电动汽车驱动电机冷却系统的组成

合集下载

电动汽车冷却系统工作原理

电动汽车冷却系统工作原理

电动汽车冷却系统工作原理一、引言随着环保意识的日益增强和科技的不断发展,电动汽车逐渐成为未来出行的趋势。

电动汽车冷却系统作为保障车辆正常运行的关键部分,其工作原理和性能直接影响着车辆的安全性和稳定性。

本文将详细介绍电动汽车冷却系统的基本工作原理,以及其与内燃机汽车冷却系统的区别。

二、电动汽车冷却系统概述电动汽车冷却系统主要由冷却液、散热器、水泵、控制阀以及相关的连接管路组成。

其主要功能是为动力电池、电机、电源管理系统以及其它辅助组件散热,防止过热,保证系统的正常运行。

三、电动汽车冷却系统工作原理1.冷却液循环:在电动汽车中,冷却液在泵的作用下循环流动,流经需要散热的各个部件,如动力电池、电机等,将热量带走。

2.散热:散热器是冷却系统的核心部件,负责将冷却液中的热量散发到空气中。

当冷却液流经散热器时,热量通过散热器表面传递给空气,散热器一般采用铝制材料,具有质量轻、散热效率高的优点。

3.控制阀调节:控制阀根据系统温度和工况,调节冷却液的流量和流向。

在低温时,控制阀会减少冷却液的流量,以减少热量的散发;在高温时,控制阀会增加冷却液的流量,提高散热效率。

4.温度监测:温度传感器监测各部件的温度,将信号传递给控制器。

控制器根据接收到的温度信号调节控制阀的工作状态,从而实现对各部件温度的精确控制。

四、电动汽车冷却系统与内燃机汽车冷却系统的区别1.冷却对象:电动汽车的冷却系统主要针对动力电池、电机等电力驱动系统进行散热,而内燃机汽车则需要为发动机、变速器等机械部件散热。

2.冷却介质:电动汽车的冷却介质主要是冷却液,而内燃机汽车的冷却介质主要是防冻液和水。

3.散热需求:由于电动汽车的电力驱动系统产生的热量较少,因此其冷却系统的散热需求相对较低。

而内燃机汽车由于发动机和变速器产生的热量较高,因此其冷却系统的散热需求较大。

4.控制系统:电动汽车的冷却系统需要精确控制各部件的温度,以实现高效节能的散热效果。

而内燃机汽车的冷却系统则更注重对发动机和变速器的保护。

简述电动汽车电机驱动系统的组成

简述电动汽车电机驱动系统的组成

简述电动汽车电机驱动系统的组成1. 引言电动汽车(EV)已经成为现代交通的明星,真是风头无两呀!不过,你知道它的电机驱动系统是怎么回事吗?今天我们就来聊聊这个神奇的系统,看看它到底有啥组成部分。

