2021中考数学专题复习:压轴题动态几何问题专项训练题1(附答案详解)

合集下载

44 动态几何之定值(恒等)问题(压轴题)-决胜中考数学压轴题全揭秘精品

44 动态几何之定值(恒等)问题(压轴题)-决胜中考数学压轴题全揭秘精品

本资源的初衷,是希望通过网络分享,能够为广阔读者提供更好的效劳,为您水平的提高提供坚强的动力和保证 .内容由一线名师原创,立意新,图片精,是非常强的一手资料 .一、选择题二、填空题三、解答题1. (2021年福建漳州12分)阅读材料:如图1 ,在△AOB中,∠O =90° ,OA =OB ,点P在AB边上,PE⊥OA 于点E ,PF⊥OB于点F ,那么PE +PF =OA.(此结论不必证明,可直接应用)(1 )【理解与应用】如图2 ,正方形ABCD的边长为2 ,对角线AC ,BD相交于点O ,点P在AB边上,PE⊥OA于点E ,PF⊥OB于点F ,那么PE +PF的值为▲ .(2 )【类比与推理】如图3 ,矩形ABCD的对角线AC ,BD相交于点O ,AB =4 ,AD =3 ,点P在AB边上,PE∥OB交AC于点E ,PF∥OA交BD于点F ,求PE +PF的值;(3 )【拓展与延伸】如图4 ,⊙O 的半径为4 ,A ,B ,C ,D 是⊙O 上的四点 ,过点C ,D 的切线CH ,DG 相交于点M ,点P 在弦AB 上 ,PE ∥BC 交AC 于点E ,PF ∥AD 于点F ,当∠ADG =∠BCH =30°时 ,PE +PF 是否为定值 ?假设是 ,请求出这个定值;假设不是 ,请说明理由.2. (2021年广西柳州12分 )二次函数图象的顶点坐标为 (0 ,1 ) ,且过点 (﹣1 ,54 ) ,直线y =kx +2与y 轴相交于点P ,与二次函数图象交于不同的两点A (x 1 ,y 1 ) ,B (x 2 ,y 2 ).(2 )对 (1 )中的二次函数 ,当自变量x 取值范围在﹣1<x <3时 ,请写出其函数值y 的取值范围; (不必说明理由 )(3 )求证:在此二次函数图象下方的y 轴上 ,必存在定点G ,使△ABG 的内切圆的圆心落在y 轴上 ,并求△GAB 面积的最|小值.(注:在解题过程中 ,你也可以阅读后面的材料 )附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数 ,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax 2 +bx +c =0的两根为x 1 ,x 2 ,那么:1212bc x x x x a a+=⋅=, 能灵活运用这种关系 ,有时可以使解题更为简单.例:不解方程 ,求方程x 2﹣3x =15两根的和与积.解:原方程变为:x 2﹣3x ﹣15 =0∵一元二次方程的根与系数有关系:1212b c x x x x a a+=⋅=, ∴原方程两根之和 =331--= ,两根之积 =15151-=-.3. (2021年广西玉林、防城港12分 )给定直线l :y =kx ,抛物线C :y =ax 2 +bx +1.(1 )当b =1时 ,l 与C 相交于A ,B 两点 ,其中A 为C 的顶点 ,B 与A 关于原点对称 ,求a 的值;(2 )假设把直线l 向上平移k 2 +1个单位长度得到直线r ,那么无论非零实数k 取何值 ,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②假设P 是此抛物线上任一点 ,过P 作PQ ∥y 轴且与直线y =2交于Q 点 ,O 为原点.求证:OP =PQ .4. (2021年湖北鄂州12分 )如图 ,在平面直角坐标系xOy 中 ,一次函数5y x m 4=+的图象与x 轴交于A (﹣1 ,0 ) ,与y 轴交于点C .以直线x =2为对称轴的抛物线C 1:y =ax 2 +bx +c (a≠0 )经过A 、C 两点 ,并与x 轴正半轴交于点B .(1 )求m 的值及抛物线C 1:y =ax 2 +bx +c (a≠0 )的函数表达式.(2 )设点D (0 ,2512) ,假设F 是抛物线C 1:y =ax 2 +bx +c (a≠0 )对称轴上使得△ADF 的周长取得最|小值的点 ,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1 (x 1 ,y 1 ) ,M 2 (x 2 ,y 2 )两点 ,试探究1211M F M F+是否为定值 ?请说明理由. (3 )将抛物线C 1作适当平移 ,得到抛物线C 2:()221y x h 4=-- ,h >1.假设当1<x≤m 时 ,y 2≥﹣x 恒成立 ,求m 的最|大值.5. (2021年湖北咸宁12分 )如图 ,正方形OABC 的边OA ,OC 在坐标轴上 ,点B 的坐标为 (﹣4 ,4 ).点P 从点A 出发 ,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发 ,以相同的速度沿x 轴的正方向运动 ,规定点P 到达点O 时 ,点Q 也停止运动.连接BP ,过P 点作BP 的垂线 ,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1 )∠PBD 的度数为 ▲ ,点D 的坐标为 ▲ (用t 表示 );(2 )当t 为何值时 ,△PBE 为等腰三角形 ?(3 )探索△POE 周长是否随时间t 的变化而变化 ?假设变化 ,说明理由;假设不变 ,试求这个定值.6. (2021年湖北武汉12分 )如图 ,直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点 , (1 )直线AB 总经过一个定点C ,请直接写出点C 坐标;(2 )当1k 2=-时 ,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3 )假设在抛物线上存在定点D 使∠ADB =90° ,求点D 到直线AB 的最|大距离.7. (2021年湖北黄石10分 )如图 ,在矩形ABCD 中 ,把点D 沿AE 对折 ,使点D 落在OC 上的F 点 ,AO =8.AD =10.(1 )求F 点的坐标;(2 )如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点 ,我们把这条直线称为抛物线的切线 ,抛物线经过点O ,F ,且直线y =6x ﹣36是该抛物线的切线 ,求抛物线的解析式;(3 )直线()35y k x 34=--与 (2 )中的抛物线交于P 、Q 两点 ,点B 的坐标为 (3 ,354- ) ,求证:11PB QB +为定值. (参考公式:在平面直角坐标系中 ,假设M (x 1 ,y 1 ) ,N (x 2 ,y 2 ) ,那么M ,N 两点间的距离为|MN| =()()222121x x y y -+- ).8. (2021年湖南岳阳10分 )数学活动﹣求重叠局部的面积(1 )问题情境:如图① ,将顶角为120°的等腰三角形纸片 (纸片足够大 )的顶点P 与等边△ABC 的内心O 重合 ,OA =2 ,那么图中重叠局部△PAB 的面积为 ▲ .(2 )探究1:在 (1 )的条件下 ,将纸片绕P 点旋转至|如图②所示位置 ,纸片两边分别与AC ,AB 交于点E ,F ,图②中重叠局部的面积与图①重叠局部的面积是否相等 ?如果相等 ,请给予证明;如果不相等 ,请说明理由.(3 )探究2:如图③ ,假设∠CAB =α (0°<α<90° ) ,AD 为∠CAB 的角平分线 ,点P 在射线AD 上 ,且AP =2 ,以P 为顶点的等腰三角形纸片 (纸片足够大 )与∠CAB 的两边AC ,AB 分别交于点E 、F ,∠EPF =180°﹣α ,求重叠局部的面积. (用α或2α的三角函数值表示 )9. (2021年湖南张家界12分 )如图 ,在平面直角坐标系中 ,O 为坐标原点 ,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点 ,B 、C 坐标分别为 (10 ,0 )和 (185 ,245- ) ,以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1 )求直线BC 的解析;(2 )求抛物线解析式及顶点坐标;(3 )点M 是⊙A 上一动点 (不同于O ,B ) ,过点M 作⊙A 的切线 ,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜测m n ⋅的值 ,并证明你的结论;(4 )点P 从O 出发 ,以每秒1个单位速度向点B 作直线运动 ,点Q 同时从B 出发 ,以相同速度向点C 作直线运动 ,经过t(0<t )秒时恰好使△BPQ 为等腰三角形 ,请求出满足条件的t 值.10. (2021年江苏连云港14分 )某数学兴趣小组对线段上的动点问题进行探究 ,AB =8.问题思考:如图1 ,点P 为线段AB 上的一个动点 ,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE.