04031277《工程光学》实验指导书
《工程光学》课程实验教学大纲.doc

北方民族大学教学进度计划表名称总时数讲课实验上机习题课程设计周学时考试/考查机动计划时数6454104考试2本课程教学目的与要求:木课程讲述工程光学的基础理论和实践中常用的光学系统。
学生应掌握光的电磁理论的基础知识和光学系统的集合系统的分析和计算。
掌握实验的基本技能和基本使用和操作技能。
必读书籍和参考书籍:一、教材:自编的《工程光学》实验指导书二、参考书:1石顺祥等著.物理光学与应用光学.西安:西安电子科技大学出版社,20002梁栓廷著.物理光学.北京:机械工业出版社,19873郁道银等著.工程光学.北京:机械工业出版社版,2007所需教学设备:多媒体任课教师签名:____________________系(教研室)主任签名:____________主管教学院长(主任)签名:_______________ 院(部)签~^7T.早2012年1月8日教务处制《工程光学》课程实验教学大纲课程编号:01100260课程名称:工程光学课程类型:专业必修课(测控技术与仪器)课程属性:课内实验课程总学时:64 (测控技术与仪器专业)课程总学分:4.0 (测控技术与仪器专业)实验学时:10 (测控技术与仪器专业)实验学分:0.5开设学期:第6学期(测控技术与仪器专业)适用专业:测控技术与仪器一、实验教学目标与基本要求通过本课程的实验,使学生能够掌握工程光学的基本理论知识和所涉及的装置仪器的使用、测试技能,使学生在将来的科研实践中,具有解决光学理论及分析问题的能力及分析和综合实验结果以及撰写实验报告的能力。
掌握实验的基本原理,了解所涉及的常用装置、仪器的正确使用方法。
使学生能正确进行相应的仪器操作和使用、准确判断实验现象和结果的合理性,同时具有处理测量数据的能力。
二、本实验课程的基本理论与实验技术知识本实验课程是《工程光学》理论课程的配套课程,需要学生利用理论课涉及的几何光学基本定律与成像概念、理想光学系统、平面与平面系统、光束限制、典型光学系统、光的干涉、衍射及、偏振等知识完成相关的实验项目。
工程光学实验指导书

工程光学实验指导书厦门工学院电子信息工程系2014.9目录实验一Tracepro基本功能学习及反光杯建模 (3)实验二聚光镜的建立 (6)实验三导光管建立 (8)实验四液晶背光模组建立 (15)实验一Tracepro基本功能学习及反光杯建模一、实验目的1. 熟悉tracepro基本功能。
2. 熟悉建模及表面属性、材料定义方法。
二、球形反光碗设计球形反光碗是使用耐热玻璃(例如:PYREX)压制成型,其内部经高光洁度抛光处理并涂镀反光膜,可将投影灯的后部光能有效地反射至前方,提高投影灯光能利用率。
