开环直流调速系统

开环直流调速系统
开环直流调速系统

电气测量综合控制系统设计报告

设计名称:直流电动机开环调速系统仿真

姓名:田雪峰学号: 20134680

专业班级:自动化13-02 指导教师:侯淑萍、张勇

系(院):信息工程学院

设计时间:2016.05.22~2016.06.03

课程设计成绩评定表(在相应栏目打√)

评价项目

评价质量

优秀良好一般及格不及格

工作量和态度实验、计算可靠性文字和图表质量总体评价

目录

1 绪论.................................................................1.1 技术数据.............................................................

1.2 设计任务.............................................................

2 开环系统直流调速系统的工作原理.....................................2.1开环直流调速系统的组成与原理........................................2.2开环直流调速系统的静特性分析........................................2.3开环直流调速系统的稳态结构图........................................

2.4开环直流调速系统的数学模型..........................................

3 开环系统直流调速系统的硬件电路设计与实现...........................3.1晶闸管整流电路及保护电路..............................................3.2触发控制电路..........................................................3.3系统给定..............................................................

3.4检测电路..............................................................

4 转速、电流调节器的设计与实现..........................................4.1电流调节器的设计与实现................................................

4.2转速调节器的设计与实现................................................

5 开环直流调速系统仿真...............................................

6 设计心得体会.........................................................参考文献................................................................附录:开环直流调速系整体电路图.........................................

1 绪论

1.1技术数据

1.1.1开环控制的作用

开环控制是指控制装置与被控对象之间只有顺向作用而没有反向联系的控制过程,按这种方式组成的系统称为开环控制系统,其特点是系统的输出量不会对系统的控制作用发生影响,不具备自动修正的能力。

1.1.2主要动态性能

1)上升时间tr:响应曲线从零到第一次达到稳态值所需要的时间。

2)调节时间ts:响应曲线从零到达并停留在稳态值的±5%或±2%误差范围所

需要的最小时间。

3)超调量σ%:系统在响应过程中,输出量的最大值超过稳态值的百分数。

(开环控制的作用;主要动态性能;设计目的)。

1.2设计任务

控制系统包括给定信号,晶闸管触发装置及整流环节、平波电抗器和直流电动机四个环节。

正文部分一律用小四号字,宋体,1.5倍行距。

2 开环系统直流调速系统的工作原理

2.1 开环直流调速系统的组成与原理

开环直流调速系统通过调节控制电压就可以可改变电动机的转速,此试验中采用在给定电压下、触发角一定时改变负载的大小测出电动机转速与电流的关系,在一定范围内可实现无级调速。直流电动机电枢由三相晶闸管整流电路经平波电抗器L供电,并通过改变触发器移相控制信号Uc调节晶闸管的控制角,从而改变整流器的输出电压实现直流电动机的调速。在仿真中为了简化模型,省略了整流变压器和同步变压器,整流器和触发同步使用同一交流电源,直流电动机励磁由直流电源直接供。

正文部分一律用小四号字,宋体,1.5倍行距。

2.2开环直流调速系统的静特性分析

(1) 调速范围

生产机械要求电动机提供的最高转速n

max 和最低转速n

min

之比叫做调速范

围,用字母D表示,即

D=n

max /n

min

其中,n

max 和n

min

一般都指电动机额定负载时的最高和最低转速。

(2) 静差率

当系统在某一转速下运行时,负载由理想空载增加到额定值时所对应的转

速降落△n

N ,与理想空载转速n

之比,称作静差率s,即

s=△n

N

/n

显然,静差率是用来衡量调速系统在负载变化时转速的稳定度的。它和机械特性的硬度有关,特性越硬,静差率越小,转速的稳定度就越高。

然而静差率与机械特性硬度又是有区别的。一般变压调速系统在不同转速下的机械特性是互相平行的,对于同样硬度的特性,理想空载转速越低时,静差率越大,转速的相对稳定度也就越差。

由此可见,调速范围和静差率这两项指标并不是彼此孤立的,必须同时提才有意义。在调速过程中,若额定速降相同,则转速越低时,静差率越大。如果低速时的静差率能满足设计要求,则高速时的静差率就更能满足要求了。因此,调速系统的静差率指标应以最低速进所能达到的数值为准。