(1 )在点P 运动时 ,这两个正方形面积之和是定值吗 ?如果时求出;假设不是 ,求出这两个正方形面积之和的最|小值.(2 )分别连接AD 、DF 、AF ,AF 交DP 于点A ,当点P 运动时 ,在△APK 、△ADK 、△DFK 中 ,是否存在两个面积始终相等的三角形 ?请说明理由.问题拓展:(3 )如图2 ,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动 ,且PQ =8.假设点P 从点A 出发 ,沿A→B→C→D 的线路 ,向D 点运动 ,求点P 从A 到D 的运动过程中 ,PQ 的中点O 所经过的路径的长.(4 )如图 (3 ) ,在 "问题思考〞中 ,假设点M 、N 是线段AB 上的两点 ,且AM =BM =1 ,点G 、H 分别是边CD 、EF 的中点.请直接写出点P 从M 到N 的运动过程中 ,GH 的中点O 所经过的路径的长及OM +OB 的最|小值.11. (2021年江苏苏州10分 )如图 ,二次函数22y a x 2()mx 3m =-- (其中a ,m 是常数 ,且a>0 ,m>0 )的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧 ) ,与y 轴交于点C(0 ,-3) ,点D 在二次函数的图象上 ,CD ∥AB ,连接AD .过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1 )用含m 的代数式表示a ;(2 ))求证:AD AE为定值; (3 )设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接CF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形 ?如果存在 ,只要找出一个满足要求的点G 即可 ,并用含m 的代数式表示该点的横坐标;如果不存在 ,请说明理由.12. (2021年江苏宿迁附加10分)如图,抛物线y =ax2 +bx +c (a>0 ,c<0 )交x轴于点A ,B ,交y轴于点C ,设过点A ,B ,C三点的圆与y轴的另一个交点为D.(1 )如图1 ,点A ,B ,C的坐标分别为(﹣2 ,0 ) , (8 ,0 ) , (0 ,﹣4 );①求此抛物线的表达式与点D的坐标;②假设点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最|大值;(2 )如图2 ,假设a =1 ,求证:无论b ,c取何值,点D均为定点,求出该定点坐标.13. (2021年江苏扬州12分)矩形ABCD的一条边AD =8 ,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1 )如图1 ,折痕与边BC交于点O ,连接AP ,OP ,OA.①求证:△OCP∽△PDA;②假设△OCP与△PDA的面积比为1:4 ,求边AB的长;(2 )假设图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3 )如图2 ,在(1 )条件下,擦去折痕AO、线段OP ,连结BP. 动点M在线段AP上(点M与点P、A不重合) ,动点N在线段AB的延长线上,且BN =PM ,连结MN交PB于点F ,作ME⊥BP于点E. 试问当点M ,N在移动过程中,线段EF的长度是否发生变化?假设变化,说明理由;假设不变,求线段EF的长度.14. (2021年山东烟台10分)在正方形ABCD中,动点E ,F分别从D ,C两点同时出发,以相同的速度在直线DC ,CB上移动.(1 )如图①,当点E自D向C ,点F自C向B移动时,连接AE和DF交于点P ,请你写出AE与DF的位置关系,并说明理由;(2 )如图②,当E ,F分别移动到边DC ,CB的延长线上时,连接AE和DF , (1 )中的结论还成立吗? (请你直接答复"是〞或"否〞,不需证明)(3 )如图③,当E ,F分别在边CD ,BC的延长线上移动时,连接AE ,DF , (1 )中的结论还成立吗?请说明理由;(4 )如图④,当E ,F分别在边DC ,CB上移动时,连接AE和DF交于点P ,由于点E ,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.假设AD =2 ,试求出线段CP的最|小值.15. (2021年四川攀枝花12分)如图,以点P (﹣1 ,0 )为圆心的圆,交x轴于B、C两点(B在C的左侧) ,交y轴于A、D两点(A在D的下方) ,AD =23,将△ABC绕点P旋转180° ,得到△MCB.(1 )求B、C两点的坐标;(2 )请在图中画出线段MB、MC ,并判断四边形ACMB的形状(不必证明) ,求出点M的坐标;(3 )动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E ,点Q为BE的中点,过点E作EG⊥BC于G ,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?假设不变,求出∠MQG的度数;假设变化,请说明理由.16. (2021年湖南长沙10分 )如图 ,在平面坐标系中 ,直线y =﹣x +2与x 轴 ,y 轴分别交于点A ,点B ,动点P (a ,b )在第|一象限内 ,由点P 向x 轴 ,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时 ,矩形PMON 的面积为定值2.(1 )求∠OAB 的度数;(2 )求证:△AOF ∽△BEO ;(3 )当点E ,F 都在线段AB 上时 ,由三条线段AE ,EF ,BF 组成一个三角形 ,记此三角形的外接圆面积为S 1 ,△OEF 的面积为S 2.试探究:S 1 +S 2是否存在最|小值 ?假设存在 ,请求出该最|小值;假设不存在 ,请说明理由.17. (2021年湖北孝感12分 )如图1 ,正方形ABCD 的边长为1 ,点E 在边BC 上 ,假设∠AEF =900 ,且EF 交正方形外角的平分线CF 于点F .(1 )图1中假设点E 是边BC 的中点 ,我们可以构造两个三角形全等来证明AE =EF ,请表达你的一个构造方案 ,并指出是哪两个三角形全等 (不要求证明 );(2 )如图2 ,假设点E 在线段BC 上滑动 (不与点B ,C 重合 ).①AE =EF 是否总成立 ?请给出证明;②在如图2的直角坐标系中 ,当点E 滑动到某处时 ,点F 恰好落在抛物线2y x x 1=-++上 ,求此时点F 的坐标.18. (2021年浙江杭州12分 )如图 ,正方形ABCD 的边长为4 ,对称中|心为点P ,点F 为BC 边上一个动点 ,点E 在AB 边上 ,且满足条件∠EPF =45° ,图中两块阴影局部图形关于直线AC 成轴对称 ,设它们的面积和为S 1.(1 )求证:∠APE =∠CFP ;(2 )设四边形CMPF 的面积为S 2 ,CF =x ,12S y S =. ①求y 关于x 的函数解析式和自变量x 的取值范围 ,并求出y 的最|大值;②当图中两块阴影局部图形关于点P 成中|心对称时 ,求y 的值.19. (2021年浙江宁波14分 )如图 ,在平面直角坐标系中 ,O 为坐标原点 ,点A 的坐标为 (0 ,4 ) ,点B 的坐标为 (4 ,0 ) ,点C 的坐标为 (﹣4 ,0 ) ,点P 在射线AB 上运动 ,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF .(1 )求直线AB 的函数解析式;①求证:∠BDE =∠ADP ;②设DE =x ,DF =y .请求出y 关于x 的函数解析式;(3 )请你探究:点P 在运动过程中 ,是否存在以B ,D ,F 为顶点的直角三角形 ,满足两条直角边之比为2:1 ?如果存在 ,求出此时点P 的坐标:如果不存在 ,请说明理由.20. (2021年山东日照14分 ) ,如图(a) ,抛物线2y ax bx c =++经过点A(x 1 ,0) ,B(x 2 ,0) ,C(0 ,-2) ,其顶点为D.以AB 为直径的⊙M 交y 轴于点E 、F ,过点E 作⊙M 的切线交x 轴于点N .∠ONE =30° ,12x x 8-= . (1 )求抛物线的解析式及顶点D 的坐标;(2 )连结AD 、BD,在 (1 )中的抛物线上是否存在一点P ,使得△ABP 与△ADB 相似 ?假设存在 ,求出P 点的坐标;假设不存在 ,说明理由;(3 )如图(b ),点Q为EBF上的动点(Q不与E、F重合) ,连结AQ交y轴于点H ,问:AH·AQ是否为定值?假设是,请求出这个定值;假设不是,请说明理由.21. (2021年内蒙古包头12分)如图,在正方形ABCD中,对角线AC与BD相交于点O ,点E是BC上的一个动点,连接DE ,交AC于点F.