理科高二数学下学期期末试卷
河北省张家口市2022高二数学下学期期末考试试题 理(含解析)

.
(Ⅱ) ,
,
, .
【点睛】本题主要考查复数的求法和复数的运算,考查复数模的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.
18.某地为了调查市民对“一带一路”倡议的了解程度,随机选取了 名年龄在 岁至 岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:
【详解】解:(Ⅰ)根据已知数据得到如下列联表
年龄低于 岁 人数
年龄不低于 岁的人数
合计
了解
不了解
合计
故有 的把握认为以 岁为分界点“一带一路”倡议的了解有差异.
(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为 , .
, , ,
, ,
则 的分布列为
, .
【点睛】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.
(2)对方程根的个数转化为函数零点个数,通过对参数 进行分类讨论,利用函数的单调性、最值、零点存在定理等,判断函数图象与 轴的交点个数.
【详解】(Ⅰ) 的导数为 .
在区间 , , 是增函数;在区间 上, , 是减函数.
为奇函数, ,
令 ,其图象如图所示,则 ,
设曲边梯形ABCD的面积为 ,则 ,
,
原式的值为 .
【点睛】在求积分时,如果原函数不易求时,可考虑用积分的几何意义,把求积分值转化为求面积问题.
12.函数 ,若 有8个不相等的实数根,则 的取值范围是
A. B. C. D.
【答案】A
【解析】
【分析】
方程有8个不相等的实数根指存在8个不同 的值;根据函数 的图象,可知方程 必存在2个大于1的不等实根.
2021年高二(下)期末数学试卷(理科)含解析

2021年高二(下)期末数学试卷(理科)含解析一、选择题(每小题3分,共60分.在每小题给出的四个选项中.选出符合题目要求的一项)1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.C+C+C+C+C的值为()A. 64 B. 63 C. 62 D. 613.反证法证明的关键是在正确的假设下得出矛盾,这个矛盾可以是()①与已知矛盾;②与假设矛盾;③与定义、定理、公理、法则矛盾;④与事实矛盾.A.①②B.②③C.①②③D.①②③④4.下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①5.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()A.B.C.D.6.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是()A.B.C.D.7.两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.8.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种9.观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为()A.76 B.80 C.86 D.9210.已知复数z1=a+i,z2=1+i,其中a∈R,是纯虚数,则实数a的取值为()A.﹣l B. 1 C.﹣2 D. 211.已知函数f(x)的导数f′(x)=a(x+1)(x﹣a),若f(x)在x=a处取到极大值,则a 的取值范围是()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1)D.(0,+∞)12.已知随机变量X服从正态分布N(1,σ2),且P(﹣2≤X≤1)=0.4,则P(X>4)=()A.0.1 B.0.2 C.0.3 D.0.613.若二项式(2x+)7的展开式中项的系数是84,则实数a=()A. 2 B.C.D. 114.某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元) 4 2 3 5销售额y(万元)49 263954根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元15.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)的值为()A. 4 B.10 C.20 D.4016.要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.48种B.36种C.18种D.12种17.由曲线y=,x=1,x=2,y=0所围成的封闭图形的面积为()A. 4 B. 2 C.2ln2 D.ln218.用数学归纳法证明1++(n∈N且n>1),第二步证明中从“k到k+1”时,左端增加的项数是()A.2k+1 B.2k﹣1 C.2k D.2k﹣119.设函数f(x)=x3+x,若0<θ≤时,f(mcosθ)+f(1﹣m)>0恒成立,则实数m的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(﹣1,+∞)D.(1,+∞)20.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)﹣f(x)>0,对任意正数a、b,若a<b,则af(a),bf(b)的大小关系为()A.af(a)<bf(b)B.af(a)=bf(b)C.af(a)≤bf(b)D.af(a)≥bf(b)二、解答题(本大题共5小题,每小题8分,共40分,解答题中的填空只需写出答案即可,其他应写出文字说明,证明过程或演算步骤)21.已知复数z=1+i.(I)若复数ω=z2+3﹣4,则复数ω的模长|ω|=;(Ⅱ)如果=1﹣i,求实数a,b的值.22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:零件的个数x(个) 2 3 45加工的时间y(小时) 2.5 3 4 4.5(Ⅰ)在给定的坐标系中画出表中数据的散点图;(Ⅱ)求y关于x的线性回归方程=x+;(Ⅲ)试预测加工10个零件需要的时间.参考公式:.23.xx年12月28日开始,北京市地铁按照里程分段计价.具体如下表:乘坐地铁方案(不含机场线)6公里(含)内3元;6公里至12公里(含)内4元;12公里至22公里(含)内5元;22公里至32公里(含)内6元;32公里以上部分,每增加l元可乘坐20公里(含).已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为;(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.24.已知a>0,b>0,c>0,且a+b+c=1.(Ⅰ)若a=b=c,则(﹣1)(﹣1)(﹣1)的值为;(Ⅱ)求证:(﹣1)(﹣1)(﹣1)≥8.25.若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(e为自然对数的底数).(1)求F(x)=h(x)﹣φ(x)的极值;(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.xx学年北京市东城区(南片)高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题3分,共60分.在每小题给出的四个选项中.选出符合题目要求的一项)1.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的混合运算.分析:复数分母实数化,再化简即可.解答:解:=故选D.点评:本题考查复数代数形式的运算,复数和复平面内的点的对应关系,是基础题.2.C+C+C+C+C的值为()A.64 B.63 C.62 D.61考点:组合及组合数公式.专题:排列组合.分析:利用组合数公式进行求解即可.解答:解:∵C+C+C+C+C+C+C=26,∴C+C+C+C+C=26﹣C﹣C=64﹣1﹣1=62,故选:C点评:本题主要考查组合数公式的应用,比较基础.3.反证法证明的关键是在正确的假设下得出矛盾,这个矛盾可以是()①与已知矛盾;②与假设矛盾;③与定义、定理、公理、法则矛盾;④与事实矛盾.A.①②B.②③C.①②③D.①②③④考点:反证法与放缩法.专题:证明题;推理和证明.分析:直接利用反证法的定义判断正误即可.解答:解:利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法.①与已知条件矛盾;正确.②与假设矛盾;正确.③与定义、定理、公理、法则矛盾;正确.④与事实矛盾.正确.故选:D.点评:本题考查反证法定义的连结与应用,基础题.4.下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①考点:演绎推理的基本方法.专题:规律型;推理和证明.分析:根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.解答:解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B点评:本题考查的知识点是演绎推理的基本方法:大前提一定是一个一般性的结论,小前提表示从属关系,结论是特殊性结论.5.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()A.B.C.D.考点:等可能事件的概率;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:首先由组合数公式,计算从袋中的6个球中任取2个的情况数目,再由分步计数原理计算取出的两球为一白一黑的情况数目,进而由等可能事件的概率公式,计算可得答案.解答:解:根据题意,袋中共有6个球,从中任取2个,有C62=15种不同的取法,6个球中,有2个白球和3个黑球,则取出的两球为一白一黑的情况有2×3=6种;则两球颜色为一白一黑的概率P==;故选B.点评:本题考查等可能事件的概率计算,是基础题,注意正确使用排列、组合公式.6.某一批花生种子,如果每1粒发芽的概率为,那么播下3粒种子恰有2粒发芽的概率是()A.B.C.D.考点:n次独立重复试验中恰好发生k次的概率.专题:计算题.分析:每1粒发芽的概率为,播下3粒种子相当于做了3次试验,由题意知独立重复实验服从二项分布,即X~B(3,),根据二项分布的概率求法,做出结果.解答:解:∵每1粒发芽的概率为定值,播下3粒种子相当于做了3次试验,由题意知独立重复实验服从二项分布即X~B(3,)∴P(X=2)==故选B点评:二项分布要满足的条件是每次试验中,事件发生的概率是相同的,各次试验中的事件是相互独立的,每次试验只要两种结果,要么发生要么不发生,随机变量是这n次独立重复试验中事件发生的次数.7.两个实习生每人加工一个零件.加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.考点:相互独立事件的概率乘法公式;互斥事件的概率加法公式.专题:计算题.分析:根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案.解答:解:记两个零件中恰好有一个一等品的事件为A,即仅第一个实习生加工一等品(A1)与仅第二个实习生加工一等品(A2)两种情况,则P(A)=P(A1)+P(A2)=,故选B.