2. 电机驱动系统概述电机驱动系统可以说是电动汽车的“心脏”。

这个系统主要由电动机、控制器和动力电池组成。

简单来说,电动机负责提供动力,控制器负责“指挥”,而动力电池则是电的来源。

就像一台乐队,电动机是主唱,控制器是指挥,电池是音响,缺一不可呀!2.1 电动机首先得说说电动机。

电动机是系统的核心,主要有直流电动机和交流电动机两种。

直流电动机简单好用,启动快,但在效率上有点差强人意。

而交流电动机,像个“全能选手”,效率高、维护简单,很多电动汽车都选择了它。

开车的时候,你就能感觉到那种瞬间的加速感,真是让人乐开了花!2.2 控制器接下来是控制器,简单来说就是电动机的“大管家”。

控制器通过各种传感器收集数据,实时调整电机的转速和扭矩,确保驾驶体验平稳舒适。

想象一下,控制器就像一位高超的厨师,时刻关注锅里的火候,确保每一道菜都恰到好处。

没有它,电动机就会像无头苍蝇一样,乱糟糟的。

3. 动力电池说到动力电池,这可是电动汽车的“动力源泉”。

通常情况下,电池组采用锂离子电池,轻便又耐用。

充电时,它就像是喝水,越喝越充实;用电时,就像是拼命工作,慢慢消耗。

但一旦电池没电了,那就尴尬了!所以,合理的电池管理系统就显得尤为重要,确保电池既安全又高效。

想想看,要是在路上突然没电,那真是心塞!3.1 电池管理系统电池管理系统(BMS)就像是电池的“保镖”,监控电池的状态,防止过充和过放。

它还能平衡每个电池单元的电量,确保每个“小伙伴”都能共同努力。

没有它,电池寿命就会大打折扣,真是得不偿失。

3.2 充电系统再说说充电系统,简单来说,就是给电池“加油”的地方。

如今的充电桩越来越普及,快充、慢充应有尽有,真是让人眼花缭乱。

充电的时候,车主总是有种“等公交”的感觉,但等个十来分钟,电就满了,心情瞬间好起来。

《电动汽车维护与检修》项目十三 检修驱动电机系统

《电动汽车维护与检修》项目十三  检修驱动电机系统


二、实施内容 (6)将点火开关置于ON挡,检测驱动电机温度传感器的电压,正常应小于4.2 V。 如果检测结果异常,则关闭点火开关,检测温度传感器的电阻值,正常应为1~200 kΩ。如果温度传感器的电阻值小于2 Ω,则表明温度传感器存在内部短路;如果温度 传感器的电阻值为 ,则表明温度传感器存在内部断路。这两种情况下均需更换温度传 感器。
表13-1 驱动电机系统故障分级
3.0
表13-1 驱动电机系统故障分级(续)
4.1
驱动电机内部一般有两个温度传感器,以便于MCU检测和对比。打开点火开关,MCU接收 温度传感器传送的电压信号,并据此判断电机内部温度是否正常。如果MCU检测到驱动电机内 部的温度过高,将上报VCU,VCU通过继电器控制散热风扇全速运转,以降低驱动电机内部的 温度。
三、项目评价 请老师按照学生的实际表现情况进行评价,并将评价结果填入表13-2中。

表13-2 项目评价表
图13-4 冷却系统
1.3
1.4
减速器主要用于降低转速、增大扭矩,从而有效改变整车的传动比,以适应电动汽车不 同工况下的行驶需求。减速器通常安装在机舱动力总成支架下方,与驱动电机连在一起,如 图13-5所示。
图13-5 减速器总成
2.0
驱动电机系 统的工作模式主 要包括驱动模式 和制动能量回收 模式两种,如图 13-6所示。
如图13-7所示,温度传感器通过信号电路和搭铁电路与MCU连接。正常情况下,温度传感 器的电阻值应远大于2 Ω,输出电压应不超过4.2 V。当温度传感器的信号电路和搭铁电路连接异 常或其自身损坏时,MCU会报出“驱动电机温度信号异常”的故障信息。此时应检查温度传感 器及其连接电路,如有异常,则维修或更换故障部件。