正文部分一律用小四号字,宋体,1.5倍行距。

2.3开环直流调速系统的稳态结构图

正文部分一律用小四号字,宋体,1.5倍行距。

2.4开环直流调速系统的数学模型

正文部分一律用小四号字,宋体,1.5倍行距。

2.5直流开环调速系统电路原理图

正文部分一律用小四号字,宋体,1.5倍行距。

3开环系统直流调速系统的硬件电路设计与实现3.1 晶闸管整流电路及保护电路

正文部分一律用小四号字,宋体,1.5倍行距。3.2 触发控制电路

正文部分一律用小四号字,宋体,1.5倍行距。3.3 系统给定

正文部分一律用小四号字,宋体,1.5倍行距。3.4 检测电路

正文部分一律用小四号字,宋体,1.5倍行距。

4 转速、电流调节器的设计与实现

4.1 电流调节器的设计与实现

正文部分一律用小四号字,宋体,1.5倍行距。

4.2 转速调节器的设计与实现

正文部分一律用小四号字,宋体,1.5倍行距。

5 开环直流调速系统仿真

正文部分一律用小四号字,宋体,1.5倍行距。

6 设计心得体会

正文部分一律用小四号字,宋体,1.5倍行距。

参考文献[1] 正文部分一律用小四号字,宋体,1.5倍行距。

附录:开环直流调速系整体电路图

直流调速器的工作原理

直流调速器的工作原理 The manuscript was revised on the evening of 2021

直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 其实就是可控硅调压电路,电机拖动课本上非常清楚了 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 ? 1.海拔高度不超过00米。(超过0米,额定输出值有所降低) 2.周围环境温度不高于℃不低于-10℃。

转速电流双闭环可逆直流调速系统仿真与设计方案

《运动控制》课程设计题目:转速,电流双闭环可逆直流宽频调速系统设计 系部:自动化系 专业:自动化 班级:自动化1班 学号:11423006 11423025 11423015 姓名:杨力强.丁珊珊.赵楠 指导老师:刘艳 日期:2018年5月26日-2018年6月13日

一、设计目的 应用所学的交、直流调速系统的基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行运动控制系统的初步设计。 应用计算机仿真技术,通过在MA TLAB软件上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 在原理设计与仿真研究的基础上,应用PROTEL进行控制系统的印制板的设计,为毕业设计的综合运用奠定坚实的基础。 二、系统设计参数 直流电动机控制系统设计参数:< 直流电动机(3> ) 输出功率为:5.5Kw 电枢额定电压220V 电枢额定电流 30A 额定励磁电流1A 额定励磁电压110V 功率因数0.85 电枢电阻0.2欧姆 电枢回路电感100mH 电机机电时间常数1S 电枢允许过载系数=1.5 额定转速 970rpm 直流电动机控制系统设计参数 环境条件: 电网额定电压:380/220V。电网电压波动:10%。 环境温度:-40~+40摄氏度。环境湿度:10~90%. 控制系统性能指标: 电流超调量小于等于5%。 空载起动到额定转速时的转速超调量小于等于30%。 调速范围D=20。 静差率小于等于0.03.

1、设计内容和数据资料 某直流电动机拖动的机械装置系统。 主电动机技术数据为: ,,,电枢回路总电阻,机电时间常数 ,电动势转速比,Ks=40,,Ts=0.0017ms,电流反馈系数,转速反馈系数,试对该系统进行初步设计。2、技术指标要求 电动机能够实现可逆运行。要求静态无静差。动态过渡过程时间,电流超调量,空载起动到额定转速时的转速超调量。 三、主电路方案和控制系统确定 主电路选用直流脉宽调速系统,控制系统选用转速、电流双闭环控制方案。主电路采用25JPF40电力二极管不可控整流,逆变器采用带续流二极管的功率开关管IGBT构成H型双极式控制可逆PWM变换器。其中属于脉宽调速系统特有的部分主要是UPM、逻辑延时环节DLD、全控型绝缘栅双极性晶体管驱动器GD和PWM变换器。系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差, 从而使系统达到调节电流和转速的目的。该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流原理图