点评:本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系(对立,互斥,相互独立).8.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有()A.70种B.80种C.100种D.140种考点:分步乘法计数原理.分析:不同的组队方案:选3名医生组成一个医疗小分队,要求其中男、女医生都有,方法共有两类,一是:一男二女,另一类是:两男一女;在每一类中都用分步计数原理解答.解答:解:直接法:一男两女,有C51C42=5×6=30种,两男一女,有C52C41=10×4=40种,共计70种间接法:任意选取C93=84种,其中都是男医生有C53=10种,都是女医生有C41=4种,于是符合条件的有84﹣10﹣4=70种.故选A点评:直接法:先分类后分步;间接法:总数中剔除不合要求的方法.9.观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12 ….则|x|+|y|=20的不同整数解(x,y)的个数为()A.76 B.80 C.86 D.92考点:归纳推理.专题:阅读型.分析:观察可得不同整数解的个数可以构成一个首项为4,公差为4的等差数列,则所求为第20项,可计算得结果.解答:解:观察可得不同整数解的个数4,8,12,…可以构成一个首项为4,公差为4的等差数列,通项公式为a n=4n,则所求为第20项,所以a20=80故选B.点评:本题考查归纳推理,分寻找关系式内部,关系式与关系式之间数字的变化特征,从特殊到一般,进行归纳推理.10.已知复数z1=a+i,z2=1+i,其中a∈R,是纯虚数,则实数a的取值为()A.﹣l B. 1 C.﹣2 D. 2考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把复数z1=a+i,z2=1+i代入,然后由复数代数形式的乘除运算化简求值,再由纯虚数的条件列出方程组,解方程组则答案可求.解答:解:由复数z1=a+i,z2=1+i,得==,∵是纯虚数,∴,解得:a=﹣1.故选:A.点评:本题考查了,考查了复数的基本概念,是基础题.11.已知函数f(x)的导数f′(x)=a(x+1)(x﹣a),若f(x)在x=a处取到极大值,则a 的取值范围是()A.(﹣∞,﹣1)B.(﹣1,0)C.(0,1)D.(0,+∞)考点:函数在某点取得极值的条件.专题:计算题.分析:讨论a的正负,以及a与﹣1的大小,分别判定在x=a处的导数符号,从而确定是否在x=a处取到极大值,从而求出所求.解答:解:当a>0时,当﹣1<x<a时,f'(x)<0,当x>a时,f'(x)>0,则f(x)在x=a处取到极小值,不符合题意;当a=0时,函数f(x)无极值,不符合题意;当﹣1<a<0时,当﹣1<x<a时,f'(x)>0,当x>a时,f'(x)<0,则f(x)在x=a处取到极大值,符合题意;当a=﹣1时,f'(x)≤0,函数f(x)无极值,不符合题意;当a<﹣1时,当x<a时,f'(x)<0,当a<x<﹣1时,f'(x)>0,则f(x)在x=a处取到极小值,不符合题意;综上所述﹣1<a<0,故选B.点评:本题主要考查了函数在某点取得极值的条件,解题的关键是分类讨论的数学思想,属于中档题.12.已知随机变量X服从正态分布N(1,σ2),且P(﹣2≤X≤1)=0.4,则P(X>4)=()A.0.1 B.0.2 C.0.3 D.0.6考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到结果.解答:解:随机变量ξ服从正态分布N(1,σ2),∴曲线关于x=1对称,∴P(X>4)=P(X<﹣2)=1﹣P(﹣2≤X≤1)=0.1故选:A.点评:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.13.若二项式(2x+)7的展开式中项的系数是84,则实数a=()A. 2 B.C.D. 1考点:二项式定理的应用.专题:二项式定理.分析:先求出二项式展开式的通项公式,再令x的幂指数等于﹣3,求得r的值,即可求得展开式中项的系数,再根据项的系数为84,求得a的值.解答:解:二项式(2x+)7的展开式的通项公式T r+1=•27﹣r•a r•x7﹣2r,令7﹣2r=﹣3,求得r=5,可得展开式中项的系数是×4×a5=84,求得a=1,故选:D.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.14.某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元) 4 2 3 5销售额y(万元)49 263954根据上表可得回归方程=x+的为9.4,据此模型预报广告费用为6万元时销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元考点:线性回归方程.专题:概率与统计.分析:首先求出所给数据的平均数,得到样本中心点,根据线性回归直线过样本中心点,求出方程中的一个系数,得到线性回归方程,把自变量为6代入,预报出结果.解答:解:∵=3.5,=42,∵数据的样本中心点在线性回归直线上,回归方程中的为9.4,∴42=9.4×3.5+a,∴=9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5,故选:B.点评:本题考查线性回归方程.考查预报变量的值,考查样本中心点的应用,本题是一个基础题,这个原题在2011年山东卷第八题出现.15.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)的值为()A. 4 B.10 C.20 D.40考点:二项式定理的应用.专题:二项式定理.分析:由条件利用二项展开式的通项公式求得含x3y0的系数,即f(3,0)的值.解答:解:∵(1+x)6(1+y)4的展开式中,含x3y0的系数是:f(3,0)==20,故选:C.点评:本题考查二项式定理的应用,二项展开式的通项公式,考查计算能力,属于基础题.16.要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.48种B.36种C.18种D.12种考点:计数原理的应用.专题:排列组合.分析:根据题意,小张和小赵只能从事前两项工作,由此分2种情况讨论,①若小张或小赵入选,②若小张、小赵都入选,分别计算其情况数目,由加法原理,计算可得答案.解答:解:根据题意分2种情况讨论,①若小张或小赵入选,则有选法C21C21A33=24;②若小张、小赵都入选,则有选法A22A32=12,共有选法12+24=36种,故选:B.点评:本题考查组合、排列的综合运用,涉及分类讨论的思想,注意按一定顺序,做到不重不漏.17.由曲线y=,x=1,x=2,y=0所围成的封闭图形的面积为()A. 4 B. 2 C.2ln2 D.ln2考点:定积分在求面积中的应用.专题:导数的综合应用.分析:首先利用定积分表示面积,然后计算即可.解答:解:由曲线y=,x=1,x=2,y=0所围成的封闭图形的面积为:=lnx|=ln2;故选D.点评:本题考查了运用定积分求瞿塘峡的面积;关键是正确利用定积分表示面积,然后正确计算.18.用数学归纳法证明1++(n∈N且n>1),第二步证明中从“k到k+1”时,左端增加的项数是()A.2k+1 B.2k﹣1 C.2k D.2k﹣1考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:当n=k时,写出左端,并当n=k+1时,写出左端,两者比较,关键是最后一项和增加的第一项的关系.解答:解:当n=k时,左端=1++,那么当n=k+1时左端=1++++…+=1++++…+,∴左端增加的项为++…+,所以项数为:2k.故选:C.点评:本题考查数学归纳法证明,其中关键一步就是从k到k+1,是学习中的难点,也是学习中重点,解答过程中关键是注意最后一项与增添的第一项.19.设函数f(x)=x3+x,若0<θ≤时,f(mcosθ)+f(1﹣m)>0恒成立,则实数m的取值范围是()A.(﹣∞,1)B.(﹣∞,﹣1)C.(﹣1,+∞)D.(1,+∞)考点:函数恒成立问题.专题:函数的性质及应用;不等式的解法及应用.分析:利用函数f(x)=x3+x是奇函数又是[0,]上的增函数,把不等式转化求解.解答:解:∵函数f(x)=x3+x是奇函数又是(0,]上的增函数,∴f(mcosθ)+f(1﹣m)>0恒成立,等价于f(mcosθ)>﹣f(1﹣m)即f(mcosθ)>f(m﹣1)即mcosθ>m﹣1⇒m<,又0<θ≤时,0≤cosθ<1,即有≥1,∴m<1.故选:A.点评:考查函数的奇偶性单调性的综合运用以及三角函数的单调性的运用能力,属中档题.20.已知f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)﹣f(x)>0,对任意正数a、b,若a<b,则af(a),bf(b)的大小关系为()A.af(a)<bf(b)B.af(a)=bf(b)C.af(a)≤bf(b)D.af(a)≥bf(b)考点:利用导数研究函数的单调性.专题:导数的概念及应用.分析:令g(x)=,[x∈(0,+∞)],利用导数研究其单调性,再利用不等式的性质即可得出.解答:解:令g(x)=,[x∈(0,+∞)],∵xf′(x)﹣f(x)>0,则g′(x)=>0,∴函数g(x)在x∈(0,+∞)单调递增,∵a<b,∴<,∴bf(a)<af(b),∴af(a)<bf(a)<af(b)<bf(b).故选:A.点评:本题考查了利用导数研究其单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共5小题,每小题8分,共40分,解答题中的填空只需写出答案即可,其他应写出文字说明,证明过程或演算步骤)21.已知复数z=1+i.(I)若复数ω=z2+3﹣4,则复数ω的模长|ω|=;(Ⅱ)如果=1﹣i,求实数a,b的值.考点:复数代数形式的乘除运算;复数求模.专题:数系的扩充和复数.分析:(I)由复数z求出,然后代入复数ω=z2+3﹣4化简求值则复数ω的模长可求;(Ⅱ)把复数z代入,然后由复数代数形式的乘除运算化简求值,再根据复数相等的定义列出方程组,从而解方程组可求得答案.解答:解:(Ⅰ)∵复数z=1+i.∴,∴ω=z2+3﹣4=(1+i)2+3(1﹣i)﹣4=﹣1﹣i.则复数ω的模长|ω|=故答案为:;(Ⅱ)由复数z=1+i.得==a+2﹣(a+b)i,由题设条件知a+2﹣(a+b)i=1﹣i,根据复数相等的定义,得,解得:.点评:本题考查了复数代数形式的乘除运算,考查了复数模的求法,考查了复数相等的定义,是基础题.22.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:零件的个数x(个) 2 3 45加工的时间y(小时) 2.5 3 4 4.5(Ⅰ)在给定的坐标系中画出表中数据的散点图;(Ⅱ)求y关于x的线性回归方程=x+;(Ⅲ)试预测加工10个零件需要的时间.参考公式:.考点:线性回归方程.专题:概率与统计.分析:(Ⅰ)利用描点法描出数据对应的四组点,进而作图,可得数据的散点图;(Ⅱ)利用公式计算,及系数a,b,可得回归方程;(Ⅲ)把x=10代入回归方程可得y值,即为预测加工10个零件需要的时间.解答:解:(Ⅰ)散点图如图所示:(3分)(Ⅱ)由题中表格数据得=3.5,=3.5,=3.5,=5.∴=0.7,=1.05,∴线性回归方程为=0.7x+1.05(Ⅲ)当x=10时,=0.7x+1.05=8.05,所以预测加工10个零件需要8.05小时.