球形反光碗实物图形如下:球形反光碗设计步骤:1.打开TracePro3.24→新建名为球形反光碗的文件,或使用CtrL+N2.点击→,选择Conic类型,形状为球形(Spherical),厚度(Thickness)输入4mm,反光碗高(length)为18mm,孔大小为0,半径(radius)为33mm, 起点坐标值和旋转坐标值保持默认,输入结果为图1.1图框所示:图1.14.点击Insert,使用工具栏图标区缩小图形后,点击下拉菜单View →Render进行渲染以后,反光碗实体模型如图1.2:图1.25.使用工具栏图标区箭头工具,在图形区完全选中反光碗,或点中导航选项卡中“模型树”Object 1,单击鼠标右键,在弹出下拉菜单中选择进行材料属性设置,在材料目录(Catalog)中选择IR,克斯(PYREX)耐热玻璃,运用(Apply)此属性,吸收、透过和折射率将显示如图1.3:注:PYREX相关知识:PYREX玻璃是美国康宁玻璃公司(CORNING)研究人员薛利文(Sullivan)1915年发明的,并取得发明专利。
这种玻璃在美国叫“派莱克斯”(PYREX)玻璃,PYREX是美国康宁公司产品的一个商标。
派莱克斯玻璃专利失效以后,这种玻璃被各国广泛采用。
70多年来,很多专家学者都想研究一种新的玻璃,超过派莱克斯玻璃的性能,都没有成功。
工程光学基础实验指导书

哈尔滨理工大学实验指导书课程名称:工程光学基础学院:测控技术与通信工程学院系部专业:测控技术及仪器1实验一:放大镜、显微镜和望远镜光路并搭及视角放大率的测量实验类型:综合型适用专业:测控技术及仪器一、实验目的:通过光路拼搭,将理想光学系统平面成像、实际光组的光束限制等理论结合起来,形成的综合实验,掌握放大镜、显微镜和望远镜的工作原理及光路特点,并通过视角放大率估测,加深对视角放大率的理解。
二、实验内容:分别拼搭放大镜、显微镜和望远镜的光路及视角放大率的估测。
三、实验用设备仪器及材料:简易光具座、光源、透镜、像屏、玻璃刻线板等。
四、实验方法及步骤:1、放大镜:(1)、玻璃刻线板和正透镜放好,移动正透镜,使玻璃刻线板放在距正透镜一倍焦距以内靠近焦点处,则正透镜起放大镜作用,可观察到玻璃刻线板的放大正立的虚像。
(2)、测量视角放大率:在刻线板旁再放上另一块刻线相同的玻璃刻线板并使它距人眼250mm,两眼同时观察,右眼通过放大镜观察放大的像g1’,左眼直接观察另一刻线板g2,若放大像g1’的n个刻线值正好与g2上的m个刻线值相当,则放大镜的视角放大率就是 m / n。
(3)、理论放大镜的视角放大率为250 / f放。
2、显微镜:(1)、将刻线板g1,正透镜L1 放置在光具座上,刻线板g1放在L1的一倍焦距到两倍焦距之间的地方,使g1成一个放大倒立的实像g1’。
然后将正透镜L2 放置好,并使g1’在L2 的物方一倍焦距以内,放大镜L2使g1’再放大到g1”。
这样就构成了一个显微镜。
(2)、测量视角放大率:显微镜的视角放大率与放大镜的测量方法相同。
右眼通过显微镜观察放大的像g1”左眼直接观察另一刻线板g2,若放大像g1”的n个刻线值正好与g2上的m个刻线值相当,则显微镜的视角放大率就是m / n。
2(3)、根据公式得到显微镜理论的视角放大率为:△ / f1 * 250 / f2’3、望远镜:(1)、开普勒式望远镜:用长焦距的正透镜L1和短焦距的正透镜L2构成,当L1的像方焦点和L2的物方焦点重合时就组成开普勒式望远镜。
工程光学实验1—6指导书.