驱动电机结构认知

驱动电机结构认知

一、电动汽车电动机驱动系统的组成 引导问题1 : 纯电动汽车驱动电机的结构和技术参数有何特点?
纯电动汽车对驱动电机在功率和稳定性上有更高的要求。以下以北汽新能源纯电动 汽车为例,介绍纯电动汽车驱动电机的结构和技术参数。
一、电动汽车电动机驱动系统的组成
1. 驱动电机结构和性能特点 北汽新能源纯电动汽车采用永磁同步电机(PMSM汽车EV160采用的C33DB永磁同步电机的外观示意图,如图1-2-2是 驱动电机的在车上的位置。
新能源汽车技术
——冷却系统
——驱动电机结构认知
2课时
提出任务
你的主管让你向其他的机电维修技师 介绍新能源汽车驱动电机的结构,你能 完成这个任务吗?
驱动电机结构认知
纯电动驱动电机结构和技术参数特点 混动驱动电机结构和技术参数特点
本节 重点
1.能够认识纯电动汽车驱动电机结构; 2. 能够认识混合动力汽车驱动电机结构。
一、电动汽车电动机驱动系统的组成
THSⅡ的转子磁铁断面成V字形布置不但能够降低高速旋转时的磁损,还能够改善由于磁阻转矩 分量的增加造成的电流值下降。另外,V形布置磁铁也还可以通过树脂膜成型来提高耐离心强度。
图1-2-8 普锐斯THS II驱动电机转子的变化
一、电动汽车电动机驱动系统的组成
THSⅡ也对发电机小型化做出了努力。开 发的新式线圈为绕线管排列方法,发电机可以 将绕组方式从分布绕组改为高密度集中绕组, 这样电机尺寸能够减小34%。
一、电动汽车电动机驱动系统的组成
ATF存留于变速器的最低位置(油箱),通过差速齿轮与 塔轮的旋转,将ATF从油箱搅起,临时储存于位于上部的ATF 采集箱中, ATF受重力作用填充到定子与壳体之间的间隙中, 实现定子到壳体的热传递。ATF吸收绕组端部的热量,将其传 递到油箱,再传递到壳体。

电动汽车驱动电机ppt课件

电动汽车驱动电机ppt课件

26
第三章
驱动电机系统控制策略简介
驱动电机系统下电流程
27
第三章
驱动电机系统控制策略简介
驱动电机系统驱动模式
整车控制器根据车辆运行的不同情况,包括车速、挡位、电池 SOC值来决定,电机输出扭矩/功率。
当电机控制器从整车控制器处得到扭矩输出命令时,将动力电池 提供的直流电,转化成三相正弦交流电,驱动电机输出扭矩,通过机械 传输来驱动车辆。
9
第二章
驱动电机系统关键部件简介
C33DB 驱动电机控制器结构
10
第二章
驱动电机系统关键部件简介
C33DB 驱动电机控制器结构
11
第二章
驱动电机系统关键部件简介
C33DB 驱动电机控制器主要零件
12
第二章
驱动电机系统关键部件简介
C33DB驱动电机系统工作原理
在驱动电机系统中,驱动电机的输出动作主要是靠控制单元给定命令执 行,即控制器输出命令。控制器主要是将输入的直流电逆变成电压、频 率可调的三相交流电,供给配套的三相交流永磁同步电机使用。
CAN总线接口
29 CAN_SHIELD
10
TH
9
TL
电机温度传感器接口
28
屏蔽层
8
485+
7
485-
RS485总线接口
15 HVIL1(+L1) 26 HVIL2(+L2)
高低压互锁接口
19
第二章
驱动电机系统关键部件简介
检修——驱动电机控制器低压插件
建议检修时先确认插件是否连接到位,是否有“退针”现象。
20
第二章
驱动电机系统关键部件简介
检修——确认高压动力线束连接