(8分)点评:本题主要考查了线性回归分析的方法,包括散点图,用最小二乘法求参数,以及用回归方程进行预测等知识,考查了考生数据处理和运算能力.23.xx年12月28日开始,北京市地铁按照里程分段计价.具体如下表:乘坐地铁方案(不含机场线)6公里(含)内3元;6公里至12公里(含)内4元;12公里至22公里(含)内5元;22公里至32公里(含)内6元;32公里以上部分,每增加l元可乘坐20公里(含).已知在北京地铁四号线上,任意一站到陶然亭站的票价不超过5元,现从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选出120人,他们乘坐地铁的票价统计如图所示.(Ⅰ)如果从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中任选1人,试估计此人乘坐地铁的票价大于3元的概率为;(Ⅱ)从那些只乘坐四号线地铁,且在陶然亭站出站的乘客中随机选2人,记X为这2人乘坐地铁的票价和,根据统计图,并以频率作为概率,求X的分布列和数学期望.考点:离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)直接由频率分布直方图得到此人乘坐地铁的票价大于3元的概率为;(Ⅱ)120人中地铁票价为3元、4元、5元,X的所有可能取值为6,7,8,9,10.由频率分布直方图得到地铁票价为3元、4元、5元的频率,以频率作为概率求得P(X=6),P (X=7),P(X=8),P(X=9),P(X=10),列出频率分布表,代入期望公式求得期望.解答:解:(Ⅰ)由频率分布直方图可得,此人乘坐地铁的票价大于3元的概率为.故答案为:;(Ⅱ)X的所有可能取值为6,7,8,9,10.根据统计图,可知120人中地铁票价为3元、4元、5元的频率分别为,,,即,,,以频率作为概率,知乘客地铁票价为3元、4元、5元的概率分别为,,.∴P(X=6)=,P(X=7)=,P(X=8)=,P(X=9)=,P(X=10)=.∴随机变量X的分布列为:X 6 7 8 9 10P∴=.点评:本题考查频率分布直方图,考查离散型随机变量的分布列及其数学期望的求法,关键是对题意的理解,是中档题.24.已知a>0,b>0,c>0,且a+b+c=1.(Ⅰ)若a=b=c,则(﹣1)(﹣1)(﹣1)的值为8;(Ⅱ)求证:(﹣1)(﹣1)(﹣1)≥8.考点:基本不等式.专题:不等式的解法及应用.分析:(Ⅰ)由题意可得a=b=c=,代入计算可得;(Ⅱ)由题意和基本不等式可得a+b≥2>0,a+c≥2>0,b+c≥2>0,三式相乘结合题意变形可得.解答:解:(Ⅰ)由题意可得a=b=c=,代入计算可得(﹣1)(﹣1)(﹣1)=2×2×2=8;(Ⅱ)由题意和基本不等式可得a+b≥2>0,a+c≥2>0,b+c≥2>0,∴(a+b)(a+c)(b+c)≥2•2•2=8abc,又a>0,b>0,c>0,∴≥8又a+b+c=1,∴≥8∴••≥8,∴(﹣1)(﹣1)(﹣1)≥8点评:本题考查基本不等式,涉及不等式的证明,属中档题.25.若存在实常数k和b,使得函数f(x)和g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx(e为自然对数的底数).(1)求F(x)=h(x)﹣φ(x)的极值;(2)函数h(x)和φ(x)是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.考点:利用导数求闭区间上函数的最值.专题:新定义;导数的综合应用.分析:(1)由已知中函数f(x)和φ(x)的解析式,求出函数F(x)的解析式,根据求导公式,求出函数的导数,根据导数判断函数的单调性并求极值(2)由(1)可知,函数f(x)和φ(x)的图象在(,e)处相交,即f(x)和φ(x)若存在隔离直线,那么该直线必过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y ﹣e=k(x﹣),即y=kx﹣k+e,根据隔离直线的定义,构造方程,可求出k值,进而得到隔离直线方程.解答:解:(1)∵F(x)=f(x)﹣φ(x)=x2﹣2elnx(x>0),∴F′(x)=2x﹣==令F′(x)=0,得x=,当0<x<时,F′(x)<0,x>时,F′(x)>0故当x=时,F(x)取到最小值,最小值是0(2)由(1)可知,函数f(x)和φ(x)的图象在(,e)处相交,因此存在f(x)和φ(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y﹣e=k(x﹣,即y=kx﹣k+e由f(x)≥kx﹣k+e(x∈R),可得x2﹣kx+k﹣e≥0当x∈R恒成立,则△=k2﹣4k+4e=(k﹣2)2≤0,∴k=2,此时直线方程为:y=2x﹣e,下面证明φ(x)≤2x﹣e exx>0时恒成立令G(x)=2 x﹣e﹣φ(x)=2x﹣e﹣2elnx,G′(x)=2﹣=(2x﹣2e)=2(x﹣),当x=时,G′(X)=0,当0<x<时G′(x)>0,则当x=时,G(x)取到最小值,极小值是0,也是最小值.所以G(x)=2x﹣e﹣g(x)≥0,则φ(x)≤2x﹣e当x>0时恒成立.∴函数f(x)和φ(x)存在唯一的隔离直线y=2x﹣e点评:本题考查的知识点是函数的求导,利用导数求最值,属于中档题,主要做题要仔细.29986 7522 產N22480 57D0 埐U 0"28116 6DD4 淔34089 8529 蔩t32134 7D86 綆31241 7A09 稉25968 6570 数31410 7AB2 窲。
高二数学(理科)下学期期末考试试题(带参考答案)

高二数学(理科)下学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.用反证法证明命题“设a ,b 为实数,则方程31x ax be ++=至少有一个实根”时,要做的假设是( )A .方程31x ax be ++=没有实根 B .方程31x ax b e ++=至多有一个实根 C .方程31x ax be++=至多有两个实根 D .方程31x ax b e ++=恰好有两个实根2.设i 是虚数单位,若2i 1iz=+-,则复数z 的共轭复数是( ) A .1i + B .2i + C .3i - D .3i + 3.13aedx x=⎰,则a =( ) A .212e B .4e C .3e D .2e 4.已知随机变量ξ服从正态分布(),16N μ,且()()261P P <-+≤=ξξ,则=μ( ) A .4- B .4 C .2- D .25.已知直线l 过点()1,1P ,且与曲线3y x =在点P 处的切线互相垂直,则直线l 的方程为( ) A .340x y ++= B .340x y +-= C .320x y -+= D .320x y --= 6.用数学归纳法证明“11112321n n ++++<-L (2n ≥)”时,由n k =的假设证明1n k =+时,不等式左边需增加的项数为( ) A .12k - B .21k - C .2k D .21k+7.一批产品的合格率为90%,检验员抽检时出错率为10%,则检验员抽取一件产品,检验为合格品的概率是( )A .0.81B .0.82C .0.90D .0.918.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的22⨯列联表:附:()()()()()22n ad bc K a b c d a c b d -=++++参照附表,得到的正确结论是( )A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关”B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关”C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”9.如果42a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数之和为2,则展开式中x 的系数是( )A .8B .8-C .16D .16-10.已知()2cos 4f x x x =+,()f x '为()f x 的导函数,则()f x '的图象大致是( )A .B .C .D .11.已知6件不同产品中有2件是次品,现对它们依次进行测试,直至找出所有次品为止.若恰在第4次测试后,就找出了所有次品,则这样的不同测试方法数是( ) A .24 B .72 C .96 D .36012.已知()y f x =为定义在R 上的单调递增函数,()y f x '=是其导函数,若对任意x ∈R 总有()()12017f x f x <',则下列大小关系一定正确的是( )A .()102017f e f ⎛⎫>⋅⎪⎝⎭ B .()102017f e f ⎛⎫<⋅ ⎪⎝⎭C .()2102017f e f ⎛⎫>⋅⎪⎝⎭D .()2102017f e f ⎛⎫<⋅ ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.曲线2y x =与y =所围成的封闭图形的面积为 .14.设某种机械设备能够连续正常工作10000小时的概率为0.85,能够连续正常工作15000小时的概率为0.75,现有一台连续工作了10000小时的这种机械,它能够连续正常工作到15000小时的概率是 . 15.若()2017201212x a a x a x -=++20172017a x ++L (x ∈R ),则12323111222a a a ++2017201712a ++L 的值为 .16.如果对定义在区间D 上的函数()f x ,对区间D 内任意两个不相等的实数1x ,2x ,都有()()1122x f x x f x +()()1221x f x x f x >+,则称函数()f x 为区间D 上的“H 函数”.给出下列函数及函数对应的区间 ①()32111322f x x x x =-+,(x ∈R );②()3cos sin f x x x x =+-,0,2x ⎛⎫∈ ⎪⎝⎭π; ③()()1xf x x e -=+,(),1x ∈-∞;④()ln f x x x =,10,x e ⎛⎫∈ ⎪⎝⎭.以上函数为区间D 上的“H 函数”的序号是 .(写出所有正确的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知复数()22431233a a z a a i a --=++-+(a ∈R ). (Ⅰ)若z z =,求a ;(Ⅱ)a 取什么值时,z 是纯虚数. 18.已知函数()321233f x x x x b =-++(b ∈R ). (Ⅰ)当0b =时,求()f x 在[]1,4上的值域;(Ⅱ)若函数()f x 有三个不同的零点,求b 的取值范围.19.在一次抽样调查中测得样本的6组数据,得到一个变量y 关于x 的回归方程模型,其对应的数值如下表:(Ⅰ)请用相关系数r 加以说明y 与x 之间存在线性相关关系(当0.81r >时,说明y 与x 之间具有线性相关关系);(Ⅱ)根据(Ⅰ)的判断结果,建立y 关于x的回归方程并预测当9x =时,对应的y 值为多少(ˆb精确到0.01).附参考公式:回归方程ˆˆa =+中斜率和截距的最小二乘法估计公式分别为: 1221ˆni ii nii x y nx ybxnx==-=-∑∑,ˆˆ=-ay bx ,相关系数r公式为:ni ix y nx yr -=∑参考数据:6147.64i ii x y==∑,621139i i x ==∑ 4.18= 1.53=.20.