开环直流调速控制系统方案

一、绪论 直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代,随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力传动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性。 长期以来,仿真领域的研究重点是仿真模型的建立这一环节上,即在系统模型建立以后要设计一种算法。以使系统模型等为计算机所接受,然后再编制成计算机程序,并在计算机上运行。因此产生了各种仿真算法和仿真软件。MATLAB提供动态系统仿真工具Simulink,则是众多仿真软件中最强大、最优秀、最容易使用的一种。它有效的解决了以上仿真技术中的问题。在Simulink中,对系统进行建模将变的非常简单,而且仿真过程是交互的,因此可以很随意的改变仿真参数,并且立即可以得到修改后的结果。另外,使用MATLAB中的各种分析工具,还可以对仿真结果进行分析和可视化。Simulink可以超越理想的线性模型去探索更为现实的非线性问题的模型, Simulink会使你的计算机成为一个实验室,用它可对各种现实中存在的、不存在的、甚至是相反的系统进行建模与仿真。 传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。随着生产技术的发展,对电气传动在启制动、正反转以及调速精度、调速围、静态特性、动态响应等方面提出了更高要求,这就要求大量使用调速系统。由于直流电机的调速性能和转矩控制性能好,从20世纪30年代起,就开始使用直流调速系统。它的发展过程是这样的:由最早的旋转变流机组控制发展为放大机、磁放大器控制;再进一步,用静止的晶闸管变流装置和模拟控制器实现直流调速;再后来,用可控整流和大功率晶体管组成的PWM控制电路实现数字化的直流调速,使系统快速性、可控性、经济性不断提高。调速性能的不断提高,使直流调速系统的应用非常广泛。

转速单闭环直流调速系统设计

郑州航空工业管理学院 电力拖动自动控制系统课程设计 07 级电气工程及其自动化专业 0706073 班级 题目转速单闭环的直流拖动系统 姓名 学号 指导教师孙标 二ОО十年月日

电力拖动自动控制系统课程设计 一、设计目的 加深对电力拖动自动控制系统理论知识的理解和对这些理论的实际应用能力,提高对实际问题的分析和解决能力,以达到理论学习的目的,并培养学生应用计算机辅助设计的能力。 二、设计任务 设计一个转速单闭环的直流拖动系统

题目:单闭环不可逆直流调速系统设计 1 技术指标 电动机参数:PN=3KW, n N=1500rpm, UN=220V,IN=17.5A,Ra=1.25 。主回路总电阻R=2.5,电磁时间常数Tl=0.017s,机电时间常数Tm=0.075s。三相桥式整流电路,Ks=40。测速反馈系数=0.07。调速指标:D=30,S=10%。 2 设计要求 (1)闭环系统稳定 (2)在给定和扰动信号作用下,稳态误差为零。 3 设计任务(1)绘制原系统的动态结构图; (2)调节器设计; (3)绘制校正后系统的动态结构图; (4)撰写、打印设计说明书。 4 设计说明书 设计说明书严格按**大学毕业设计格式书写,全部打印.另外,设计说明书应包括以下内容: (1)中文摘要 (2)英文摘要

目录 第一章中文摘要 ································································································ - 1 -第二章英文摘要 ············································································错误!未定义书签。第三章课程设计的目的和意义·············································································· - 1 -1.电力拖动简介 ··························································································· - 1 - 2.课程设计的目的和意义·················································································· - 2 -第四章课程设计内容·························································································· - 2 -第五章方案确定 ································································································ - 3 - 5.1方案比较的论证 ······················································································ - 3 - 5.1.1总体方案的论证比较········································································ - 3 - 5.1.2主电路方案的论证比较····································································· - 4 - 5.1.3控制电路方案的论证比较·································································· - 6 -第六章主电路设计····························································································· - 7 - 6.1主电路工作设备选择 ················································································ - 7 -第七章控制电路设计·························································································· - 8 -第八章结论 ·····································································································- 11 -第九章参考文献 ·······························································································- 11 -

开环直流调速系统

电气测量综合控制系统设计报告 设计名称:直流电动机开环调速系统仿真 姓名:田雪峰学号:20134680 专业班级:自动化13-02 指导教师:侯淑萍、勇 系(院):信息工程学院 设计时间:2016.05.22~2016.06.03 课程设计成绩评定表(在相应栏目打√) 评价质量 评价项目 优秀良好一般及格不及格工作量和态度 实验、计算可靠性

目录 1 绪论.................................................................1.1 技术数据............................................................. 1.2 设计任务............................................................. 2 开环系统直流调速系统的工作原理.....................................2.1开环直流调速系统的组成与原理........................................2.2开环直流调速系统的静特性分析........................................2.3开环直流调速系统的稳态结构图........................................ 2.4开环直流调速系统的数学模型.......................................... 3 开环系统直流调速系统的硬件电路设计与实现...........................3.1晶闸管整流电路及保护电路..............................................3.2触发控制电路..........................................................3.3系统给定..............................................................3.4检测电路.............................................................. 4 转速、电流调节器的设计与实现..........................................4.1电流调节器的设计与实现................................................4.2转速调节器的设计与实

直流电机调速器的工作原理

一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。 二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器: 1.需要较宽的调速范围。 2. 需要较快的动态响应过程。 3. 加、减速时需要自动平滑的过渡过程。 4. 需要低速运转时力矩大。 5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。 以上五点也是直流调速器的应用特点。 三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。 四、直流调速器工作原理简单介绍: 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 五、直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。 最常用的是调压调速系统,即1(改变电枢电压). 六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。