(1 )如图①,当CE1EB3=时,求CEFCDFSS∆∆的值;(2 )如图②当DE平分∠CDB时,求证:AF =2OA;(3 )如图③,当点E是BC的中点时,过点F作FG⊥BC于点G ,求证:CG =12 BG.22. (2021年广东珠海9分)如图,在Rt△ABC中,∠C =90° ,点P为AC边上的一点,将线段AP绕点A顺时针方向旋转(点P对应点P′ ) ,当AP旋转至|AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作P′E⊥AC 于点E.(1 )求证:∠CBP =∠ABP;(3 )当CP3PE2=,BP′ =55时,求线段AB的长.23. (2021福建泉州14分)如图1 ,在平面直角坐标系中,正方形OABC的顶点A (﹣6 ,0 ) ,过点E (﹣2 ,0 )作EF∥AB ,交BO于F;(2 )过点F作直线l分别与直线AO、直线BC交于点H、G;①根据上述语句,在图1上画出图形,并证明OH EO BG AE=;②过点G作直线GD∥AB ,交x轴于点D ,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点) ,使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证明:OP1BG2=,并通过操作、观察,直接写出BG长度的取值范围(不必说理);(3 )在(2 )中,假设点M (2 ,3) ,探索2PO +PM的最|小值.24. ( 2021年广西崇左12分)抛物线y =﹣x2平移后的位置如下图,点A ,B坐标分别为(﹣1 ,0 )、(3 ,0 ) ,设平移后的抛物线与y轴交于点C ,其顶点为D.(1 )求平移后的抛物线的解析式和点D的坐标;(2 )∠ACB和∠ABD是否相等?请证明你的结论;(3 )点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.25. (2021年湖北随州13分 )在平面直角坐标系xOy 中 ,矩形ABCO 的顶点A 、C 分别在y 轴、x 轴正半轴上 ,点P 在AB 上 ,PA =1 ,AO =2.经过原点的抛物线2y mx x n =-+的对称轴是直线x =2.(1 )求出该抛物线的解析式.(2 )如图1 ,将一块两直角边足够长的三角板的直角顶点放在P 点处 ,两直角边恰好分别经过点O 和C .现在利用图2进行如下探究:①将三角板从图1中的位置开始 ,绕点P 顺时针旋转 ,两直角边分别交OA 、OC 于点E 、F ,当点E 和点A 重合时停止旋转.请你观察、猜测 ,在这个过程中 ,PE PF 的值是否发生变化 ?假设发生变化 ,说明理由;假设不发生变化 ,求出PE PF的值. ②设 (1 )中的抛物线与x 轴的另一个交点为D ,顶点为M ,在①的旋转过程中 ,是否存在点F ,使△DMF 为等腰三角形 ?假设不存在 ,请说明理由.26. (2021年山东临沂11分 )如图 ,矩形ABCD 中 ,∠ACB =30° ,将一块直角三角板的直角顶点P 放在两对角线AC ,BD 的交点处 ,以点P 为旋转中|心转动三角板 ,并保证三角板的两直角边分别于边AB ,BC 所在的直线相交 ,交点分别为E ,F .(1 )当PE ⊥AB ,PF ⊥BC 时 ,如图1 ,那么PE PF的值为 ▲ ; (2 )现将三角板绕点P 逆时针旋转α (0°<α<60° )角 ,如图2 ,求PE PF 的值;(3 )在(2 )的根底上继续旋转,当60°<α<90° ,且使AP:PC =1:2时,如图3 ,PEPF的值是否变化?证明你的结论.27. (2021年山东威海11分)操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF 的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30° ,点C落在BF上,AC与BD交于点O ,连接CD ,如图②.(1 )求证:△CDO是等腰三角形;(2 )假设DF =8 ,求AD的长.28. (2021年江苏南通13分)如图,在R t△ABC中,∠ACB =900 ,AC =3 ,BC =3 ,△DEF是边长为a (a 为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,D E∥AB ,设△DEF与△ABC 重叠局部的周长为T .(1 )求证:点E到AC的距离为一常数;(2 )假设AD =14,当a =2时,求T的值;(3 )假设点D运动到AC的中点处,请用含a的代数式表示T .29. (2021年江苏盐城12分)阅读材料:如图①,△ABC与△DEF都是等腰直角三角形,∠ACB =∠EDF =900 ,且点D 在AB边上,AB、EF的中点均为O,连结BF、CD、CO ,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD ,那么BF =CD .解决问题:(1 )将图①中的Rt△DEF绕点O旋转得到图② ,猜测此时线段BF与CD的数量关系,并证明你的结论;(2 )如图③ ,假设△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1 )中结论仍然成立吗?如果成立,请说明理由;如果不成立,请求出BF与CD之间的数量关系;(3 )如图④ ,假设△ABC与△DEF都是等腰三角形,AB、EF的中点均为O,且顶角∠ACB =∠EDF =α ,请直接写出BFCD的值(用含α的式子表示出来) .30. (2021年河南省10分)如图1 ,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C =900 ,∠B =∠E =300.(1 )操作发现如图2 ,固定△ABC ,使△DEC绕点C旋转 .当点D恰好落在BC边上时,填空:①线段DE与AC的位置关系是▲ ;②设△BDC的面积为S1 ,△AEC的面积为S2 .那么S1与S2的数量关系是▲ .(2 )猜测论证当△DEC绕点C旋转到图3所示的位置时,小明猜测(1 )中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC ,CE边上的高,请你证明小明的猜测.(3 )拓展探究∠ABC =600 ,点D是其角平分线上一点,BD =CD =4 ,OE∥AB交BC于点E (如图4 ) ,假设在射线BA上存在点F ,使S△DCF=S△BDC,请直接写出....相应的BF的长31. (2021年辽宁本溪12分)在△ABC中,∠ACB =90° ,∠A<45° ,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C ,另一边OD与AC交于点M.(1 )如图1 ,当∠A =30°时,求证:MC2 =AM2 +BC2;(2 )如图2 ,当∠A≠30°时, (1 )中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3 )将三角形ODE绕点O旋转,假设直线OD与直线AC相交于点M ,直线OE与直线BC相交于点N ,连接MN ,那么MN2 =AM2 +BN2成立吗?答:▲ (填"成立〞或"不成立〞)32. (2021年广西南宁10分)如图,抛物线y =ax2 +c (a≠0 )经过C (2 ,0 ) ,D (0 ,﹣1 )两点,并与直线y =kx交于A、B两点,直线l过点E (0 ,﹣2 )且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1 )求此抛物线的解析式;(2 )求证:AO =AM;(3 )探究:①当k =0时,直线y =kx与x轴重合,求出此时11AN BN+的值;②试说明无论k取何值,11AN BN+的值都等于同一个常数.33. (2021上海市14分)如图,在半径为2的扇形AOB中,∠AOB =90° ,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC ,OE⊥AC ,垂足分别为D、E.(1 )当BC =1时,求线段OD的长;(2 )在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3 )设BD =x ,△DOE的面积为y ,求y关于x的函数关系式,并写出它的定义域.34. (2021海南省13分)如图,顶点为P (4 ,-4 )的二次函数图象经过原点(0 ,0 ) ,点A在该图象上,OA交其对称轴l于点M ,点M、N关于点P对称,连接AN、ON(1 )求该二次函数的关系式.(2 )假设点A的坐标是(6 ,-3 ) ,求△ANO的面积.(3 )当点A在对称轴l右侧的二次函数图象上运动,请解答以下问题:①证明:∠ANM =∠ONM②△ANO 能否为直角三角形 ?如果能 ,请求出所有符合条件的点A 的坐标 ,如果不能 ,请说明理由.35. (2021浙江义乌12分 )如图1 ,直线y =kx 与抛物线2422y=x +x 273交于点A (3 ,6 ). (1 )求直线y =kx 的解析式和线段OA 的长度;(2 )点P 为抛物线第|一象限内的动点 ,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合 ) ,交直线OA 于点Q ,再过点Q 作直线PM 的垂线 ,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值 ?