近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨.现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为12,后2天均为45,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨. (Ⅰ)求至少有一天需要人工降雨的概率; (Ⅱ)求不需要人工降雨的天数X 的分布列和期望. 21.已知函数()21ln 2f x x ax =-,a ∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若关于x 的不等式()()11f x a x ≤--恒成立,求整数a 的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为cos x y =⎧⎪⎨=⎪⎩αα(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin 4⎛⎫+= ⎪⎝⎭πρθ(Ⅰ)求直角坐标系下曲线1C 与曲线2C 的方程;(Ⅱ)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最大值,并求此时点P 的坐标. 23.选修4-5:不等式选讲 已知函数()1f x x x a =++-. (Ⅰ)当3a =时,解不等式()5f x >;(Ⅱ)若关于x 的不等式()21f x a ≥-恒成立,求实数a 的取值范围.高二数学(理科)试题参考答案一、选择题1-5:ADBDB 6-10:CBDCA 11、12:CA二、填空题13.13 14.151715.1- 16.①② 三、解答题17.解:(Ⅰ)230230a a a +≠⎧⎨+-=⎩解得331a a a ≠-⎧⎨=-=⎩或所以1a =(Ⅱ)22304310230a a a a a +≠⎧⎪--=⎨⎪+-≠⎩解得311413a a a a a ≠-⎧⎪⎪==-⎨⎪≠≠-⎪⎩或且所以14a =-18.解:(Ⅰ)当0b =时,()321233f x x x x =-+,()243f x x x '=-+=()()13x x --, 当()1,3x ∈时,()0f x '<,故函数()f x 在()1,3上单调递减, 当()3,4x ∈时,()0f x '>,故函数()f x 在()3,4上单调递增. 由()30f =,()()4143f f ==. ∴()f x 在[]1,4上的值域为40,3⎡⎤⎢⎥⎣⎦;(Ⅱ)由(Ⅰ)可知,()243f x x x '=-+()()13x x =--,由()0f x '<得13x <<,由()0f x '>得1x <或3x >所以()f x 在()1,3上单调递减,在(),1-∞,()3,+∞上单调递增;所以()()413f x f b ==+极大值,()()3f x f b ==极小值 所以当403b +>且0b <,即403b -<<时,()10,1x ∃∈,()21,3x ∈,()33,4x ∈.使得()()()1230f x f x f x ===. 由()f x 的单调性知,当且仅当4,03b ⎛⎫∈- ⎪⎝⎭时,()f x 有三个不同零点. 19.解:(Ⅰ)由题意,计算()1234567 4.56x =⨯+++++=, ()13 2.48 2.08 1.86 1.48+1.10=26y =⨯++++,且6147.64i ii x y==∑4.18=1.53=ni ix y nx yr -=∑47.646 4.52 6.36=4.18 1.53 6.3954-⨯⨯=-⨯0.99≈-;∵0.81r >,说明y 与x 之间存在线性相关关系;(Ⅱ)1221ˆni ii ni i x y nx ybx nx==-=-∑∑247.646 4.52 6.360.361396 4.517.5-⨯⨯==-≈--⨯, ∴ˆˆ2ay bx =-=+0.36 4.5 3.62⨯= ∴y 与x 的线性回归方程是ˆ0.369 3.62y=-⨯+, 将9x =代入回归方程得ˆ0.369 3.620.38y=-⨯+=. 20.解:(Ⅰ)5天全不需要人工降雨的概率是3211422525P ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 故至少有1天需要人工降雨的概率是123125P -=.(Ⅱ)X 的取值是0,1,2,3,4,5()32111025200P X ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭()321311125P X C ⎛⎫⎛⎫==⨯⨯+ ⎪ ⎪⎝⎭⎝⎭31211411255200C ⎛⎫⨯⨯⨯=⎪⎝⎭()32321331112252P X C C ⎛⎫⎛⎫⎛⎫==⨯⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121455C ⨯⨯⨯+32144325200⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭ ()321314325P X C ⎛⎫⎛⎫==⨯⨯+ ⎪ ⎪⎝⎭⎝⎭32132114255C C ⎛⎫⨯⨯⨯⨯+⎪⎝⎭32117325200⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭ ()3121414255P X C ⎛⎫==⨯⨯⨯ ⎪⎝⎭3223145672520025C ⎛⎫⎛⎫+⨯⨯==⎪ ⎪⎝⎭⎝⎭ ()3214252525P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭∴不需要人工降雨的天数X 分布列是不需要人工降雨的天数X 的期望是()11143012200200200E X =⨯+⨯+⨯7372345 3.12002525+⨯+⨯+⨯= 21.解:(Ⅰ)()211ax f x ax x x-'=-=,函数()f x 的定义域为()0,+∞当0a ≤时,()0f x '>,则()f x 在()0,+∞上单调递增 当0a >时,令()0f x '=,则x =当0x <<()0f x '>,()f x 为增函数;当x >()0f x '<,()f x 为减函数.∴当0a ≤时,()f x 的单调递增区间为()0,+∞,无减区间. 当0a >时,()f x的单调递增区间为⎛ ⎝,单调递减区间为⎫+∞⎪⎪⎭(Ⅱ)由()21ln 112x ax a x -≤--得()()22ln 12x x a x x ++≤+ ∵0x >∴原命题等价于()22ln 12x x a x x++≥+在()0,+∞上恒成立.令()()22ln 12x x g x x x++=+, 则()()()()22212ln 2x x x g x xx -++'=+令()2ln h x x x =+,则()h x 在()0,+∞上单调递增 由()110h =>,112ln 2022h ⎛⎫=-+<⎪⎝⎭∴存在唯一01,12x ⎛⎫∈⎪⎝⎭,使()00h x =,002ln 0x x += ∴当00x x <<时,()0g x '>,()g x 为增函数 当0x x >时,()0g x '<,()g x 为减函数 ∴0x x =时()()002max 002ln 12x x g x x x ++==+()0000112x x x x +=+ ∴01a x ≥又01,12x ⎛⎫∈⎪⎝⎭,则()011,2x ∈由a ∈Z ,所以2a ≥ 故整数a 的最小值为2.22.解:(Ⅰ)由曲线1C:cos x y =⎧⎪⎨=⎪⎩αα,可得cos sin x =⎧⎪=αα,两式两边平方相加得:2213y x +=, 即曲线1C 在直角坐标系下的方程为:2213y x +=. 由曲线2C:()sin sin cos 4⎛⎫+=+= ⎪⎝⎭πρθθθ,即s i n c o s 80+-=ρθρθ,所以80x y +-=,即曲线2C 在直角坐标系下的方程为:80x y +-=.(Ⅱ)由(Ⅰ)知椭圆1C 与直线2C无公共点,椭圆上的点()cos P αα到直线80x y +-=的距离为d ==46⎛⎫=+- ⎪⎝⎭πα,∴当sin 16⎛⎫+=- ⎪⎝⎭πα即43=πα时,d的最大值为 此时点P 的坐标为13,22⎛⎫-- ⎪⎝⎭. 23.解:(Ⅰ)当3a =时,()135f x x x =++->,等价于:①1135x x x ≤-⎧⎨---+>⎩,得32x <-;②13135x x x -<<⎧⎨+-+>⎩,无解;③3135x x x ≥⎧⎨++->⎩,得72x >;综上,解集为32x x ⎧<-⎨⎩或72x ⎫>⎬⎭. (Ⅱ)()1f x x x a =++-=1x a x ++-≥1x a x ++-121a a =+≥-,则121a a +≥-或()121a a +≤--,11 得2a ≤,所以a 的取值范围为(],2-∞.。
高二数学下学期期末考试理科试题含答案

第二学期高二年级期末考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.复数z 满足()134i z i -=+,则z =( )A.52B.2C. D.52.设集合{}419A x x =-≥,03x B xx ⎧⎫=≤⎨⎬+⎩⎭,则A B ⋂等于( )A.(3,2]--B.5(3,2]0,2⎡⎤--⋃⎢⎥⎣⎦C.5(,2],2⎛⎫-∞-⋃+∞ ⎪⎝⎭ D.5(,3),2⎡⎫-∞-⋃+∞⎪⎢⎣⎭3.二项式(52x +的展开式中,3x 的系数为( )A.80B.40C.20D.104.由直线2y x =及曲线24y x x =-围成的封闭图形的面积为( ) A.1B.43C.83D.45.已知命题:p 若0x >,则sin x x <,命题 :q 函数2()2xf x x =-有两个零点,则下列说法正确的是( )①p q ∧为真命题;②p q ⌝∨⌝为真命题;③p q ∨为真命题;④p q ⌝∨为真命题 A.①②B.①④C.②③D.①③④6.函数3()1f x ax x =++有极值的一个充分不必要条件是( ) A.1a <- B.1a <C.0a <D.0a >7.为了解某社区居民的家庭年收入年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:但是统计员不小心丢失了一个数据(用m 代替),在数据丢失之前得到回归直线方程为0.760.4y x =+,则m 的值等于( )A.8.60B.8.80C.9.25D.9.528.2020年全国高中生健美操大赛,某市高中生代表队运动员由2名男生和3名女生共5名同学组成,这5名同学站成一排合影留念,则3名女生中有且只有两位女生相邻的排列种数共有( ) A.36B.54种C.72种D.144种9.《易经》是中国传统文化中的精髓.下图是易经先天八卦图(记忆口诀:乾三连、坤六断、巽下断、震仰盂、坎中满、离中虚、艮覆碗、兑上缺),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线),现从八卦中任取两卦,已知每卦都含有阳线和阴线,则这两卦的六根线中恰有四根阳线和两根阴线的概率为( )A.13B.514C.314D.1510.观察下列算式:311=3235=+ 337911=++ 3413151719=+++若某数3n 按上述规律展开后,发现等式右边含有“2021”这个数,则n =( ) A.42B.43C.44D.4511.如图是一个质地均匀的转盘,一向上的指针固定在圆盘中心,盘面分为A ,B ,C 三个区域,每次转动转盘时,指针最终都会随机停留在A ,B ,C 中的某一个区域,且指针停留在区域A ,B 的概率分别是p 和1206p p ⎛⎫<<⎪⎝⎭.