直流电动机可逆调速系统设计 (1)要点

摘要 本次课程设计直流电机可逆调速系统利用的是双闭环调速系统,因其具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。本文对直流双闭环调速系统的设计进行了分析,对直流双闭环调速系统的原理进行了一些说明,介绍了其主电路、检测电路的设计,介绍了电流调节器和转速调节器的设计以及系统中一些参数的计算。 关键词:双闭环,可逆调速,参数计算,调速器。

目录 1. 设计概述 (1) 1.1 设计意义及要求 (1) 1.2 方案分析 (1) 1.2.1 可逆调速方案 (1) 1.2.2 控制方案的选择 (2) 2.系统组成及原理 (4) 3.1设计主电路图 (7) 3.2系统主电路设计 (8) 3.3 保护电路设计 (8) 3.3.1 过电压保护设计 (8) 3.3.2 过电流保护设计 (9) 3.4 转速、电流调节器的设计 (9) 3.4.1电流调节器 (10) 3.4.2 转速调节器 (10) 3.5 检测电路设计 (11) 3.5.1 电流检测电路 (11) 3.5.2 转速检测电路 (11) 3.6 触发电路设计 (12) 4. 主要参数计算 (14) 4.1 变压器参数计算 (14) 4.2 电抗器参数计算 (14) 4.3 晶闸管参数 (14) 5设计心得 (15) 6参考文献 (16)

直流电动机可逆调速系统设计 1.设计概述 1.1设计意义及要求 直流电动机具有良好的起、制动性能,宜于在大范围内实现平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。从控制的角度来看,直流拖动控制系统又是交流拖动控制系统的基础,所以应该首先掌握直流拖动控制系统。本次设计最终的要求是能够是电机工作在电动和制动状态,并且能够对电机进行调速,通过一定的设计,对整个电路的各个器件参数进行一定的计算,由此得到各个器件的性质特性。 1.2 方案分析 1.2.1 可逆调速方案 使电机能够四象限运行的方法有很多,可以改变直流电机电枢两端电压的方向,可以改变直流电机励磁电流的方向等等,即电枢电压反接法和电枢励磁反接法。 电枢励磁反接方法需要的晶闸管功率小,适用于被控电机容量很小的情况,励磁电路中需要串接很大的电感,调速时,电机响应速度较慢,且需要设计很复杂的电路,故在设计中不采用这种方式。 电枢电压反接法可以应用在电机容量很的情况下,且控制电路相对简单,电枢反接反向过程很快,在实际应用中常常采用,本设计中采用该方法。 电枢电压反接电路可以采用两组晶闸管反并联的方式,两组晶闸管分别由不同的驱动电路驱动,可以做到互不干扰。 图1-1 两组晶闸管反并联示意图

晶闸管开环直流调速系统的仿真

晶闸管开环直流调速系统的仿真 一、工作原理 晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管开环直流调速实验控制原理图 二.设计步骤 1主电路的建模和参数设置 开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。 ①三相对称交流电压源的建模与参数设置。首先从电源模块中选 取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C 相”,然后从连接器模块中选取,按图1主电路图进行连接。 为了得到三相对称交流电压源,其参数设置方法及参数设置如下。 双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。由此可以得到三相对称交流电源。

②晶闸管整流桥的建模和参数设置。首先从电力电子模块组中选取 中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。若仿真结果理想,就认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。这一参数设置原则对其他环节的参数设置也是实用的。 图2 A相电源参数设置图3 整流桥参数设置 ③平波电抗器的建模和参数设置。首先从元件模块组中选取 ,并将标签改为“平波电抗器”,然后打开平波电抗器参数设置对话框,参数设置如图4所示,平波电抗器的电感值是通过仿真实验比较后得到的优化参数。 ④直流电动机的建模和参数设置。首先从电动系统模块中选取 ,并将模块标签改为“直流电动机”。直流电动机的励磁绕组“F+ —F-”接直流恒定励磁电源,励磁电源可从电源模块组中选取直流电压源 模块,即,并将电压参数设置为220V,电枢绕组“A+ —A-”经平波电抗器接晶闸管整流桥的输出,电动机经TL端口接恒转矩负载,直流电动机的输出参数有转速n、电枢电流Ia、励磁电流If、电磁转矩Te,通过“示波器”模块观察仿真输出

第七章 电气传动实验 (1)