驱动电机冷却系统

驱动电机冷却系统

中的电动机比一般工业用的电动机性能更高,基本要求如下。 1.电动机的运行特性要满足电动汽车的要求,在恒转矩区,要求低速运行时具有大
转矩,以满足电动汽车起动和爬坡的要求;在恒功率区,要求低转矩时具有高的速度 ,以满足电动汽车在平坦的路面能够高速行驶的要求。
2.电动机应具有瞬时功率大、带负载起动性能好、过载能力强、加速性能好、使用 寿命长的特点。
驱动电机系统概述
三、驱动电机的额定指标 驱动电动机的额定指标是指根据国家标准及电动机的设计、试验数据而确定的额
定运行数据,是电动机运行的基本依据。电动机的额定指标主要包括以下各项。 1.额定功率。额定功率是指额定运行情况下轴端输出的机械功率(W或kW)。 2.额定电压。额定电压是指外加于线端的电源线电压(V)。 3.额定电流。额定电流是指电动机额定运行(额定电压、额定输出功率)情况下电
二、驱动电机的分类 3.永磁同步电动机 永磁同步电动机的定子与交流异步电动机类似,通入交流电产生旋转磁场,但
转子用永磁体取代电枢绕组,电动机转速与旋转磁场转速同步。
驱动电机系统概述
二、驱动电机的分类 4.开关磁阻电动机
开关磁阻电动机定子和转子都是凸电极结构,只有定子上有绕组,转子无绕组 。通过向定子各相绕组按一定次序通入电流,在电机内部产生磁场,此时转子受 电磁转矩,并沿着与通电次序相反的方向转动。
1.驱动电动机的转速、转矩变化范围大;
发动机
电动机
就业变速箱
2.驱动电动机所处的使用环境恶劣;
3.车载的能量有限。
冷却外壳
离合器部分
驱动电机系统概述
二、驱动电机的分类 按照结构和工作原理不同,目前的驱动电动机有直流电动机、交流异步电动
机、永磁同步电动机、开关磁阻电动机等几种。 1.直流电动机 直流电动机通过定子绕组产生磁场,向转子绕组通入直流电,并用换向装置对

新能源故障诊断--驱动电机系统故障诊断

新能源故障诊断--驱动电机系统故障诊断

2. 电机控制器
主要功能:
1.整车控制器 (VCU) 根据驾驶人意图发出各种指令,电机控 制机器响应并回馈,实时调整驱动电机输出,以实现整车的怠 速、 前行、 倒车、 停车、 能量回收以及驻坡等功能。
2.通信和保护实时进行状态和故障检测,保护驱动电机系统和整 车安全可靠运行。
北汽EV200电机控制器
6.2 驱动电机系统测试
一、驱动电机系统绝缘测试
北汽EV系列的驱动电机为永磁同步电机,具有效率高、 体积小、重量轻及可靠性高等优点。为了保证安全,驱 动电机必须有良好的绝缘性,绝缘测试步骤如下:
(1)检测所需工具:绝缘手套、绝缘 鞋、兆欧表FLUKE1587C。
(2)检测步骤: 1.确认绝缘鞋和绝缘手套、绝缘帽正常。 2.将低压蓄电池负极断开,并在负极接口处用胶带粘住。 3.拔掉高压盒电机控制器输入插头 4.用万用表确认所测部位没有高压 5.正确选择兆欧表量程:500V 6.检查兆欧表是否完好:将L端与E端短接,按下TEST ONOFF指针到0;将L端与E端分开悬空,按下TEST ON-OFF指 针到无穷大。否则更换兆欧表。 7.将兆欧表黑表笔接于车身,红表笔逐个测量正负极端子。
驱动电机系统由驱动电机(DM)、电机控制器(MCU)、 机械传动装置构成,通过高低压线束、冷却管路,与其 他系统作电气和散热连接
北汽EV200 15款驱动电机系统组成
驱动电机系统:通过有效的控制策略将动力电池提供的直流电转化为交流 电,实现电机的正转和反转控制。在制动/减速时将电机发出的交流电转化 为直流电,将能量回收给动力电池。
图 6-5 IGBT模块
(4) 驱动控制模块:将中央控制模块的指令转换成对逆 变器中可控硅的通断指令,并作为保护装置,具备过压、 过流等故障的监测保护功能。

一文带你看懂驱动电机冷却系统

一文带你看懂驱动电机冷却系统

一文带你看懂驱动电机冷却系统驱动电机因为在正常运转工作时,会因为铜损耗、铁损耗等原因持续产生热量,车辆的动力输出能力便会随着热量的堆积逐渐衰减,所以工程师们在设计之初就必须考虑散热的问题。

电机及控制系统主要采用风冷和液冷两种冷却方式,少部分小功率电机亦采用自然冷却的方式,如果安装位置有空余,通风情况良好,重量要求不苛刻,则采用风冷方式;如果有节约空间、降低电机总成的重量、提高功率等要求,则采用液冷方式。