每次转动转盘时,指针停留在区域A ,B ,C 分别获得积分10,5,0.设某人转动转盘3次获得总积分为5的概率为()f p ,则()f p 的最大值点0p 的值为( )A.17B.18C.19D.11012.定义在(2,2)-上的函数()f x 的导函数为()f x ',已知2(1)f e =,且()2()f x f x '>,则不等式24(2)xe f x e -<的解集为( )A.(1,4)B.(2,1)-C.(1,)+∞D.(0,1)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“0x ∃<,220x x -->”的否定是“______”. 14.曲线1ln y x x=-在1x =处的切线在y 轴上的截距为______. 15.我国在2020年11月1日零时开始展开第七次全国人口普查,甲、乙等5名志愿者参加4个不同社区的人口普查工作,要求每个社区至少安排1名志愿者,每名志愿者只去一个社区,则不同的安排方法共有______种.16.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲、乙在每局中获胜的概率均为12,且各局胜负相互独立,比赛停止时一共打了ξ局,则ξ的方差()D ξ=______.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|f x x =-,()|4|g x x m =-++. (1)当9m =时,解关于x 的不等式()()f x g x >;(2)若()()f x g x >对任意x R ∈恒成立,求实数m 的取值范围. 18.(本小题满分12分)盲盒里面通常装的是动漫、影视作品的周边,或者设计师单独设计出来的玩偶.由于盒子上没有标注,购买者只有打开才会知道自己买到了什么,因此这种惊喜吸引了众多年轻人,形成了“盲盒经济”.某款盲盒内可能装有某一套玩偶的A ,B ,C 三种样式,且每个盲盒只装一个.(1)某销售网点为调查该款盲盒的受欢迎程度,随机发放了200份问卷,并全部收回.经统计,有30%的人购买了该款盲盒,在这些购买者当中,女生占23;而在未购买者当中,男生女生各占50%.请根据以上信息填写下表,并判断是否有95%的把握认为购买该款盲盒与性别有关?附:)22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:(2)该销售网点已经售卖该款盲盒6周,并记录了销售情况,如下表:由于电脑故障,第二周数据现已丢失,该销售网点负责人决定用第4、5、6周的数据求线性回归方程,再用第1,3周数据进行检验.①请用4,5,6周的数据求出)关于x 的线性回归方程y bx a =+;(注:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-)②若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2盒,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠? 19.(本小题满分12分)在某学校某次射箭比赛中,随机抽取了100名学员的成绩(单位:环),并把所得数据制成了如下所示的频数分布表; (1)求抽取的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)已知这次比赛共有2000名学员参加,如果近似地认为这次成绩Z 服从正态分布()2,N μσ(其中μ近似为样本平均数x ,2σ近似为样本方差2 1.61s =),且规定8.27环是合格线,那么在这2000名学员中,合格的有多少人?(3)已知样本中成绩在[9,10]的6名学员中,有4名男生和2名女生,现从中任选3人代表学校参加全国比赛,记选出的男生人数为ξ,求ξ的分布列与期望E ξ. [附:若()2~,Z N μσ,则()0.6827P Z μσμσ-<<+=,(22)0.9545P Z μσμσ-<<+=, 1.27≈,结果取整数部分]20.(本小题满分12分) 已知()23x x f e x e =--. (1)求函数()f x 的解析式; (2)求函数()f x 的值域;(3)若函数1()g x f kx x ⎛⎫=-⎪⎝⎭在定义域上是增函数,求实数k 的取值范围. 21.(本小题满分12分)随着5G 通讯技术的发展成熟,移动互联网短视频变得越来越普及,人们也越来越热衷于通过短视频获取资讯和学习成长.某短视频创作平台,为了鼓励短视频创作者生产出更多高质量的短视频,会对创作者上传的短视频进行审核,通过审核后的短视频,会对用户进行重点的分发推荐.短视频创作者上传一条短视频后,先由短视频创作平台的智能机器人进行第一阶段审核,短视频审核通过的概率为35,通过智能机器人审核后,进入第二阶段的人工审核,人工审核部门会随机分配3名员工对该条短视频进行审核,同一条短视频每名员工审核通过的概率均为12,若该视频获得2名或者2名以上员工审核通过,则该短视频获得重点分发推荐.(1)某创作者上传一条短视频,求该短视频获得重点分发推荐的概率;(2)若某创作者一次性上传3条短视频作品,求其获得重点分发推荐的短视频个数的分布列与数学期望.22.(本小题满分12分)已知2()sin sin xxf x x e xe x ax a x =--+. (1)当()f x 有两个零点时,求a 的取值范围; (2)当1a =,0x >时,设()()sin f x g x x x=-,求证:()ln g x x x ≥+.六安一中2020~2021学年第二学期高二年级期末考试数学试卷(理科)参考答案一、选择题:二、填空题:13.0x ∀<,220x x --≤ 14.-315.240 16.114三、解答题:17.解:(1)当9m =时,由()()f x g x >,得341x x -++>,4349x x x <-⎧⎨--->⎩或43349x x x -≤≤⎧⎨-++>⎩或3349x x x >⎧⎨-++>⎩ 解得,5x <-或x 无解或4x >, 故不等式的解集为(,5)(4,)x ∈-∞-⋃+∞.(2)因为()()f x g x >恒成立,即|3||4|x x m ->-++恒成立, 所以|3||4|m x x <-++恒成立,所以min (|3||4|)m x x <-++, 因为|3||4||(3)(4)|7x x x x -++≥--+=(当43x -≤≤时取等号)所以min (|3||4|)7x x -++=,所以实数m 的取值范围是(,7)-∞. 18.解:(1)则2 4.714 3.8411109060140K =≈>⨯⨯⨯,故有95%的把握认为“购买该款盲盒与性别有关”. (2)①由数据,求得5x =,27y =,由公式求得222(45)(2527)(55)(2627)(65)(3027)5ˆ(45)(55)(65)2b--+--+--==-+-+-, 5ˆˆ27514.52ay bx =-=-⨯=, 所以y 关于x 的线性回归方程为ˆ 2.514.5yx =+. ②当1x =时,ˆ 2.5114.517y=⨯+=,|1716|2-<; 同样,当3x =时,ˆ 2.5314.522y=⨯+=,|2223|2-<. 所以,所得到的线性回归方程是可靠的.19.解:(1)由所得数据列成的频数分布表,得样本平均数4.50.055.50.186.50.287.50.268.50.179.50.067x =⨯+⨯+⨯+⨯+⨯+⨯=(2)由(1)知~(7,1.61)Z N ,10.6827(8.27)0.158652P Z -∴≥==∴在这2000名学员中,合格的有:20000.15865317⨯≈人(3)由已知得ξ的可能取值为1,2,31242361(1)5C C P C ξ===,2142363(2)5C C P C ξ===,3042361(3)5C C P C ξ===, ξ∴的分布列为:1232555E ξ=⨯+⨯+⨯=(人)20.解:(1)令x e t =,(0)t >,则ln x t =,由()23x x f e x e =--,得()ln 23f t t t =--, 所以函数()f x 的解析式为()ln 23f x x x =--.(2)依题意知函数的定义域是(0,)+∞,且1()2f x x'=-, 令()0f x '>,得102x <<,令()0f x '<,得12x >,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减, 所以max 1()ln 242f x f ⎛⎫==--⎪⎝⎭;又因为0x →,()f x →-∞, 所以函数()f x 的值域为(,ln 24]-∞--.(3)因为12()ln 3g x f kx x kx x x ⎛⎫=-=---- ⎪⎝⎭在(0,)+∞上是增函数, 所以212()0g x k x x '=-+-≥在(0,)+∞上恒成立, 则只需2min 12k x x ⎛⎫≤-+ ⎪⎝⎭,而221211112488x x x ⎛⎫-+=--≥- ⎪⎝⎭(当4x =时取等号),所以实数k 的取值范围为1,8⎛⎤-∞- ⎥⎝⎦.21.解:(1)设“该短视频获得重点分发推荐”为事件A ,则21302333311113()C 115222210P A C ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ (2)设其获得重点分发推荐的短视频个数为随机变量X ,X 可取0,1,2,3.则3~3,10X B ⎛⎫⎪⎝⎭, 030333343(0)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;121333441(1)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭; 212333189(2)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭;30333327(3)110101000P X C ⎛⎫⎛⎫==⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以随机变量X 的分布列如下:343441189279()0123100010001000100010E X =⨯+⨯+⨯+⨯=(或39()31010E X =⨯=) 22.解:(1)由题知,()()(sin )x f x xe a x x =--有两个零点,sin 0x x -=时,0x =故当0x xe a -=有一个非零实根设()x h x xe =,得()(1)xh x x e '=+,()h x ∴在(,1)-∞-上单调递减,在(1,)-+∞上单调递增.又1(1)h e-=-,(0)0h =,0x >时,(0)0h >;0x <时,(0)0h <. 所以,a 的取值范围是1a e=-或0a >. (2)由题,()()1sin x f x g x xe x x==--法一:()1ln ln x x xe x x xe -≥+=,令0x t xe =>,令()ln 1(0)H t t t t =-->11()1t H t t t -'=-=()H x ∴在(0,1)上单调递减,在(1,)+∞上单调递增. ()(1)0H x H ∴≥=.1ln x xe x x ∴-≥+法二:要证1ln x xe x x -≥+成立故设()ln 1xM x xe x x =---,1()(1)xM x x e x ⎛⎫'=+-⎪⎝⎭,(0)x >, 令1()x N x e x =-,则21()0x N x e x'=+>,()N x ∴在(0,)+∞上单调递增又1202N ⎛⎫=<⎪⎝⎭,(1)10N e =->, 01,12x ⎛⎫∴∃∈ ⎪⎝⎭使()00N x =.001x e x ∴=,00ln x x =-,()M x ∴在()00,x 上单调递减,在()0,x +∞上单调递增.()0min 0000[()]ln 10x M x M x x e x x ∴==---=.1ln x xe x x ∴-≥+。