实验一 放大率法测量焦距和截距 Measurement Of Focus And Intercept一、实验目的:1.通过对透镜的焦距和截距测量熟悉焦距仪的测量原理及测量方法,掌握基本的实验技能。
2.了解焦距仪的结构及平行光臂的使用,学会螺旋丝杠式测微目镜读数方法。
3.掌握校正显微镜放大率的方法。
二、实验要求:基本理论:理想光学系统的共线成像理论。
基本知识:了解焦距仪的结构,平行光管的使用,理想光学系统焦点、焦平面、主平面、焦 距和截距的概念。
基本技能:学会在焦距仪上进行同轴等高调节。
学会使用螺旋丝杠式测微目镜及读数方法。
三、实验内容及测量原理:焦距和截距是光学系统重要的特性参数,就几何光学来说,焦距是光学系统的特征值。
只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实。
1.焦距的测量原理:光学系统的主点到焦点的距离称为焦距。
物方焦距、像方焦距分别用f 、'f 表示。
放大率法测量焦距是利用平行光管物镜焦面上分化板的一对刻线在被测透镜焦面上成像的比例关系,求出被测透镜焦距的大小。
如平行光管分化板上一对刻线间距为y ,经被测透镜成的像为'y ,平行光管物镜和被测透镜焦距分别为'0f 和'f ,由图一可看出它们的关系如下: 0f y tg -=ω '''f y tg -=ω∵'ωω= ∴''0f y f y -=- 即yy f f ''0'∙-= 式中f0'、y 为已知,f'与y'成正比。
这样只要测出y',即可求出被测透镜焦距。
图一2.焦距的测量:光学系统的最后一个表面顶点到像方焦点的距离为后焦距,用lp'表示。
很显然,对于一个光学系统知道了焦距和截距的大小,就可确定焦点和主点的位置。
图二在测量截距的同时,可以进行透镜截距'F l的测量。
工程光学实验指导

实验一物镜焦距、截距的测定一、实验目的掌握用定焦距平行光管法测量光学系统焦距、截距的方法二、实验内容掌握测量方法,做好测量前的准备工作,测量给定的照相物镜、望远物镜和显微物镜的象方焦距和截距、物方焦距和截距。
三、实验原理测量焦距的方法很多,其中的定焦距平行光管法、(即放大率法)测量范围大,测量精度高,相对误差一般在1%以下,是目前常用的方法,其测量原理如图1-1。
图1-1焦距截距的测定原理图其中O 是平行光管物镜,L 是被测透镜,y0 是位于平行光管物镜焦平面上的一对刻线的间隔距离。
y0 经过平行光管物镜后成像在无限远处,再经过被测透镜L 后,在它的焦平面上得到y0 的像y`。
这种方法的原理就是通过测量像y`的大小,然后计算出被测透镜的焦距。
从图1-1 看出下面两个关系式,用作图成像的方法很容易得出:w=w`(1-1)这就是用定焦距平行光管法测定焦距所用的公式,其中f0`是平行光管物镜的焦距,是已知的。
Y0 是位于平行光管物镜焦平面处的分划板上的一对刻线的间隔距离,它的大小也是事先已知的。
Y`是这对刻线y0 经过被测透镜后所成的像,如果能测量出此像y`的大小,那么就很容易用公式(1-1)计算出被测透镜的焦距f`。
利用本公式及方法,可以测量正负透镜、望远物镜、照相物镜、放映物镜,各种目镜的焦距。
应当注意要正确选择测量显微镜的物镜,使之与被测光学系统相匹配。
如测负焦距系统使要选择长工作距的显微物镜。
这是因显微物镜的倍率不同,故(1-1)式变化如下(1-2)式中:β――――――测量显微镜放大倍数四、实验设备焦距仪、待测物镜(照相物镜、照相物镜、显微物镜)焦距仪结构示意如图1-2,它包括一个平行光管、一个透镜夹持器、一个带有目镜的读数显微镜和把它们连在一起的一根带有长度刻尺的导轨组成。
