/∞型的极限问题格外有用。
10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。
11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。
12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。
13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。
14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。
16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
高数中求极限的16种方法

千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
大一高数求极限的方法总结

大一高数求极限的方法总结极限是高数学中一个重要的概念。
学习高数,理解和计算极限是大学生必须掌握的能力之一。
极限不仅可以用于理论推导,而且还可以帮助学生更好地应用极限,来解决实际数学问题。
极限有两种计算方法:一种是柱状法,一种是流程。
柱状法指的是使用微积分的方法来解决问题;而流程指的是通过分析函数的特征,从而求取极限的方法。
第一,柱状法。
柱状法是基于极限定义的,在求取极限的时候,可以利用定义,来确定极限的值。
例如求函数$y=frac{2x^{2}+5x+1}{(x-1)}$的极限,首先我们需要将函数分成上下两部分:$y_1=2x^{2}+5x+1$,$y_2=x-1$,分别给出它们的极限:$lim_{x to 1^{+}}y_1=6$,$lim_{x to 1^{-}}y_2=2$,然后将它们带入极限定义:$lim_{x to 1}y=lim_{x to1}frac{y_1}{y_2}=frac{lim_{x to 1^{+}}y_1}{lim_{x to1^{-}}y_2}=frac{6}{2}=3$,即得出极限值为$3$。
第二,流程。
流程是使用分析函数特征来求取极限的方法,常用于求一元函数(如指数函数、对数函数等)的极限。
例如求函数$y={frac{sqrt{x+2}-2}{x-3}}$的极限,在求这个函数的极限之前,我们可以先分析函数的特征,此函数在$x=3$处发生拐点,因此可以推测函数在$x=3$处的极限值应该为无穷大。
然后,我们可以使用流程法,将函数中的分子除以分母,将形式变成$frac{k_1}{0}$的形式,从而得到极限值无穷大。
最后,我们总结柱状法和流程法的不同之处。
在求取极限的时候,柱状法是依据定义求取极限的,而流程法则是利用函数的特征来求解极限。
因此,建议大家在学习高数的时候,还是要了解柱状法和流程法,将两种方法结合起来,更好地求取极限,并能够更好地应用到实际数学问题中去。
以上就是有关极限的求解方法总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假如高等数学是棵树木得话,那么极限就是他的根,??函数就是他的皮。
树没有跟,活不下去,没有皮,只能枯萎,??可见这一章的重要性。
为什么第一章如此重要?? ?各个章节本质上都是极限,??是以函数的形式表现出来的,所以也具有函数的性质。
函数的性质表现在各个方面
首先??对??极限的总结??如下
极限的保号性很重要? ?就是说在一定区间内??函数的正负与极限一致
1??极限分为? ?一般极限? ?,??还有个数列极限,??(区别在于数列极限时发散的,是一般极限的一种)
2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)
1 等价无穷小的转化,? ?(只能在乘除时候使用,但是不是说一定在加减时候不能用??但是前提是必须证明拆分后极限依然存在) e的X次方-1? ?或者(1+x)的a次方-1等价于Ax??等等。
??全部熟记
(x趋近无穷的时候还原成无穷小)
2??LHopital?法则? ?(大题目有时候会有暗示??要你使用这个方法)
??首先他的使用有严格的使用前提!!!!!!
? ?必须是??X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,??当然n趋近是x趋近的一种情况而已,是必要条件??
(还有一点??数列极限的n当然是趋近于正无穷的??不可能是负无穷!)
? ?必须是函数的导数要存在!!!!!!!!(假如告诉你g(x),??没告诉你是否可导,直接用无疑于找死!!)
??必须是??0比0??无穷大比无穷大!!!!!!!!!
? ?当然还要注意分母不能为0??
??LHopital? 法则分为3中情况
1 0比0? ?无穷比无穷??时候??直接用
2? ?0乘以无穷? ?无穷减去无穷? ?(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后? ?这样就能变成1中的形式了
3??0的0次方? ? 1的无穷次方无穷的0次方? ?
??对于(指数幂数)方程方法主要是取指数还取对数的方法,??这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(??这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0??当他的幂移下来趋近于无穷的时候??LNX趋近于0)
3泰勒公式? ? (含有e的x次方的时候??,尤其是含有正余旋??的加减的时候要特变注意??!!!!)
E的x展开? ?sina??展开? ?cos??展开? ?ln1+x展开
对题目简化有很好帮助
4面对无穷大比上无穷大形式的解决办法
??取大头原则? ? 最大项除分子分母!!!!!!!!!!!
??看上去复杂处理很简单!!!!!!!!!!
5无穷小于有界函数的处理办法
面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!
6夹逼定理(主要对付的是数列极限!)
这个主要是看见极限中的函数是方程相除的形式??,放缩和扩大。
7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)
8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)
可以使用待定系数法来拆分化简函数
9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,??xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化
10 2 个重要极限的应用。
??这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x 比值? ?。
??地2个就如果x趋近无穷大无穷小都有对有对应的形式
(地2个实际上是用于??函数是1的无穷的形式??)(当底数是1 的时候要特别注意可能是用地2 个重要极限)
11 还有个方法??,非常方便的方法
??就是当趋近于无穷大时候
不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!
x的x次方快于??x!? ?快于??指数函数? ?快于? ?幂数函数? ?快于? ?? ???对数函数(画图也能看出速率的快慢)??!!!!!!
当x趋近无穷的时候??他们的比值的极限一眼就能看出来了
12 换元法??是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中??
13假如要算的话??四则运算法则也算一种方法,当然也是夹杂其中的
14还有对付数列极限的一种方法,
??就是当你面对题目实在是没有办法??走投无路的时候可以考虑转化为定积分。
一般是从0到1的形式。
15单调有界的性质
??对付递推数列时候使用??证明单调性!!!!!!
16直接使用求导数的定义来求极限,
??(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,? ? 看见了有特别注意)
??(当题目中告诉你F(0)=0时候??f(0)导数=0的时候? ???就是暗示你一定要用导数定
义!!!!)。