完整版高二数学期末试卷理科及含

高二数学期末考试卷〔理科〕一、选择题〔本大题共 11 小题,每题 3 分,共 33 分〕r 1、与向量 a (1, 3, 2)平行的一个向量的坐标是〔 〕A .〔 1 3,1,1〕 B .〔-1,-3,2〕C .〔- 1 2 , 3 2,-1〕 D .〔 2 ,- 3,-2 2 〕2、设命题 p :方程 2 3 1 0x x 的两根符号不一样;命题 q :方程2 3 1 0x x 的两根之和为 3,判断命题“ p 〞、“ q 〞、“ p q 〞、“ p q 〞为假命题的个数为 ( ) A .0 B .1 C .2 D .3 3、“a >b >0〞是“ ab <a 2b 22〞的 〔 〕A .充足而不用要条件B .必需而不充足条件C .充要条件D .既不充足也不用要条件2y 2 x的焦距为 2,那么 m 的值等于 〔 〕. 4、椭圆 1m 4A .5B .8C .5 或 3D .5 或 85、空间四边形 OABC 中, OA a ,OB b ,OC c ,点 M 在 OA 上,且 OM=2MA ,N 为 BC 中点,那么 MN =〔 〕1 2 1A . a b c2 3 22 1 1 B . a b c3 2 21 1 1 C . a b c2 2 22 2 1 D . a b c3 3 26、抛物线 2y 4x 上的一点 M 到焦点的距离为 1,那么点 M 的纵坐标为〔 〕A .17 16B .1516C .78D .07、对称轴为坐标轴的双曲线有一条渐近线平行于直线 x +2y -3=0,那么该双曲线的离心率为〔 〕或5 4B. 5 或52C. 3 或3 2或5 38、假定不等式 |x -1| <a 成立的充足条件是 0<x<4,那么实数 a 的取值范围是 ( )A .a 1B .a 3C .a 1D .a 39、a (1 t,1 t,t),b (2,t,t) ,那么| a b |的最小值为〔〕A .55 B.555C.3 55 D.11510、动点 P(x、y)知足 10 2 ( 2)2(x 1 y =|3x+4y+2|,那么动点 P 的轨迹是〔〕)A .椭圆 B.双曲线 C.抛物线 D.没法确立2 y2x11、 P 是椭圆125 9上的一点, O 是坐标原点, F 是椭圆的左焦点且1OQ (OP OF ), | OQ | 4,那么点 P 到该椭圆左准线的距离为〔〕25D.2高二数学期末考试卷〔理科〕答题卷一、选择题〔本大题共 11 小题,每题 3 分,共 33 分〕题号 1 2 3 4 5 6 7 8 9 10 11答案二、填空题〔本大题共 4 小题,每题 3 分,共 12 分〕2 x12、命题:x R, x 1 0的否定是2 y213、假定双曲线x 4 4 的左、右焦点是F1、F2 ,过F1 的直线交左支于 A、B 两点,假定|AB|=5 ,那么△ AF2B 的周长是 .14、假定a ( 2,3, 1),b ( 2 ,1,3) ,那么a,b为邻边的平行四边形的面积为.15、以下四个对于圆锥曲线的命题中:u uur uuur ①设A、B 为两个定点, k 为正常数,| PA| | PB | k ,那么动点P 的轨迹为椭圆;②双曲线2 2x y25 91 与椭圆2x352 1y 有同样的焦点;2 x③方程2x 5 2 0 的两根可分别作为椭圆和双曲线的离心率;25④和定点A( 5, 0) 及定直线l : x 的距离之比为4此中真命题的序号为 _________.54的点的轨迹方程为2 2x y16 91.三、解答题〔本大题共 6 小题,共 55 分〕2 2x y16、〔本题总分值 8 分〕命题 p:方程1表示焦点在 y 轴上的椭圆,命题 q:2m m 12 2y x 双曲线15 m 的离心率e (1, 2) ,假定p,q只有一个为真,务实数m 的取值范围.17、〔本题总分值 8 分〕棱长为 1 的正方体 AB CD-A1B1C1D1,试用向量法求平面 A1BC1与平面 AB CD 所成的锐二面角的余弦值。
高二理科数学下学期期末考试

1 1
(k 1) 0 成立
k1
由①②可知,对 n 3, f (n) (1 1 ) n n 0 成立 n
……………… 10 分
x 19.解:( 1) l 的参数方程 y
高二数学理期末测试(二)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分共 钟.
150 分,考试时间 120 分
第Ⅰ 卷 (选择题 共 60 分)
一. 选择题(本大题共 12 个小题,每小题 5 分,共 60 分 .在每个小题的四个选项中,只有 一项是符合题目要求的 .)
(1 3i )2
1.复数
( 4)当 变化时,求弦 BC 的中点的轨迹方程.
20.(本小题满分 9 分)设在一个盒子中,放有标号分别为 1, 2,3 的三张卡片,现从这个
盒 子 中 , 有 放 回 地 先 后 抽 得 两 张 卡 片 , 标 号 分 别 记 为 x, y , 设 随 机 变 量 x 2 y x.
( 1)写出 x, y 的可能取值,并求随机变量
∵ lg(| x 3| | x 7 |) a 解集为 R .∴ a 1………………………… 8 分
1
17
18.解:( 1) f (1) 1, f (2) , f (3)
2
27
( 2)猜想: n 3, f ( n) (1 1 ) n n 0 n
证明:①当 n 3 时, f (3)
17 0 成立 27
②假设当 n k (n 3, n N * ) 时猜想正确,即 f k
装箱分配给这 3 台卡车运送,则不同的分配方案的种数为
()
A . 168
B .84
C. 56
D. 42
第Ⅱ 卷(非选择题满分 90)
2021-2022学年陕西省西安市莲湖区高二下学期期末理科数学试题

2021-2022学年陕西省西安市莲湖区高二下学期期末理科数学试题1.某班有男生13人,女生17人,从中选一名学生为数学课代表,则不同的选法共有()A.30种B.17种C.221种D.13种2.若,则k等于()A.3 B.6 C.6或2 D.6或33.火车站有5股岔道,每股岔道只能停放一列火车,现要停放3列不同的火车,则不同的停放方法有()A.种B.种C.种D.种4.已知随机变量,,那么()A.0.2 B.0.6 C.0.4 D.0.85.下列说法中错误..的是()A.回归直线恒过样本点的中心B.两个变量线性相关性越强,则相关系数就越接近1C.在线性回归方程中,当变量每增加一个单位时,平均减少0.5个单位D.某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变6.某医院医疗攻关小组在一项实验中获得一组关于症状指数y与时间t之间的数据,将其整理得到如图所示的散点图,以下回归模型最能拟合y与t之间关系的是()A.B.C.D.7.某小区的道路网如图所示,则由A到C的最短路径中,经过B的走法有()A.6种B.8种C.9种D.10种8.我国书法大体可分为篆、隶、楷、行、草五种书体,如图,以“国”字为例,现有5张分别写有一种书体的临摹纸,将其全部分给3名书法爱好者,每人至少1张,则不同的分法种数为()A.60 B.90 C.120 D.1509.已知在所有男子中有5%患有色盲症,在所有女子中有0.25%患有色盲症,随机抽一人发现患色盲症,其为男子的概率为()(设男子和女子的人数相等)A.B.C.D.10.国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为时,获胜的一方需超过对方2分才算取胜,直至双方比分打成时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球赢球的概率为,则在比分为,且甲发球的情况下,甲以赢下比赛的概率为()A.B.C.D.11.在极坐标系中,圆心为且过极点的圆的方程为()A.B.C.D.12.曲线的参数方程为(为参数),则曲线的离心率()A.B.C.D.13.若,,则下列不等式成立的是()A.B.C.D.14.已知关于的不等式有解,则实数的取值范围是()A.B.C.D.15.有4名新冠疫情防控志愿者,每人从3个不同的社区中选择1个进行服务.则不同的选择办法共有__________种.16.已知的展开式中第6项的二项式系数最大,请写出一个符合条件的的值__________.17.有6个相同的球,分别标有数字1,2,3,4,5,6.从中有放回的随机取两次,每次取1个球,A表示事件“第一次取出的球的数字是1”,B表示事件“第二次取出的球的数字是2”.C表示事件“两次取出的球的数字之和是8”,D表示事件“两次取出的球的数字之和是7”,则下列命题正确的序号有______.①A与C互斥;②;③A与D相互独立;④B与C相互独立.18.已知直线与,轴分别交于,两点,是曲线(为参数)上的动点,则面积的最大值是____________.19.已知、、,且满足,则的最小值为____________.20.在的二项展开式中,各项系数和与各项二项式系数和之比为32:1.求:(1)的值;(2)展开式中的系数.21.某消费品企业销售部对去年各销售地的居民年收入(即此地所有居民在一年内的收入的总和)及其产品销售额进行抽样分析,收集数据整理如下:15 20 35 50年收入(亿元)销售额(万元)(1)请根据上表提供的数据,求出关于的线性回归方程;(2)若地今年的居民年收入增长20%,预测地今年的销售额将达到多少万元?参考公式:,.参考数据:,.22.“绿水青山就是金山银山”的生态文明发展理念已经深入人心,这将推动新能源汽车产业的迅速发展,下表是我国某地2017-2021年的新能源乘用车的年销售量与年份的统计表:所示:)(2)请将上述列联表补充完整,并判断是否有90%的把握认为购车车主是否购置新能源乘用车与性别有关.参考公式:,,其中.附表:23.某超市“五一”劳动节举行有奖促销活动,凡5月1日当天消费不低于400元,均可抽奖一次,她奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折,若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若甲、乙两顾客均消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率.(2)若顾客丙消费恰好满800元,试比较说明该顾客选择哪种方案更划算.24.在平面直角坐标系中,射线的直角坐标方程为:,曲线的参数方程为(为参数);以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)写出射线的极坐标方程以及曲线的普通方程;(2)已知射线与曲线交于,两点,与曲线交于,两点,求的值.25.在平面直角坐标系中有一点,圆的方程为,点为圆上的动点,点为线段的中点.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求点的轨迹的极坐标方程;(2)设点,直线的参数方程为(为参数),且直线与曲线交于不同的两点,,弦的中点为,求的最大值.26.已知函数.(1)当时,求不等式的解集;(2)若恒成立,求实数的取值范围.27.设a,b,c均为正数,且.(1)求的最小值;(2)证明:.。