图1-2焦距仪结构示意图1.平行光管、2.透镜夹持器、3.测微目镜组成1.平行光管本实验采用的平行光管物镜的焦距为550mm。
工程光学实验PPT课件

• 1、带有毛玻璃的白炽灯光源S • 2、品字形物屏P: SZ-14 • 3、凸透镜L: f=190mm(f=150mm) • 4、二维调整架: SZ-07 • 5、平面反射镜M • 二维调整架: SZ-07 • 7、通用底座: SZ-04 • 8、二维底座: SZ-02 • 9、通用底座: SZ-04
• 光学表面上如有灰尘,用实验室专备的干燥脱脂棉轻轻拭去或 用橡皮球吹掉。
• 光学表面上若有轻微的污痕或指印,用清洁的镜头纸轻轻拂去, 但不要加压擦拭,
• 更不准用手帕、普通纸片、衣服等擦拭。若表面有较严重的污 痕或指印,应由实验室人员用丙酮或酒精清洗。所有镀膜面均 不能接触或擦拭。
• 防止唾液或其溶液溅落在光学表面上。
F1经Lo后成一放大实像F’1,然后再用目镜Le作为放大镜观察 这个中间像F’1,F’1应成像在Le的第一焦点Fe之内,经过目镜 后在明视距离处成一放大的虚像F’’1。 • 三、实验仪器 • 1、带有毛玻璃的白炽灯光源S • 2、1/10mm分划板F1
•
mx=(像宽/实宽)÷20 (20为测微目镜的放大倍数)
• 像距改变量:s=(a1-a2)+(b2-b1)
• 被测目镜焦距:fe=s/(m2-m1)
• 实验四 自组显微镜
返回
• 一、实验目的 • 了解显微镜的基本原理和结构,并掌握其调节、使用和测量它的
放大率的一种方法。
• 二、实验原理 • 物镜Lo的焦距fo很短,将F1放在它前面距离略大于fo的位置,
2 F 3 4 Le 5
工程光学 实验报告

工程光学实验报告引言光学是研究光的传输、变化和控制的学科。
工程光学是应用光学原理和技术解决实际工程问题的学科。
本实验旨在通过一系列实验,深入了解工程光学的相关原理和应用。
实验目的1.了解光的传播和折射的基本原理;2.学习光的干涉、衍射和偏振现象;3.掌握光学元件的使用方法和调整技巧;4.训练实验操作的能力和科学观察的能力。
实验器材•光源:白炽灯、激光器•光学元件:平面镜、凸透镜、凹透镜、棱镜等•光学仪器:干涉仪、衍射仪、偏振片等•其他常用实验器材:光屏、直尺、卡尺等实验步骤实验一:光的传播和折射1.将白炽灯放在适当位置,并使用光屏接收光线;2.调整光源和光屏的位置,观察光线在直线传播中的特点;3.将平面镜插入光路中,记录光线的折射现象;4.在实验中使用凸透镜、凹透镜等光学元件,观察并记录光线的变化。
实验二:光的干涉1.使用激光器作为光源,将光线通过一个狭缝;2.在光线传播路径上放置一个玻璃片,观察光线的干涉现象;3.在实验中改变光源、狭缝和玻璃片的位置,观察干涉现象的变化。
实验三:光的衍射1.将光源调整为单色光,例如使用激光器;2.在光线传播路径上放置一个狭缝,观察光线的衍射现象;3.在实验中改变狭缝的宽度和光源的位置,观察衍射现象的变化。
实验四:光的偏振1.使用激光器作为光源,将光线通过一个偏振片;2.在光线传播路径上放置一个旋转的偏振片,观察光线的偏振现象;3.在实验中改变偏振片的角度,观察偏振现象的变化。
实验结果与讨论通过实验,我们观察到光在直线传播中的特点,以及在不同光学元件中的折射、干涉、衍射和偏振现象。
这些现象是光的基本特性,对于工程光学的应用具有重要的意义。