一、自然冷却和风冷冷却方式1.自然冷却自然冷却也可以看作是被动散热,它是依靠驱动电机自身的硬件结构,把热量从里经由金属材料向外散热,所以也就不会造成太多的成本支出,但是整体的散热效果并不太好。

考虑到低成本的原因,自然冷却就不能加装过多的结构,所以把驱动电机的外壳设计成鳞片状结构,这样做的目的是增大其与空气直接接触的表面积,从而提升整体的散热效果,这样的方式用于以往的弱混车型还算勉强够用。

2.风冷冷却想要进一步提升驱动电机的散热效果,就不能单单依靠被动的原始手段了,带有散热风扇的主动式风冷效果会更佳些。

在早期的时候,驱动电机会利用自带的同轴风扇,再搭配设计好的一套循环风道,把热量利用风扇的吹力向外扩散。

其原理通俗点说就是把冷空气吹进来,带走驱动电机产生的热量后再吹出去。

驱动电机的自然冷却方式像是在炎热的大夏天,让人静躺在床上抱着“心静自然凉”的想法,还要采取“大”字型的躺法去降暑。

二、驱动电机液冷冷却系统的组成1.水冷冷却方式发动机冷却系统与传统涡轮增压车型冷却系统一样,系统冷却液温度一般在90~100℃之间,允许最高温度为110℃。

电机冷却系统采用了第三套独立的冷却系统,用于电机与电机控制器的冷却,是通过单独的电动水泵驱动冷却液实现的独立循环系统。

它由散热器、电子风扇水管、水壶、电机水套、电机控制器、水泵(安装在散热器立柱上的电动水泵)组成。

系统冷却液温度一般在50~60℃,允许最高温度为75℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动汽车驱动电机冷却系统的组成
电动汽车驱动电机冷却系统是电动汽车中至关重要的一个组成部分。

它的主要作用是保持电机运行时的合适温度,确保电机的高效运转和延长电机寿命。

电动汽车驱动电机冷却系统通常由以下几个组成部分构成:
1. 冷却液循环系统:冷却液循环系统是电动汽车驱动电机冷却系统的核心部分。

冷却液在电机运行时通过散热器,将电机产生的热量带走,保持电机的温度在合适的范围内。

冷却液循环系统一般由水泵、散热器、冷却液管路等组件组成。

2. 散热器:散热器是冷却液循环系统中的重要组件之一。

它通过散热片的设计,将冷却液和电机之间的热量传导出去。

散热器通常安装在电机周围,通过自然对流或风扇的辅助帮助散热。

3. 冷却液:冷却液是电动汽车驱动电机冷却系统中的工作介质。

它一般由水和防腐剂组成,具有良好的热导性和抗腐蚀性能。

冷却液的选择要考虑到温度范围、防腐性能和环境影响等因素。

4. 控制系统:控制系统是电动汽车驱动电机冷却系统中的关键部分。

它监测电机的温度,并根据需要控制水泵和风扇的运行,调节冷却液的流动速度和散热效果。

控制系统通常由传感器、控制器和执行器等组件组成。

电动汽车驱动电机冷却系统的工作原理如下:当电机运行时,产生的热量会使得电机温度升高。

传感器检测到电机温度超过设定值时,控制器会启动水泵和风扇,使冷却液流动起来,并通过散热器将热量散发出去。

当电机温度回到正常范围时,控制器会停止水泵和风扇的运行。

电动汽车驱动电机冷却系统的设计和性能直接关系到电动汽车的运行效率和寿命。

一个高效可靠的冷却系统可以保持电机在合适的温度范围内运行,降低电机的能耗和故障率,延长电机的使用寿命。

因此,对于电动汽车制造商和用户来说,合理选择和维护冷却系统是非常重要的。

通过科学的设计和合理的维护,冷却系统可以为电动汽车的驱动电机提供良好的冷却效果,确保电机的高效运行和可靠性。

这样,电动汽车可以更好地满足人们的出行需求,为环境保护和可持续发展做出贡献。

相关文档
最新文档