高二下学期期末考试数学理科试题答案试题

卜人入州八九几市潮王学校二零二零—二零二壹下期期末统一检测高二数学试题(理科)参考答案及评分意见一.选择题〔50分〕 CDCADCDCBD二.填空题〔25分〕11. 11611x -y -4=0.15.①②④ 三.解答题〔75分〕 16.〔12分〕解令x =1,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1. ①.......................2分令x =-1,那么a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②.......................6分(1)∵a 0=C =1,..............................................8分 ∴a 1+a 2+a 3+…+a 7=-2........................................10分 (2)(①+②)÷2, 得a 0+a 2+a 4+a 6==1093......................................................................12分 17.〔12分〕 解:〔1〕-.3006-100080030010-100020005006-1000200050010-10004000800,2000,4000.(800)0.50.40.2,(2000)0.50.60.50.40.5,(4000)0.50.60.3X X p X p X p X =⨯⨯=⨯=⨯=⨯===⨯===⨯+⨯===⨯=利润产量价格成本考虑产量和价格,利润可以取,,,,即三个X 的分布列如下表:.............................................8分 〔2〕.............................................................12分 18.〔12分〕解:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数, 那么f ′(x )≥0,即3x 2-x +b ≥0,∴b ≥x -3x 2在(-∞,+∞)上恒成立............................3分 设g (x )=x -3x 2.当x =时,g (x )max =,∴b ≥......................................6分 (2)由题意知f ′(1)=0,即由〔1〕得3-1+b =0,∴b =-2.............7分x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2,令f ′(x )=0,得x =1或者x =-.f ′(x )>0,得x 2(,)3∈-∞-或者x (1,)∈∞,f ′(x )<0,得x 2(,1)3∈-即f(x)在x =-处取极大值...................................10分.. 又)32(-f =+c ,f (2)=2+c .∴f (x )max =f (2)=2+c ,∴2+c <c 2.解得c >2或者c <-1,所以c 的取值范围为(-∞,-1)∪(2,+∞).........................12分 19.〔12分〕解:〔1〕设AD 中点为O ,连接PO∆PAD 为等边三角形,且边长为2 ∴PO ⊥AD ,PO =3ODCBA Pzyx又 面PAD ⊥面ABCD 于AD∴PO ⊥面ABCD∴PO 为点P 到平面ABCD 的间隔,即P 到平面ABCD 的间隔为3...............6分连接BO , ABCD 是菱形,且∠BAD =60,O 为AD 中点,∴BO ⊥AD∴以O 为坐标原点,OA 、OB 、OP 分别为z y x ,,轴,建立如下列图的空间直角坐标系,那么有A(1,0,0)、P 〔0,0,3〕、B 〔0,3,0〕、C 〔-2,3,0〕. 设APB 平面的法向量为()z y x n ,,1=()0,3,1-=AB ,()3,0,1-=AP⎪⎩⎪⎨⎧==∴⎪⎩⎪⎨⎧=+-=+-∴zx y x z x y x 33,0303,∴可取()1,1,31=n同理,可取平面PAC 的法向量()1,1,02=n 设二面角A —PB -C 的平面角为θ,那么510252cos =⋅==θ 由图可知,二面角A —PB -C 的平面角是钝角∴二面角A —PB -C 的平面角的余弦值为510-……………………………………….12分 20.〔13分〕解(1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),∴F ′(x )=2ax -=2(ax 2−1)x(x >0).………………………………………2分①当a >0时,由ax 2-1>0,得x >. 由ax 2-1<0,得0<x <. 故当a >0时,F (x )在区间⎪⎭⎫⎝⎛+∞,1a 上单调递增,在区间⎪⎭⎫⎝⎛a 1,0上单调递减.…………………………………………………6分 ②当a ≤0时,F ′(x )<0(x >0)恒成立.故当a ≤0时,F (x )在(0,+∞)上单调递减.……………………………8分 (2)原式等价于方程a ==φ(x )在区间[,e]上有两个不等解.∵φ′(x )=2x (1−2lnx )x 4>0,∴φ(x )在(,)上为增函数,在(,e)上为减函数,那么φ(x )max =φ()=,……………………………10分 而φ(e)=<==φ(). ∴φ(x )min =φ(e), 如图当f (x )=g (x )在[,e]上有两个不等解时有φ(x )min =,……………………………12分a 的取值范围为≤a <.………………………………………………..13分21.〔14分〕解:〔1〕函数()y f x =在π(0,)2上的零点的个数为1.……………………………1分理由如下:因为()e sin cos x f x x x =-,所以()e sin e cos sin x x f x x x x '=++.……………………2分 因为π02x <<,所以()0f x '>, 所以函数()f x 在π(0,)2上是单调递增函数. ················· 3分因为(0)10f =-<,π2π()e 02f =>,根据函数零点存在性定理得函数()y f x =在π(0,)2上的零点的个数为1. ················· 4分〔2〕因为不等式12()()f x g x m +≥等价于12()()f x m g x -≥,所以12ππ[0,],[0,]22x x ∀∈∃∈,使得不等式12()()f x g x m +≥成立,等价于()1min 2min ()()f x m g x -≥,即1min 2max ()()f x m g x -≥. ············· 6分当π[0,]2x ∈时,()e sin e cos sin 0x x f x x x x '=++>,故()f x 在区间π[0,]2上单调递增,所以0x =时,()f x 获得最小值1-. ······················ 7分又()cos sin x g x x x x '=-,由于0cos 1,sin x x x x ≤≤≥所以()g x '0<,故()g x 在区间π[0,]2上单调递减,因此,0x =时,()g x 获得最大值. ·················· 8分所以(1m --≥,所以21m --≤.所以实数m 的取值范围是(,1-∞-. ·················· 9分 〔3〕当1x >-时,要证()()0f x g x ->,只要证()()f x g x >只要证e sin cos cos x x x x x x ->,只要证(()e sin 1cos x x x x >+,由于sin 0,10x x +>+>,只要证e1x x >+. ··········· 10分 下面证明1x >-时,不等式e1x x +成立. 令()()e 11x h x x x =>-+,那么()()()()22e 1e e 11x x xx x h x x x +-'==++, 当()1,0x ∈-时,()0h x '<,()h x 单调递减; 当()0,x ∈+∞时,()0h x '>,()h x 单调递增.所以当且仅当0x =时,()h x 获得极小值也就是最小值为1.令k ,其可看作点()sin ,cos A x x 与点()B 连线的斜率,所以直线AB 的方程为:(y k x =,由于点A 在圆221x y +=上,所以直线AB 与圆221x y +=相交或者相切, 当直线AB 与圆221x y +=相切且切点在第二象限时,直线AB 获得斜率k 的最大值为1. ···················· 12分故0x =时,()10k h <=;0x ≠时,()1h x k >≥.··········· 13分 综上所述,当1x >-时,()()0f x g x ->成立. …………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理科高二数学下学期期末试卷数学把精力放在听上,不要先记下来回来再学,仅仅记书上没有的或教师的总结性发言,今天小编就给大家分享了高二数学,有时间的来阅读哦表达高二数学下学期期末试卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.已知为虚数单位,实数满足,则A.1B.C.D.2.高二(3)班共有学生56人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知3号、31号、45号同学在样本中,那么样本中还有一个同学的座号是A.15B.16C.17D.183.用反证法证明命题:“若整系数一元二次方程有有理根,那么、、中至少有一个是偶数”时,下列假设正确的是A.假设、、都是偶数B.假设、、都不是偶数C.假设、、至多有一个偶数D.假设、、至多有两个偶数4.某地气象台预计,7月1日该地区下雨的概率为,刮风的概率为,既刮风又下雨的概率为,设表示下雨,表示刮风,则A. B. C. D.5.已知某居民小区户主人数和户主对所住户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取20%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A.100,8B.80,20C.100,20D.80,86. 在4次独立重复试验中,事件A发生的概率相同,若事件A至少发生1次的概率为6581,则事件A在一次试验中发生的概率为7. 已知函数,则函数的大致图象是8. 在长为的线段上任取一点 .现作一矩形,邻边长分别等于线段的长,则该矩形面积小于的概率为9.已知展开式中常数项为1120,实数是常数,则展开式中各项系数的和是10.学校选派位同学参加北京大学、上海交通大学、浙江大学这所大学的自主招生考试,每所大学至少有一人参加,则不同的选派方法共有A.540种B.240种C.180种D.150种11.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是A. B. C. D.12.设函数在区间上有两个极值点,则的取值范围是二、填空题(每小题5分,共20分)13. 为虚数单位,设复数满足,则的虚部是14.