实验结论1.光在直线传播时具有一定的传播速度和直线传播的特点;2.光在不同介质中会发生折射现象,折射角度与入射角度和介质的折射率有关;3.光的干涉现象是由光波的叠加效应引起的,光的干涉可以产生亮暗相间的干涉条纹;4.光的衍射现象是光波通过一个狭缝或物体边缘时发生的现象,产生的衍射图样具有特定的衍射角度和衍射图样形状;5.光的偏振现象是光波在特定方向上振动的现象,偏振片可以选择特定方向上的光波进行透过。
工程光学1实验指导书教材

实验仪器简介1、仪器结构及测量原理光具座结构如图1 — 1所示,它由平行光管(1)、透镜夹持器(2)、测量 显微镜(3)及带有刻度尺的导轨(4)组成(1)平行光管常用的平行光管物镜焦距有 550mm 、1000mm 和2000mm 等。
在平行光管 物镜物方焦平面上有一可更换的分划板,分划板经平行光管成像为一无限远物 体,作为测量标记。
常用的分划板有图 1—2所示的用于测量焦距用的玻罗板, 图1—3所示的检测光学系统分辨率的鉴别率板和检验成像质量的星点板等。
2\ 22- M 25图1 — 3分辨率板(2)测量显微镜测量显微镜是用来测量经被测物镜所成的像 (或物体)大小的。
它由物镜和 测微目镜组成,物镜是可以更换的(根据被测物的大小可以更换不同放大倍率的 物镜)。
测微目镜是用来读取测量数值的,其结构如图 1—4所示。
光具座1 2图1 — 1光具座结构示意图图1— 2玻罗板图1—4测微目镜结构图测微目镜由目镜(1)、固定分划板(2)、活动分划板(3)和测微读数鼓轮(4)四部分组成。
测量原理是:读数鼓轮每旋转一圈(即测微螺杆移动一个螺距)活动分划板上刻线移动量为固定分划板刻线的一个格。
测量时,首先旋转读数鼓轮使活动分划板上十字叉丝瞄准被测物体起始位置,由活动分划板双刻线在固定分划板刻线位置读取毫米数(整数),再从读数鼓轮读取小数,然后再次旋转读数鼓轮使活动分划板上十字叉丝瞄准被测物体终止位置,继续读取数据,两次读数之差即为被测物体大小。
2、仪器技术指标(1)550mn光具座①平行光管物镜名义焦距?’= 550 mm通光口径 D = 55 mm相对孔径1:10②平行光管物镜物方焦平面上分划板玻罗板刻线间距:1、2、4、10、20mm星点板十字线分划板鉴别率板U号、川号③测量显微镜物镜:1倍测微目镜:分划板格值1mm测微鼓轮格值0.01 mm(2)GJZ —1型光具座①平行光管物镜名义焦距?’= 1000 mm 实测焦距?’= 997.47 mm 通光口径 D = 100 mm相对孔径1:10②平行光管物镜物方焦平面上分划板玻罗板刻线间距:1、2、4、10、20mm星点板星点直径:0.005 mm、0.008 mm、0.01 mm十字线分划板 刻度范围±20, 格值 鉴别率板1 、2、3、 4、 5号③测量显微镜物 镜:1 倍 NA = 0.0752.5倍NA = 0.0810 倍NA = 0.25 测微目镜: 分划板格值 1mm测微鼓轮格值被测物镜最大口径 被测物镜焦距范围 (3)CXW —1 型光具座 ①平行光管物镜 名义焦距 通光口径 相对孔径复消色差)? = 2000 mm D = 150 mm 1:13.3实测焦距=1973.9 mm1mm 0.01 mm±40° 25 mm测微鼓轮格值 0.01 mm②平行光管物镜物方焦平面上分划板玻罗板 刻线间距: 1、2、4、10、20、40mm星点板 星点直径: 0.005 mm 、0.008 mm 、0.01 mm十字线分划板 刻度范围 ±20, 格值鉴别率板1 、2、3、 4、 5号③测量显微镜物 镜:0.25倍 NA = 0.015 0.5倍 NA = 0.031 倍 NA = 0.0752.5倍 NA = 0.0810 倍NA = 0.25测微目镜: 