如果是 ,求出这个定值;如果不是 ,说明理由;(3 )如图2 ,假设点B 为抛物线上对称轴右侧的点 ,点E 在线段OA 上 (与点O 、A 不重合 ) ,点D (m ,0 )是x 轴正半轴上的动点 ,且满足∠BAE =∠BED =∠AOD .继续探究:m 在什么范围时 ,符合条件的E 点的个数分别是1个、2个 ?36. (2021江苏常州10分 )在平面直角坐标系xOy 中 ,动点P 在正比例函数y =x 的图象上 ,点P 的横坐标为m (m >0 ) .以点P 为圆心 5m 为半径的圆交x 轴于A 、B 两点 (点A 在点B 的左侧 ) ,交y 轴于C 、D 两点 (D 点在点C 的上方 ) .点E 为平行四边形DOPE 的顶点 (如图 ) .(1 )写出点B 、E 的坐标 (用含m 的代数式表示 );(2 )连接DB 、BE ,设△BDE 的外接圆交y 轴于点Q (点Q 异于点D ) ,连接EQ 、BQ .试问线段BQ 与线段EQ 的长是否相等 ?为什么 ?(3 )连接BC ,求∠DBC-∠DBE的度数.37. (2021江苏苏州9分)如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合.在移动过程中,边AD始终与边FG重合,连接CG ,过点A作CG的平行线交线段GH于点P ,连接PD.正方形ABCD的边长为1cm ,矩形EFGH的边FG、GH的长分别为4cm、3cm.设正方形移动时间为x (s ) ,线段GP的长为y (cm ) ,其中.⑴试求出y关于x的函数关系式,并求出y =3时相应x的值;⑵记△DGP的面积为S1 ,△CDG的面积为S2.试说明S1-S2是常数;⑶当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.38. (2021江苏宿迁12分)(1)如图1 ,在△ABC中,BA =BC ,D ,E是AC边上的两点,且满足∠DBE=12∠ABC(0°<∠CBE<12∠ABC) .以点B为旋转中|心,将△BEC按逆时针方向旋转∠ABC ,得到△BE ,A(点C与点A重合,点E到点E ,处) ,连接DE , .求证:DE , =DE.(2 )如图2 ,在△ABC中,BA =BC ,∠ABC =90° ,D ,E是AC边上的两点,且满足∠DBE =12∠ABC(0°<∠CBE<45°).求证:DE2 =AD2 +EC2.39. (2021福建泉州12分):A、B、C不在同一直线上.(1 )假设点A、B、C均在半径为R的⊙O上,i )如图一,当∠A =45°时,R =1 ,求∠BOC的度数和BC的长度;ii )如图二,当∠A为锐角时,求证sin∠A = BC2R;(2 ).假设定长线段....BC的两个端点分别在∠MAN的两边AM、AN (B、C均与点A不重合)滑动,如图三,当∠MAN =60° ,BC =2时,分别作BP⊥AM ,CP⊥AN ,交点为点P ,试探索:在整个滑动过程中,P、A两点的距离是否保持不变?请说明理由.40. (2021湖南益阳12分):如图1 ,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G ,且BE =1.(1 )求证:△ABE≌△BCF;(2 )求出△ABE和△BCF重叠局部(即△BEG )的面积;(3 )现将△ABE绕点A逆时针方向旋转到△AB′E′ (如图2 ) ,使点E落在CD边上的点E′处,问△ABE在旋转前后与△BCF重叠局部的面积是否发生了变化?请说明理由.41. (2021湖南岳阳8分) (1 )操作发现:如图① ,D是等边△ABC边BA上一动点(点D与点B不重合) ,连接DC ,以DC为边在BC上方作等边△DCF ,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明你发现的结论.(2 )类比猜测:如图② ,当动点D运动至|等边△ABC边BA的延长线上时,其他作法与(1 )相同,猜测AF 与BD在(1 )中的结论是否仍然成立?(3 )深入探究:Ⅰ.如图③ ,当动点D在等边△ABC边BA上运动时(点D与点B不重合)连接DC ,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′ ,连接AF、BF′ ,探究AF、BF′与AB有何数量关系?并证明你探究的结论.Ⅱ.如图④ ,当动点D在等边△边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?假设不成立,是否有新的结论?并证明你得出的结论.42. (2021湖南衡阳10分)如下图,抛物线的顶点为坐标原点O ,矩形ABCD的顶点A ,D在抛物线上,且AD平行x轴,交y轴于点F ,AB的中点E在x轴上,B点的坐标为(2 ,1 ) ,点P (a ,b )在抛物线上运动.(点P异于点O )(1 )求此抛物线的解析式.(2 )过点P作CB所在直线的垂线,垂足为点R ,①求证:PF =PR;②是否存在点P ,使得△PFR为等边三角形?假设存在,求出点P的坐标;假设不存在,请说明理由;③延长PF交抛物线于另一点Q ,过Q作BC所在直线的垂线,垂足为S ,试判断△RSF的形状.43. (2021湖南株洲8分)如图,在△ABC中,∠C =90° ,BC =5米,AC =12米.M点在线段CA上,从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1 )当t为何值时,∠AMN =∠ANM ?(2 )当t 为何值时 ,△AMN 的面积最|大 ?并求出这个最|大值.44. (2021四川成都12分 ) 如图 ,在平面直角坐标系xOy 中 ,一次函数5y=x+m 4 (m 为常数)的图象与x 轴交于点A(3- ,0) ,与y 轴交于点C .以直线x =1为对称轴的抛物线2y=ax +bx+c (a ,b ,c 为常数 ,且a≠0)经过A ,C 两点 ,并与x 轴的正半轴交于点B .(1 )求m 的值及抛物线的函数表达式;(2 )设E 是y 轴右侧抛物线上一点 ,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形 ?假设存在 ,求出点E 的坐标及相应的平行四边形的面积;假设不存在 ,请说明理由;(3 )假设P 是抛物线对称轴上使△ACP 的周长取得最|小值的点 ,过点P 任意作一条与y 轴不平行的直线交抛物线于()()111222M x y M x y ,,,两点 ,试探究1212M P M P M M ⋅是否为定值 ,并写出探究过程.45. (2021四川自贡12分 )如下图 ,在菱形ABCD 中 ,AB =4 ,∠BAD =120° ,△AEF 为正三角形 ,点E 、F 分别在菱形的边BC .CD 上滑动 ,且E 、F 不与B .C .D 重合.(1 )证明不管E 、F 在BC .CD 上如何滑动 ,总有BE =CF ;(2 )当点E 、F 在BC .CD 上滑动时 ,分别探讨四边形AECF 和△CEF 的面积是否发生变化 ?如果不变 ,求出这个定值;如果变化 ,求出最|大 (或最|小 )值.46. (2021辽宁本溪12分 ) ,在△ABC 中 ,AB =AC .过A 点的直线a 从与边AC 重合的位置开始绕点A 按顺时针方向旋转角θ ,直线a 交BC 边于点P (点P 不与点B 、点C 重合 ) ,△BMN 的边MN 始终在直线a 上 (点M 在点N 的上方 ) ,且BM =BN ,连接CN .(1 )当∠BAC =∠MBN =90°时 ,①如图a ,当θ =45°时 ,∠ANC 的度数为_______;(2 )如图c ,当∠BAC =∠MBN≠90°时 ,请直接写出∠ANC 与∠BAC 之间的数量关系 ,不必证明 .47. (2021辽宁沈阳14分 ) ,如图 ,在平面直角坐标系中 ,点A 坐标为(-2 ,0) ,点B 坐标为 (0 ,2 ) ,点E 为线段AB 上的动点(点E 不与点A ,B 重合) ,以E 为顶点作∠OET =45° ,射线ET 交线段OB 于点F ,C 为y 轴正半轴上一点 ,且OC =AB ,抛物线y =2-x 2 +mx +n 的图象经过A ,C 两点.(1 ) 求此抛物线的函数表达式;(2 ) 求证:∠BEF =∠AOE ;(3 ) 当△EO F 为等腰三角形时 ,求此时点E 的坐标;(4 ) 在 (3 )的条件下 ,当直线EF 交x 轴于点D ,P 为 (1 ) 中抛物线上一动点 ,直线P E 交x 轴于点G ,在直线EF 上方的抛物线上是否存在一点P ,使得△EPF 的面积是△EDG 面积的 (122+ ) 倍.假设存在 ,请直接..写出点P 的坐标;假设不存在 ,请说明理由. 温馨提示:考生可以根据题意 ,在备用图中补充图形 ,以便作答.。