已知 cos ,则二项式的展开式中的系数为__________.15.三个元件正常工作的概率分别为 12,34,34,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为 .16.已知函数的定义域是,关于函数给出下列命题:①对于任意,函数是上的减函数;②对于任意,函数存在最小值;③存在,使得对于任意的,都有成立;④存在,使得函数有两个零点.其中正确命题的序号是________.(写出所有正确命题的序号)三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分10分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关.0.400 0.250 0.150 0.100 0.050 0.0250.708 1.323 2.072 2.706 3.841 5.024参考公式:18.(本小题满分12分)已知函数(1)若在区间[-2,2]上的最大值为20,求它在该区间上的最小值;(2)若函数有三个不同零点,求的取值范围.19.(本小题满分12分)某研究机构对高三学生的记忆力和判断力进行统计分析,得下表数据:x 6 8 10 12y 2 3 5 6(1)请根据上表提供的数据,用相关系数说明与的线性相关程度;(结果保留小数点后两位,参考数据: )(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程 ;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.参考公式:, ;相关系数 ;20.(本小题满分12分)世界那么大,我想去看看,每年高考结束后,处于休养状态的高中毕业生旅游动机强烈,旅游可支配收入日益增多,可见高中毕业生旅游是一个巨大的市场.为了解高中毕业生每年旅游消费支出(单位:百元)的情况,相关部门随机抽取了某市的1000名毕业生进行问卷调查,并把所得数据列成如下所示的频数分布表:组别 [0,20) [20,40) [40,60) [60,80) [80,100)频数 2 250 450 290 8(1)求所得样本的中位数(精确到百元);(2)根据样本数据,可近似地认为学生的旅游费用支出服从正态分布,若该市共有高中毕业生35000人,试估计有多少位同学旅游费用支出在 8100元以上;(3)已知样本数据中旅游费用支出在[80,100)范围内的8名学生中有5名女生,3名男生,现想选其中3名学生回访,记选出的男生人数为,求的分布列与数学期望.附:若,则,21.(本小题满分12分)已知函数,且曲线在点处的切线方程为 .(1)求实数的值及函数的最大值;(2)证明:对任意的 .22.(本小题满分12分)已知函数 .(1)讨论函数的单调性;(2)若不等式在时恒成立,求实数的取值范围;(3)当时,证明: .数学(理科)参考答案一、选择题:DCBBA AACCD CD二、填空题:13. 14. 15. 16. ②④三、解答题:17.[解] (1)由题意知本题是一个等可能事件的概率,记该事件为A,根据等可能事件的概率得到 -----------------4分(2)由已知数据得甲班乙班总计成绩优秀 1 5 6成绩不优秀 19 15 34总计 20 20 40----------------------6分根据列联表中的数据,计算得随机变量K2的观测值k= ≈3.137, -----------------------9分由于3.137>2.706,所以在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关. -----------------------10分18.解:(1)因为所以函数的单调减区间为----------------3分又由 ------------------------------6分------------------------------10分------------------------------12分19.(1) 6×2+8×3+10×5+12×6=158, -------------------1分x=6+8+10+124=9,y=2+3+5+64=4, ------------------2分62+82+102+122=344. -----------------4分,线性相关性非常强. ----------------6分(2) 158,x=9,y=4, 344.b^=158-4×9×4344-4×92=1420=0.7,a^=y-b^x=4-0.7×9=-2.3,故线性回归方程为y^=0.7x-2.3. -------------------------9分(3)由(2)中线性回归方程知,当x=9时,y^=0.7×9-2.3=4,故预测记忆力为9的同学的判断力约为4. -----------------------12分20.解:(1)设样本的中位数为,则,解得,所得样本中位数为51(百元). ------------------------3分估计有805位同学旅游费用支出在8100元以上. -----------------------6分(3) 的可能取值为0,1,2,3,,,,∴ 的分布列为0 1 2 3-------------------------10分--------------------------12分21解:(1)函数的定义域为,,因的图象在点处的切线方程为,所以解得,所以,故 .令,得,当时,,单调递增;当时,,单调递减.所以当时,取得最大值 . -----------------------6分(Ⅱ)证明:原不等式可变为则,可知函数单调递增,而,所以方程在(0,+∞)上存在唯一实根x0,使得 .当x∈(0,x0)时,,函数h(x)单调递减;当x∈(x0,+∞)时,,函数h(x)单调递增;所以.即在(0,+∞)上恒成立,所以对任意x>0,成立. -------------------------12分法二:证,亦可.22.解:(1)∵y=f(x)-g(x)=ln(ax+1)-x-2x+2,y′=aax+1-4(x+2)2=ax2+4a-4(ax+1)(x+2)2, -----------------------------------------1分当a≥1时,y′≥0,所以函数y=f(x)-g(x)是[0,+∞)上的增函数;当00得x>21a-1,所以函数y=f(x)-g(x)在上是单调递增函数,函数y=f(x)-g(x)在上是单调递减函数;-----3分(2)当a≥1时,函数y=f(x)-g(x)是[0,+∞)上的增函数.所以f(x)-g(x)≥f(0)-g(0)=1,即不等式f(x)≥g(x)+1在x∈[0,+∞)时恒成立,当0综上,实数a的取值范围是[1,+∞). -------------------------7分(3)当a=1时,由(2)得不等式f(x)>g(x)+1在x∈(0,+∞)时恒成立,即ln(x+1)>2xx+2,所以,即12k+1<12[ln(k+1)-lnk].所以13<12(ln2-ln1),15<12(ln3-ln2),17<12(ln4-ln3),…,12n+1<12[ln(n+1)-lnn].将上面各式相加得到,13+15+17+…+12n+1<12[(ln2-ln1)+(ln3-ln2)+(ln4-ln3)+…+(ln(n+1)-lnn)]=12ln(n+1)=12f(n).∴原不等式成立. -------------------------------------------12分高二数学下学期期末联考试卷阅读一、选择题(本大题共12小题,共60.0分)1. 复数为虚数单位的共轭复数是A. B. C. D.2. 在极坐标系中,圆的圆心的极坐标是A. B. C. D.3. 已知某批零件的长度误差单位:毫米服从正态分布,从中随机抽取一件,其长度误差落在区间内的概率为附:若随机变量服从正态分布,则,A. B. C. D.4. 聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术得诀自诩无所阻,额上坟起终不悟”在这里,我们称形如以下形式的等式具有“穿墙术”:则按照以上规律,若具有“穿墙术”,则A. 7B. 35C. 48D. 635. 盒中装有形状,大小完全相同的5个小球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率等于A. B. C. D.6. 设是函数的导函数,的图象如图所示,则的图象最有可能的是A. B.C. D.7. 的展开式的常数项是A. 5B.C.D.8. 曲线在处的切线方程为A. B.C. D.9. 甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A为“三个人去的景点不相同”,事件B为“甲独自去一个景点”,则概率等于A. B. C. D.10. 若,则等于A. 5B. 25C.D.11. 下面使用类比推理正确的是A. 直线a,b,c,若,,则,类推出:向量,,,若,,则B. 同一平面内,直线a,b,c,若,,则,类推出:空间中,直线a,b,c,若,,则C. 实数a,b,若方程有实数根,则,类推出:复数a,b,若方程有实数根,则D. 由向量加法的几何意义,可以类比得到复数加法的几何意义12. 设是函数定义在上的导函数,满足,则下列不等式一定成立的是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13. 定积分14. 若,则 ______.15. 在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是______ .16. 在函数的图象上任取两个不同点,,总能使得,则实数a的取值范围为______ .三、解答题(共70分)(一)必考题共60分17. (12分)已知函数 .Ⅰ 求函数的极值;Ⅱ 求函数在区间上的最大值和最小值18. (12分)某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温与该小卖部的这种饮料销量杯,得到如下数据:日期 1月11日 1月12日 1月13日 1月14日 1月15日平均气温9 10 12 11 8销量杯23 25 30 26 21Ⅰ 若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;Ⅱ 请根据所给五组数据,求出y关于x的线性回归方程 ;Ⅲ 根据Ⅱ 中所得的线性回归方程,若天气预报1月16日的白天平均气温,请预测该奶茶店这种饮料的销量.附:线性回归方程中,,其中,为样本平均值.19. (12分)在如图所示的几何体中,四边形ABCD为正方形,平面ABCD,,, .Ⅰ 求证:平面PAD;Ⅱ 求PD与平面PCE所成角的正弦值;Ⅲ 在棱AB上是否存在一点F,使得平面平面PCE?如果存在,求的值;如果不存在,说明理由.20. (12分)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图如图所示,规定80分及以上者晋级成功,否则晋级失败.晋级成功晋级失败合计男 16女 50合计Ⅰ 求图中a的值;Ⅱ 根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?Ⅲ 将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望 .参考公式:,其中21. (12分)已知函数 .若在处取到极值,求a的值;若在上恒成立,求a的取值范围;求证:当时, .(二)选考题:共10分,从22,23题中任选一题作答。