分划板格值 测微鼓轮格值 测量显微镜偏摆角度 测量显微镜横向移动量测量显微镜高度升降范围±5 mm 被测物镜最大口径 ① 130 mm 被测物镜焦距范围±1200 mm3、仪器调整与操作( 1 )根据测量项目选择平行光管物镜物方焦平面上分划板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程光学》实验指导书周建民编著华东交通大学机电工程学院实验一 透镜焦距的测量透镜是光学仪器中最基本的元件,反映透镜特性的一个主要参量是焦距,它决定了透镜成像的位置和性质(大小、虚实、倒立)。
对于薄透镜焦距测量的准确度,主要取决于透镜光心及焦点(像点)定位的准确度。
本实验在光具座上采用几种不同方法分别测定凸、凹2种薄透镜的焦距,以便了解透镜成像的规律,掌握光路调节技术,比较各种测量方法的优缺点,为今后正确使用光学仪器打下良好的基础。
一、实验目的1、学会测量凸透镜、凹透镜焦距的几种方法。
2、掌握简单光路的分析和光学元件同轴等高的调节方法。
3、熟悉光学实验的操作规则。
二、实验仪器工程光学实验系统(光源、物、凸透镜、凹透镜、光屏、光具座、卷尺)三、 实验原理在近轴光线的条件下,薄透镜成像的高斯公式为1=+''lfl f (1-1) 当将薄透镜置于空气中时,则高斯公式为f l l '=-'111 (1-2) (1-1)、(1-2)式中, f ′为像方焦距;f 为物方焦距;l ′为像距;l 为物距。
式中的各线距均从透镜中心(光心)量起,与光线进行方向一致为正,反之为负,如图1-1所示。
图1-1 透镜成像符号意义图若在实验中分别测出物距l 和像距l ′,即可用式(1-2)求出该透镜的焦距f′。
但应注意:测得量须添加符号,求得量则根据求得结果中的符号判断其物理意义。
对于凸透镜焦距的测量,除用上述物像公式法测量之外,还可用以下几种方法。
1.粗略估测法以太阳光或较远的灯光为光源,用凸透镜将其发出的光线聚成一光点(或像),此时,l →∞,l ′≈f ′,即该点(或像)可认为是焦点,而光点到透镜中心(光心)的距离,即为凸透镜的焦距,此法测量的误差约在10%左右。
由于这种方法误差较大,大都用在实验前作粗略估计,如挑选透镜等。
2.自准法如图1-2所示(略),在待测透镜L 的一侧放置被光源照明的1字形物屏AB ,在另一侧放一平面反射镜M ,移动透镜(或物屏),当物屏AB 正好位于凸透镜之前的焦平面时,物屏AB 上任一点发出的光线经透镜折射后,将变为平行光线,然后被平面反射镜反射回来。
再经透镜折射后,仍会聚在它的焦平面上,即原物屏平面上,形成一个与原物大小相等方向相反的倒立实像A′B′。
此时物屏到透镜之间的距离,就是待测透镜的焦距,即l f =' (1-3) 由于这个方法是利用调节实验装置本身使之产生平行光以达到聚焦的目的,所以称之为自准法,该法测量误差在1%~5%之间。
3.位移法(又称为贝塞尔物像交换法) 物像公式法、粗略估测法自准法都因透镜的中心位置不易确定而在测量中引进误差,为避免这一缺点,可取物屏和像屏之间的距离D 大于4倍焦距(4f ),且保持不变,沿光轴方向移动透镜,则必能在像屏上观察到二次成像。
设物距为1l 时,得放大的倒立实像;物距为2l 时,得缩小的倒立实像,透镜两次成像之间的位移为d ,得Dd D f 422-=' (1-4)可见,只要在光具座上确定物屏、像屏以及透镜二次成像时其滑座边缘所在位置,就可较准确的求出焦距f ′。
这种方法毋须考虑透镜本身的厚度,测量误差可达到1%。
对于凹透镜,由于它对光线有发散作用。