专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

《中考压轴题》专题24:动态几何之双(多)动点形成的函数关系问题一、选择题1.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是A.当t=4秒时,S=43B.AD=4C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积2.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为A.B.C.D,3.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是A .AE=6cmB .4sin EBC 5∠=C .当0<t ≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形4.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。

中考数学专题 动态几何之定值(恒等)问题(含解析)

中考数学专题 动态几何之定值(恒等)问题(含解析)

专题44 动态几何之定值(恒等)问题数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

本专题原创编写动态几何之定值(恒等)问题模拟题。

在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

1.如图,在Rt△ABC和Rt△DEF中,∠ACB=∠DEF=900,∠A=∠F=450,DF=4,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB。

求证:点E到AC的距离为常数2。

【答案】解:如图,过点E作EH⊥AC于点H,则EH即为点E到AC的距离。

∵在Rt△DEF 中,∠DEF=900,∠F=450,DF=4, ∴4DE 222==。

∵DE∥AB,∴∠EDH=∠A=450。

∴22EH 22==。

∴点E 到AC 的距离为常数2。

【考点】平移问题,作辅助线,等腰直角三角形的性质,平行的性质。

2. 对非负实数x “四舍五入”到个位的值记为即:当n 为非负整数时,如果如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,… 试解决下列问题:(1)填空:①= (为圆周率); ②如果的取值范围为 ;(2)①当;②举例说明不恒成立;(3)求满足的值;(4)设n 为常数,且为正整数,函数范围内取值时,函数值y 为整数的个数记为的个数记为b .求证: 【答案】(1)①3 ② ,><x .,2121n x n x n >=<+<≤-则><ππx x 则实数,312>=-<><+>=+<≥x m m x m x :,,0求证为非负整数时><+>>=<+<y x y x x x x 的所有非负实数34>=<1412+<≤+-=n x n x x x y 在的自变量k n k a 的所有整数满足>=<;.2n b a ==9447<≤x(2)①证明略 ②举反例:不一定成立.(3)(4)证明略。

专题32 动态几何之双(多)动点形成的最值问题(压轴题)

专题32 动态几何之双(多)动点形成的最值问题(压轴题)

《中考压轴题》专题32:动态几何之双(多)动点形成的最值问题一、填空题1.如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A 和⊙B上的动点,则PE+PF的最小值是.2.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.3.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于G,连接BE交AG 于点H.若正方形的边长为2,则线段DH长度的最小值是.二、解答题1.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?2.如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′(3)当t为何值时,△APQ是等腰三角形?3.如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.4.在正方形ABCD 中,动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动.(1)如图①,当点E 自D 向C ,点F 自C 向B 移动时,连接AE 和DF 交于点P ,请你写出AE 与DF 的位置关系,并说明理由;(2)如图②,当E ,F 分别移动到边DC ,CB 的延长线上时,连接AE 和DF ,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E ,F 分别在边CD ,BC 的延长线上移动时,连接AE ,DF ,(1)中的结论还成立吗?请说明理由;(4)如图④,当E ,F 分别在边DC ,CB 上移动时,连接AE 和DF 交于点P ,由于点E ,F 的移动,使得点P 也随之运动,请你画出点P 运动路径的草图.若AD=2,试求出线段CP 的最小值.5.如图,在平面直角坐标系xOy 中,抛物线2y ax bx 4=+-与x 轴交于点A(﹣2,0)和点B ,与y 轴交于点C ,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M ,H 分别从点A ,B 以每秒1个单位长度的速度沿x 轴同时出发相向而行,当点M 到达原点时,点H 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动,经过点M 的直线l ⊥x 轴,交AC 或BC 于点P ,设点M 的运动时间为t 秒(t >0).求点M 的运动时间t 与△APH 的面积S 的函数关系式,并求出S 的最大值.6.如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c 与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.7.如图,直线4y x83=-+与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.8.如图,在平面直角坐标系中,抛物线2y ax bx 3(a 0)=+-≠与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C.(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最大面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使CBK PBQ S S 5:2=△△:,求K 点坐标.9.如图,抛物线y=ax 2+bx+c (a≠0)的图象过点C (0,1),顶点为Q (2,3),点D 在x 轴正半轴上,且OD=OC .(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ;(4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10.如图,直线y x 412=-+与坐标轴分别交于点A 、B ,与直线y=x 交于点C .在线段OA 上,动点Q 以每秒1个单位长度的速度从点O 出发向点A 做匀速运动,同时动点P 从点A 出发向点O 做匀速运动,当点P 、Q 其中一点停止运动时,另一点也停止运动.分别过点P 、Q 作x 轴的垂线,交直线AB 、OC 于点E 、F ,连接EF .若运动时间为t 秒,在运动过程中四边形PEFQ 总为矩形(点P 、Q 重合除外).(1)求点P 运动的速度是多少?(2)当t 为多少秒时,矩形PEFQ 为正方形?(3)当t 为多少秒时,矩形PEFQ 的面积S 最大?并求出最大值.11.如图,在平面直角坐标系中,O 为坐标原点,点A 、B 的坐标分别为(8,0)、(0,6).动点Q 从点O 、动点P 从点A 同时出发,分别沿着OA 方向、AB 方向均以1个单位长度/秒的速度匀速运动,运动时间为t (秒)(0<t≤5).以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为点C 、D ,连结CD 、QC .(1)求当t 为何值时,点Q 与点D 重合?(2)设△QCD 的面积为S ,试求S 与t 之间的函数关系,并求S 的最大值?(3)若⊙P 与线段QC 只有一个交点,请直接写出t 的取值范围.12.如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.13.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y轴相交于点C(0,3),点P 是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N 以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,①求t的值;②直线PQ能否垂直平分线段MN?若能,请求出此时点P的坐标;若不能,请说明你的理由.14.如图,在平面直角坐标系中,四边形ABCD是梯形,AB∥CD,点B(10,0),C(7,4).直线l经过A,D两点,且sin∠DAB=22.动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点P作PM垂直于x轴,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点A的坐标为,直线l的解析式为;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.15.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P 有几个?并求出点P到线段OD的距离;若不存在,请说明理由.16.已知二次函数y=ax2+bx+c(a≠0)的图象经过点(1,0),(5,0),(3,﹣4).(1)求该二次函数的解析式;(2)当y>﹣3,写出x的取值范围;(3)A、B为直线y=﹣2x﹣6上两动点,且距离为2,点C为二次函数图象上的动点,当点C运动到何处时△ABC的面积最小?求出此时点C的坐标及△ABC面积的最小值.17.如图,正方形AOCB 在平面直角坐标系xOy 中,点O 为原点,点B 在反比例函数k y x =(x >0)图象上,△BOC 的面积为8.(1)求反比例函数k y x=的关系式;(2)若动点E 从A 开始沿AB 向B 以每秒1个单位的速度运动,同时动点F 从B 开始沿BC 向C 以每秒2个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t 表示,△BEF 的面积用S 表示,求出S 关于t 的函数关系式,并求出当运动时间t 取何值时,△BEF 的面积最大?(3)当运动时间为34秒时,在坐标轴上是否存在点P ,使△PEF 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由.18.如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C 的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.19.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒53个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?20.如图,甲、乙两人分别从A(1)、B(6,0)两点同时出发,点O为坐标原点,甲沿AO方向、乙沿BO方向均以4km/h的速度行驶,th后,甲到达M点,乙到达N点.(1)请说明甲、乙两人到达O点前,MN与AB不可能平行.(2)当t为何值时,△OMN∽△OBA?(3)甲、乙两人之间的距离为MN的长,设s=MN2,求s与t之间的函数关系式,并求甲、乙两人之间距离的最小值.21.如图,在O A B C中,点A在x轴上,∠A O C=60o,O C=4c m.O A=8c m.动点P从点O出发,以1c m/s的速度沿线段O A→A B运动;动点Q同时..从点O出发,以a c m/s的速度沿线段O C→C B运动,其中一点先到达终点B时,另一点也随之停止运动.设运动时间为t秒.(1)填空:点C的坐标是(______,______),对角线OB的长度是_______cm;(2)当a=1时,设△OPQ的面积为S,求S与t的函数关系式,并直接写出当t为何值时,S的值最大?(3)当点P在OA边上,点Q在CB边上时,线段PQ与对角线OB交于点M.若以O、M、P为顶点的三角形与△OAB相似,求a与t的函数关系式,并直接写出t的取值范围.22.如图,抛物线2y x 2=-++与x 轴交于C .A 两点,与y 轴交于点B ,点O 关于直线AB 的对称点为D ,E 为线段AB 的中点.(1)分别求出点A .点B 的坐标;(2)求直线AB 的解析式;(3)若反比例函数k y x=的图象过点D ,求k 值;(4)两动点P 、Q 同时从点A 出发,分别沿AB .AO 方向向B .O 移动,点P 每秒移动1个单位,点Q 每秒移动12个单位,设△POQ 的面积为S ,移动时间为t ,问:S 是否存在最大值?若存在,求出这个最大值,并求出此时的t 值;若不存在,请说明理由.23.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<103)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.24.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD 上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.。