不能对实物成像,所以不能完全按上述方法测量其焦距。
下面介绍两种测凹透镜焦距的方法。
4.成像法(又称为辅助透镜法)图1-3 凹透镜焦距辅助透镜法测量原理如图1-3所示,先使物AB 发出的光线经凸透镜L 1后形成一大小适中的实像A′B′,然后在L 1和A′B′之间放入待测凹透镜L 2 ,就能使虚物A′B′产生一实像A″B″。
分别测出L 2到A′B′和A″B″之间距离s 2 、s 2′,即可求出L 2的像方焦距f 2′。
5.凹透镜自准法图1-4 凹透镜焦距自准法测量原理如图1-4所示,在光路共轴的条件下,L 2在适当位置不动,移动凸透镜L 1,使物屏上物点A 发出的光经L 2、L 1折射,再经平面镜反射回来,在物屏上得到一个与物大小相等的倒立实像。
由光的可逆性原理可知,由L1射向平面镜M的光线是平行光线,点A′是凸透镜L1的焦点。
若凸透镜L1的焦距为已知(可事先测定),即f1=O1A′,再测出O 1与A和O2与O1之间距离,则凹透镜的虚像距s2′和物距s2可求,利用高斯公式可计算出薄凹透镜L2的焦距f2′。
这种方法不受成像条件限制。
交换L1和L2后可直接测出f2′。
四、实验内容与步骤1.光具座上各光学元件同轴等高的调节先利用水平尺将光具座导轨在实验桌上调节成水平,然后进行各光学元件同轴等高的粗调和细调,直到各光学元件的光轴共轴,并与光具座导轨平行为止。
2.自准法测凸透镜焦距①在光具座上放置光学元件,其中用1字屏作物屏(想一想,用十字网格作物屏是否可以?),将滤光片插入1字屏,并用白炽光源照明。
②固定物屏,移动凸透镜L 。
并绕铅直轴略转动靠近透镜的平面镜M(M远离透镜会出现什么现象?),直到在物屏上得到一个与物等大倒立的清晰像为止(注意区分物光经凸透镜内表面和平面镜反射后所成的像,前者不随平面镜转动而移动)。
③记录物屏的位置读数XAB与凸透镜L位置读数XL。
④将透镜L连同透镜夹旋转180°后,重做1次实验,再记下物屏的位置读数XAB与凸透镜L的位置读数XL′。
⑤取2次读数的平均值(XL+XL′)/2,求该透镜的焦距。
要求重复3次,求出及其误差。
3.物距像距法测凸透镜焦距①先用粗略估计法测量待测凸透镜焦距,然后将物屏和像屏放在光具座上,使它们的距离略大于粗测焦距值的4倍,在两屏之间放入透镜,调节物屏、透镜和像屏的中心等高,并与主光轴垂直。
②移动透镜,直到在像屏上看到清晰的像为止,记录物距s与像距s′,求出焦距f′。
③改变屏的位置,重复3次测量,求其f′及其误差。
④分别把物屏放在s >2f′,s=2f′,2f′>s>f′,s=f位置上观察透镜L成像的特点并进行总结。
4.位移法测凸透镜焦距①同3 ①,并记录物屏与像屏之间的距离D。
②,移动透镜,使在像屏上2次所成像的中心位置不变,然后记下2次成像时透镜滑座同一边缘的2个位置,从而算出d ,求出f′。
③改变屏的位置重复测3次,求其f ′及误差。
5.成像法测凹透镜焦距①按图1-3所示,调节各元件共轴后,暂不放入凹透镜,移动凸透镜L1,使像屏上出现清晰的、倒立的、大小适中的实像A′B′,记下A′B′的位置。
②保持凸透镜L1的位置不变,将凹透镜L2放入L1与像屏之间,移动像屏,使屏上重新得到清晰的、放大的、倒立的实像A″B″。
③记录凹透镜L2的位置和A″B″的位置,算出物距s和像距s′,)求出f′。
④改变凹透镜位置(注意使虚物距与所成实像像距两者的差不能太小,以免有效数字位数太少),重复测3次,求出f ′及其误差。
6.自准法测凹透镜焦距方法步骤自拟。
五、注意事项1.测量物屏、透镜及像位置时,要检查滑座上的读数准线和被测平面是否重合,不重合时应根据实际进行修正。