专题31 动态几何之单动点形成的最值问题(压轴题)

专题31 动态几何之单动点形成的最值问题(压轴题)

《中考压轴题》专题31:动态几何之单动点形成的最值问题一、选择题1.已知点A的坐标为(2,0),点P在直线y=x上运动,当以点P为圆心,PA的长为半径的圆的面积最小时,点P的坐标为【】A.(1,﹣1)B.(0,0)C.(1,1)D.2.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为【】A. B.1 C.2 D.3.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.点P是直径MN上一动点,则PA+PB的最小值为【】A. B.1 C.2 D.7.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是【】A.B.C.D.8.如图,在圆O 上有定点C 和动点P ,位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点Q ,已知:圆O 半径为52,tan ∠ABC =34,则CQ 的最大值是【】A .5B .154C .253D .2039.如图所示,已知A 11(,y )2,B 2(2,y )为反比例函数1y x图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是【】A.1(,0)2 B.(1,0) C.3(,0)2 D.5(,0)210.如图,一条抛物线与x 轴相交于A 、B 两点,其顶点P 在折线C -D -E 上移动,若点C 、D 、E 的坐标分别为(-1,4)、(3,4)、(3,1),点B 的横坐标的最小值为1,则点A 的横坐标的最大值为【】A.1B.2C.3D.411.如图为反比例函数1y=x在第一象限的图象,点A为此图象上的一动点,过点A分别作AB⊥x轴和AC⊥y轴,垂足分别为B,C.则四边形OBAC周长的最小值为【】A.4B.3C.2D.112.如图,已知直线334y x=-与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8B.12C.212D.172二、填空题1.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是»CD上的一个动点,连接AP,则AP的最小值是.2.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.3.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x-y)的最大值是.4.如图,在边长10cm为的正方形ABCD中,P为AB边上任意一点(P不与A、B两点重合),连结DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为cm。

中考数学压轴题专题十动态几何问题

中考数学压轴题专题十动态几何问题

中考数学压轴题专题十动态几何问题试题特点用运动的观点来探究几何图形变化规律的问题称为动态几何问题,此类问题的显著特点是图形中的某个元素(如点、线段、三角形等)或整个图形按照某种规律运动,图形的各个元素在运动变化过程中互相依存、和谐统一,体现了数学中“变”与“不变”、“一般”与“特殊”的辩证思想.其主要类型有:1.点的运动(单点运动、多点运动);2.线段(直线)的运动;3.图形的运动(三角形运动、四边形运动、圆运动等).方式趋势动态几何题已成为中考试题的一大热点题型.在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,总体呈现源于教材、高于教材,入口宽、难易适度、梯度分明,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力.热点解析一、点的运动【题1】(2011盐城)如图1,已知一次函数y=-x+7与正比例函数y=43x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴,动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.【思路】(1)联立方程y=-x+7和y=43x即可求出点A的坐标,令-x+7=0即可得点B的坐标.(2)①只要把三角形的面积用t表示,求出即可.应注意分P在OC上运动和P在CA上运动两种情况.(D只要把有关线段用t表示,找出满足AP=AQ,AP=PQ,AQ=PQ的条件时t的值即可,应注意分别讨论P在OC上运动(此时直线∠与AB相交)和P在CA上运动(此时直线∠与AO相交)时AP=AQ,AP=PQ,AQ=PQ的条件.【失分点】以A、P、Q为顶点的三角形是等腰三角形有多种可能,容易考虑不周.【反思】涉及的主要知识点有:一次函数的图象和性质,解二元一次方程组,勾股定理,锐角三角函数,解一元二次方程,等腰三角形的判定.【牛刀小试】1.(2010湖北咸宁)如图6,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动,当点M到达点B 时,两点同时停止运动.过点M作直线∠∥AD,与线段CD的交点为E,与折线A-C -B的交点为Q.点M运动的时间为t(秒).(1)当t=时,求线段QM的长.(2)当0<t<2时,如果以C,P,Q为顶点的三角形为直角三角形,求t的值.(3)当t>2时,连接PQ交线段AC于点R,请探究CQRQ是否为定值.若是,试求这个定值;若不是,请说明理由.2.(2010湖南娄底)如图7,在梯形ABCD中,AB∥CD,AB=2,DC=10,AD=BC=5,点M,N分别在边AD,BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E,F.(1)求梯形ABCD的面积.(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由.(3)探究二:四边形MNFF能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.3.(2010广西钦州)如图8,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点0运动,点N沿CB向终点B运动,当两个动点运动了ts时,过点N作NP⊥BC,交OB 于点P,连接MP.(1)点B的坐标为_______;用含£的式子表示点P的坐标为_______.(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6).并求t为何值时,S有最大值.(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的13?若存在,求出点T的坐标;若不存在,请说明理由.二、线的运动【题2】(2010云南昭通)如图,已知直线l的解析式为y=-x+6,它与x轴,y 轴分别相交于A,B两点.平行于直线l的直线n从原点出发,沿x轴正方向以每秒1个单位长度的速度运动,运动时间为t秒,运动过程中始终保持n∥l.直线n与x轴,y轴分别相交于C,D两点.线段CD的中点为P,以P为圆心,以CD为直径在CD上方作半圆,半圆面积为S.当直线n与直线l重合时,运动结束.(1)求A,B两点的坐标.(2)求S与t的函数关系式及自变量t的取值范围.(3)直线n在运动过程中,①当t为何值时,半圆与直线l相切?②是否存在这样的T值,使得半圆面积S=12S梯形ABCD?若存在,求出t值;若不存在,说明理由。

中考数学压轴题专题07几何图形动点运动问题(学生版+解析版)

中考数学压轴题专题07几何图形动点运动问题(学生版+解析版)

专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);P m,且四边形OADP的面积是(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1∆面积的2倍,求满足条件的点P的坐标;ABC(3)如图,动点M从点C出发,以每钞1个单位的速度沿线段CB运动,同时动点N从点A出发.以每秒2t>,在M,个单位的連度沿线段AO运动,当N到达O点时,M,N同时停止运动,运动时间是t秒()0N运动过程中.当5MN=时,直接写出时间t的值.【举一反三】如图,▱ABCD 的对角线AC 、BD 相交于点O ,AB ⊥AC ,AB =3,BC =5,点P 从点A 出发,沿AD 以每秒1个单位的速度向终点D 运动.连结PO 并延长交BC 于点Q .设点P 的运动时间为t 秒. (1)求BQ 的长,(用含t 的代数式表示)(2)当四边形ABQP 是平行四边形时,求t 的值(3)当点O 在线段AP 的垂直平分线上时,直接写出t 的值.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B 出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒?(2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行?如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.类型四【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y=ax2﹣34x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P 在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【新题训练】1.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC的边长为4cm,点D从点C出发沿CA向A运动,点E从B出发沿AB的延长线BF 向右运动,已知点D、E都以每秒0.5cm的速度同时开始运动,运动过程中DE与BC相交于点P,设运动时间为x秒.(1)请直接写出AD长.(用x的代数式表示)(2)当△ADE为直角三角形时,运动时间为几秒?(3)求证:在运动过程中,点P始终为线段DE的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°;(2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上.6.在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.(1)①依据题意补全图形;②猜想OE与OF的数量关系为_________________.(2)小东通过观察、实验发现点M在射线CA上运动时,(1)中的猜想始终成立.小东把这个发现与同学们进行交流,通过讨论,形成了证明(1)中猜想的几种想法:想法1:由已知条件和菱形对角线互相平分,可以构造与△OAE全等的三角形,从而得到相等的线段,再依据直角三角形斜边中线的性质,即可证明猜想;想法2:由已知条件和菱形对角线互相垂直,能找到两组共斜边的直角三角形,例如其中的一组△OAB和△EAB,再依据直角三角形斜边中线的性质,菱形四边相等,可以构造一对以OE和OF为对应边的全等三角形,即可证明猜想.……请你参考上面的想法,帮助小东证明(1)中的猜想(一种方法即可).(3)当∠ADC=120°时,请直接写出线段CF,AE,EF之间的数量关系是_________________.9.(1)(问题情境)小明遇到这样一个问题:如图①,已知ABC ∆是等边三角形,点D 为BC 边上中点,60ADE ∠=︒,DE 交等边三角形外角平分线CE 所在的直线于点E ,试探究AD 与DE 的数量关系.小明发现:过D 作//DF AC ,交AB 于F ,构造全等三角形,经推理论证问题得到解决.请直接写出AD 与DE 的数量关系,并说明理由. (2)(类比探究)如图②,当D 是线段BC 上(除,B C 外)任意一点时(其他条件不变)试猜想AD 与DE 的数量关系并证明你的结论. (3)(拓展应用)当D 是线段BC 上延长线上,且满足CD BC =(其他条件不变)时,请判断ADE ∆的形状,并说明理由.10.如图,直线y =﹣23x +4与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+103x +c 经过B 、C 两点. (1)求抛物线的解析式;(2)如图,点E 是直线BC 上方抛物线上的一动点,当△BEC 面积最大时,请求出点E 的坐标; (3)在(2)的结论下,过点E 作y 轴的平行线交直线BC 于点M ,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P 、Q 、A 、M 为顶点的四边形是平行四边形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.11.如图,边长为4的正方形ABCD 中,点P 是边CD 上一动点,作直线BP ,过A 、C 、D 三点分别作直线BP 的垂线段,垂足分别是E 、F 、G .(1)如图(a )所示,当CP =3时,求线段EG 的长;(2)如图(b )所示,当∠PBC =30°时,四边形ABCF 的面积;(3)如图(c )所示,点P 在CD 上运动的过程中,四边形AECG 的面积S 是否存在最大值?如果存在,请求出∠PBC 为多少度时,S 有最大值,最大值是多少?如果不存在,请说明理由.12.已知:如图,在四边形ABCD 中,//AB CD ,90ACB ∠=︒,10cm AB =,8cm BC =,OD 垂直平分A C .点P 从点B 出发,沿BA 方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动,另一个点也停止运动.过点P 作PE AB ⊥,交BC 于点E ,过点O 作//QF AC ,分别交AD ,OD 于点F ,G .连接OP ,EG .设运动时间为()t s ()05t <<,解答下列问题:(1)当t 为何值时,点E 在BAC ∠的平分线上? (2)设四边形PEGO 的面积为()2mS c ,求S 与t 的函数关系式.(3)连接OE ,OQ ,在运动过程中,是否存在某一时刻t ,使OE OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.13.已知:如图1,矩形OABC 的两个顶点A ,C 分别在x 轴,y 轴上,点B 的坐标是(8,2),点P 是边BC 上的一个动点,连接AP ,以AP 为一边朝点B 方向作正方形P ADE ,连接OP 并延长与DE 交于点M ,设CP =a (a >0).(1)请用含a 的代数式表示点P ,E 的坐标.(2)连接OE ,并把OE 绕点E 逆时针方向旋转90°得EF .如图2,若点F 恰好落在x 轴的正半轴上,求a 与EMDM的值. (3)①如图1,当点M 为DE 的中点时,求a 的值.②在①的前提下,并且当a >4时,OP 的延长线上存在点Q ,使得EQ +22PQ 有最小值,请直接写出EQ +22PQ 的最小值.14.如图,边长为6的正方形ABCD 中,,E F 分别是,AD AB 上的点,AP BE ⊥,P 为垂足. (1)如图①, AF =BF ,AE =23,点T 是射线PF 上的一个动点,则当△ABT 为直角三角形时,求AT 的长;(2)如图②,若AE AF =,连接CP ,求证:CP FP ⊥.15.边长相等的两个正方形ABCO 、ADEF 如图摆放,正方形ABCO 的边OA 、OC 在坐标轴上,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P ,连AG ,已知OA 长为3. (1)求证:AOG ADG ∆≅∆;(2)若12∠=∠,AG =2,求点G 的坐标;(3)在(2)条件下,在直线PE 上找点M ,使以M 、A 、G 为顶点的三角形是等腰三角形,求出点M 的坐标.16.定义:有一组邻角相等的凸四边形叫做“梦想四边形”。