2.由于人眼对成像的清晰度分辨能力有限,所以观察到的像在一定范围内都清晰,加之球差的影响,清晰成像位置会偏离高斯像。
为使两者接近,减小误差。
一般在物屏和像屏固定时,成大像时凸透镜应由远离物屏的位置向物屏移动,直到像屏上出现较清晰像(不是最清晰)为止,成小像时凸透镜应由靠近物屏的位置背离物屏移动。
六、思考题1.共轴调节时对实验有哪些要求?不满足这些要求对测量会产生什么影响?2.在自准法测凸透镜焦距时,你观察到了哪些现象,应如何解释之?3.试分析比较各种测凸透镜焦距方法的误差来源,提出对各种方法优缺点的看法。
4.再设计2种测量凹透镜焦距的实验方案,并说明原理及测量方法。
5.请给出辅助透镜法测量凹透镜焦距时的计算公式。
七、实验报告必须给出思考题的答案,实测的相关数据。
实验二 组合显微镜显微镜是最常见的典型光学系统之一。
一般为了观察近距离的微小物体,要求光学系统具有较高的视觉放大率,此时可以采用显微镜。
一、实验目的1.掌握显微镜成像原理及其构成 2. 掌握显微镜的视觉放大率计算方法 3.观察实际显微镜的景深现象二、实验仪器工程光学实验系统(光源、物、凸透镜、凹透镜、光屏、光具座、卷尺)三、 实验原理如图2-1所示即为显微镜成像原理。
图2-1显微镜成像原理图 式(2-1)为显微镜的视觉放大率公式。
e ef f mm tg tg Γ=''∆-='=Γβωω0)250( 式中,250mm 为明视距离;0f '为物镜的焦距;e f '为目镜焦距。
∆为光学间隔,即前一透镜的像方焦点到后一透镜物方焦点间的距离。
如果把显微镜看作一个组合系统,其组合焦距为∆''-='/0e f f f ,则f mm '=Γ/250。
四、 实验步骤1、 利用两个透镜焦距已知的正透镜,先调节同轴等高。
2、 按照成像原理图搭设摆放透镜,两透镜之间的距离要远大于二者焦距之和。
并且保证摆放在透镜L 1物方焦点附近的物必须成像在透镜L 2的物方焦点处。
3、 直接观察显微镜的放大现象。
4、 计算组合后的显微镜视觉放大率。
5、利用透镜焦距测量方法测出组合后的显微镜焦距,利用有关公式求出视觉放大率,与实验步骤4所得结果比较。
6、前后移动物体,观察能成清晰像时的景深现象。
五、注意事项1、光学零件极为精密、易碎,请轻拿轻放。
2、实验完毕请将相关元件放回实验箱原来的位置。
实验三 组合望远镜望远镜是最常见的典型光学系统之一。
望远镜按光学原理分有两种:伽利略望远镜和开普勒望远镜。
本实验需要选用合适的透镜组合得到这两种望远镜。
一、实验目的1.掌握两种望远镜成像原理及其构成 2. 观察两种望远镜成像的正倒二、实验仪器工程光学实验系统(光源、物、凸透镜、凹透镜、光屏、光具座、卷尺)三、 实验原理如图3-1所示即为开普勒望远镜成像原理。
图3-1开普勒望远镜成像原理图 图3-2为伽利略望远镜示意图。
图3-2 伽利略望远镜成像示意图四、 实验步骤1、 组合开普勒望远镜时,利用两个透镜焦距已知的正透镜,先调节同轴等高。
组合伽利略望远镜时,透镜L 2为负透镜。
2、 按照成像原理图搭设摆放透镜,组合开普勒望远镜时,第一个透镜焦距必须大于第二个透镜,两透镜之间的距离等于二者焦距之和。
透镜L 2摆放在透镜L 1像方焦点处。
组合伽利略望远镜时,需要注意0F 和e F 重合,由于L 2为负透镜,重合点应在L 2的右边。
3、直接观察两种望远镜的望远效果,远处直接看时不太清楚的物体,通过望远镜时容易看清对面的物体,而且近了不少。
4、观察两种望远镜成像的正倒。
五、注意事项1、光学零件极为精密、易碎,请轻拿轻放。