中考数学专题——动态问题(非常全面)

中考数学专题——动态问题(非常全面)

(中考数学专题3) 动态几何问题【例1】如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).D NCM B A(1)当MN AB ∥时,求t 的值;(2)试探究:t 为何值时,MNC △为等腰三角形.【例3】在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =42,3=BC ,CD=x ,求线段CP 的长.(用含x 的式子表示)【例4】已知如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y与x 的函数关系式; (3)在(2)中,当y 取最小值时,判断PQC △的形状,并说明理由.【例5】已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF BD ⊥交BC 于F ,连接DF ,G 为DF 中点,连接EG CG ,. (1)直接写出线段EG 与CG 的数量关系;(2)将图1中BEF ∆绕B 点逆时针旋转45︒,如图2所示,取DF 中点G ,连接EG CG ,,. 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中BEF ∆绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)A DC B P M Q 60图3图2图1FEABCDABC DEFGGFED C BA【总结】 通过以上五道例题,我们研究了动态几何问题当中点动,线动,乃至整体图形动这么几种可能的方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.如图,在矩形 中, , .如果点 由点 出发沿 方向向点 匀速运动,同时点 由点 出发沿 方向向点 匀速运动,它们的速度分别为 和 .过点 作 ,分别交 、 于点 和 ,设运动时间为 .
(1)连结 、 ,若四边形 为平行四边形,求 的值;
(2)连结 ,设 的面积为 ,求 与 的函数关系式,并求 的最大值;
6.如图1是实验室中的一种摆动装置, 在地面上,支架 是底边为BC的等腰三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转, .
(1)在旋转过程中
①当 三点为在同一直线上时,求 的长.
②当 三点为同一直角三角形的顶点时,求 的长;
(2)若摆动臂AD顺时针旋转90度,点D的位置由 外的点 旋转到其内的点 处,连接 ,如图2,此时 , ,求 的长.
(3)若 与 相似,求出 的值.
8.如图①,二次函数 的图象与直线 交于 、 两点.点 是 轴上的一个动点,过点 作 轴的垂线交直线 于点 ,交该二次函数的图象于点 ,设点 的横坐标为 .
(1) , ;
(2)若点 在点 的上方,且 ,求 的值;
(3)将直线 向上平移4个单位长度,分别与 轴、 轴交于点 、 (如图②).
(1)求抛物线的解析式;
(2) 为线段 上任意一点, 为 轴上一动点,连接 ,以点 为中心,将 逆时针旋转 ,记点 的对应点为 ,点 的对应点为 .当直线 与抛物线 只有一个交点时,求点 的坐标.
(3) 在(2)的旋转变换下,若 (如图).
ห้องสมุดไป่ตู้①求证: .
②当点 在(1)所求的抛物线上时,求线段 的长.
(1)当点 在边 上时, __________ .
(2)求 与 之间的函数关系式.
(3)当矩形 与 的重叠部分为轴对称图形时,直接写出 的取值范围.
11.如图,在△ABC中,AB=BC=15,sinB= ,动点P从点B出发,以每秒3个单位长度的速度沿BA向终点A运动,过点P作PD⊥AB,交射线BC于点D,E为PD中点,以DE为边作正方形DEFG,使点A、F在PD的同侧,设点P的运动时间为t秒(t>0).
(1)当点 在边 上时,用含 的代数式表示点 到 的距离.
(2)当点 落在边 上时,求 的值.
(3)设 与 重叠部分图形的面积为 ,求 与 之间的函数关系式.
(4)连结 ,直接写出直线 与直线 所夹锐角的正切值.
10.如图,在 中, , , , 是中线.点 从点 出发以 速度沿折线 匀速运动,到点 停止运动.过点 作 ,垂足为点 ,以 为一边作矩形 ,且 .点 , 始终位于 的异侧,矩形 与 的重叠部分面积为 ,点 的运动时间为 .
4.如图,在 , 为边BC上一点,且 ,过点D作 交AB于点E,过点E作 ,交AC于点F,动点 分别从点 同时出发,均以 的速度匀速运动,点P沿折线 向终点D运动,点Q沿BA向终点A运动,过点P作 交AB于点M,以 , 为边作 ,设点P运动的时间为 ,矩形 与 重叠部分图形是面积为 .
(1)DE的长为_____________cm;
(1)求抛物线的表达式;
(2)点P是第一象限内抛物线上的动点,连接 ,当 时,求点P的坐标;
(3)点N是对称轴l右侧抛物线上的动点,在射线 上是否存在点M,使得以点M,N,E为顶点的三角形与 相似?若存在,求点M的坐标;若不存在,请说明理由.
13.
如图,在直角梯形ABCD中,AD∥BC, ,AD = 6,BC = 8, ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.
3.如图1,已知 , ,点D在 上,连接 并延长交 于点F.
(1)猜想:线段 与 的数量关系为_____;
(2)探究:若将图1的 绕点B顺时针方向旋转,当 小于 时,得到图2,连接 并延长交 于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
(3)拓展:图1中,过点E作 ,垂足为点G.当 的大小发生变化,其它条件不变时,若 , ,直接写出 的长.
①记 的面积为 , 的面积为 ,是否存在 ,使得点 在直线 的上方,且满足 ?若存在,求出 及相应的 、 的值;若不存在,请说明理由.
②当 时,将线段 绕点 顺时针旋转 得到线段 ,连接 、 、 ,若 ,直接写出直线 与该二次函数图象交点的横坐标.
9.如图, 是 的对角线, , , ,动点 、 分别从 、 同时出发,点 沿折线 向终点 运动,在 上的速度为每秒7个单位,在 上的速度为每秒5个单位,点 以每秒 个单位的速度沿 向终点 运动.连结 ,以 、 为边作 ,设点 的运动时间为 .
2021中考数学专题复习:压轴题动态几何问题专项训练题1(附答案详解)
1.如图,抛物线经过点 、 、 .
(1)求抛物线的解析式;
(2)点 是抛物线上的动点,当 时,试确定m的值,使得 的面积最大;
(3)抛物线上是否存在不同于点B的点D,满足 ,若存在,请求出点D的坐标;若不存在,请说明理由.
2.如图1,已知直线m⊥n,垂足为点O.现有一个直角三角形ABC,其中∠ACB=90°,∠B=30°,现将这个三角形按如图方式放置,使得点A与O重合,点C落在直线m上.操作:将△ABC绕点O逆时针旋转一周,如图2所示.通过操作我们发现,当旋转一定角度α时,△ABC会被直线m(或n)分成两个三角形,其中有一个三角形的两角相等.请直接写出所有符合条件的旋转角度α.
(2)连接PQ,当 时,求 的值;
(3)当点Q从点B运动到点E的过程中,当四边形 与 重叠部分图形是三角形时,求 之间的函数关系式;
(4)当点P在FE上运动时,设PN与线段DE的交点为G,连接FG,若点E在FG的垂直平分线上,直接写出 的值.
5.如图,抛物线 经过点 ,顶点为 ,对称轴 与 轴相交于点 , 为线段 的中点.
(1)求点A到边BC的距离.
(2)当点G在边AC上时,求t的值.
(3)设正方形DEFG与△ABC的重叠部分图形的面积为S,当点D在边BC上时,求S与t之间的函数关系式.
(4)连结EG,当△DEG一边上的中点在线段AC上时,直接写出t的值.
12.如图,抛物线 与x轴交于点 和点 ,与y轴交于点C,顶点为D,连接 与抛物线的对称轴l交于点E.
相关文档
最新文档