第七章电气传动控制系统实验 第一节晶闸管直流调速系统参数和环节特性的测定 一、实验目的: 1、熟悉晶闸管直流调速系统的组成及其基本结构。 2、掌握掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验设备 1、教学实验台主控制屏1个 2、负载组件1套 3、电机导轨及测速发电机1台 4、直流电动机1台 5、双踪示波器 1台 6、万用表 1台 三、背景知识 直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。因此,为了保持由浅入深的教学顺序,应该首先很好地掌握直流拖动控制系统。 晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Uc作为触发器的移相控制电压,改变Uc的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。工作原理图如图7-1所示。 图7-1晶闸管直流调速系统工作原理图

四、实验注意事项、实验内容与实验步骤 注: (1)由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。 (2)为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。 (3)电机堵转时,大电流测量的时间要短,以防电机过热。 1、电枢回路电阻R的测定 电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n。为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图7-2所示。 图7-2 晶闸管直流调速系统电阻R测试线路图 (1)将变阻器R d接入被测系统的主电路,并调节电阻负载至最大。测试时电动机不加励磁,并使电机堵转。 (2)低压单元的G给定电位器RP1逆时针调到底,使U ct=0。调节触发电路及晶闸管主回路脉冲偏移电压电位器RP2,使α=150°。 (3)电源控制屏的“三相交流电源”开关拨向“直流调速”。合上主电源,即按下主控制屏绿色“闭合”开关按钮,这时候主控制屏U、V、W端有电压输出。 (4)调节G给定U g使整流装置输出电压U d=(30~70)%U ed(可为110V),然后调整Rd使电枢电流为(80~90)%I ed,读取电流表A和电压表V的数值为I1,U1,则此时整流装置的理想空载电压为 Udo=I1R+U1 (5)调节Rd,使电流表A的读数为40% I ed。在U d不变的条件下读取A,V表数值,则 Udo=I2R+U2 (6)求解两式,可得电枢回路总电阻

#直流电机调速系统分析与设计

第一部分并励直流电动机的工作原理 并励直流电机的励磁绕组和电枢绕组相并联,作为并励发电机来说,是电机本身发出来的端电压为励磁绕组供电;作为并励电动机来说,励磁绕组和电枢共用同一电源,从性能上讲和他励直流电动机相同。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 当电枢转了180°后,导体 cd转到 N极下,导体ab转到S极下时,由于直流电源供给的电流方向不变,仍从电刷 A流入,经导体cd 、ab 后,从电刷B流出。这时导体cd 受力方向变为从右向左,导体ab 受力方向是从左向右,产生的电磁转矩的方向仍为逆时针方向。 因此,电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由导体 ab和cd 流入,使线圈边只要处于N 极下,其中通过电流的方向总是由电刷A 流入的方向,而在S 极下时,总是从电刷 B流出的方向。这就保证了每个极下线圈边中的电流始终是一个方向,从而形成一种方向不变的转矩,使电动机能连续地旋转。这就是直流电动机的工作原理。 转速电流双闭环原理 转速、电流双闭环直流调速系统的组成,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。 从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。 这就形成了转速、电流双闭环调速系统。 限幅的作用: 转速调节器ASR的输出限幅电压U*im --电流给定电压的最大值,即限制了最大电流; τ电流调节器ACR的输出限幅电压Ucm --Uc的最大值,即限制了电力电子变换器的最大输出电压Udm。 第二部分 PID算法的基本原理 PID调节器各校正环节的作用 1、比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节 器立即产生控制作用以减小偏差。 2、积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分 时间常数TI,TI越大,积分作用越弱,反之则越强。 3、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太 大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减 小调节时间。 下面对控制点所采用的PID控制算法进行说明。

H桥可逆直流调速系统设计与实验

CDIO课程项目研究报告 项目名称:H桥可逆直流调速系统设计与实验 姓名; 指导老师: 日期:

摘要 本设计的题目是基于SG3525的双闭环直流电机调速系统的设计。SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。如果对系统的动态性能要求较高,则单闭环系统就难以满足需要。而转速、电流双闭环直流调节系统采用PI调节器可以获得无静差;构成的滞后校正,可以保证稳态精度;虽快速性的限制来换取系统稳定的,但是电路较简单。所以双闭环直流调速是性能很好、应用最广的直流调速系统。本设计选用了转速、电流双闭环调速控制电路,本课题内容重点包括调速控制器的原理,并且根据原理对转速调节器和电流调节器进行了详细地设计。概括了整个电路的动静态性能,最后将整个控制器的电路图设计完成,并且进行仿真。 关键词:双闭环直流可逆调速系统、H桥驱动电路、SG3525信号产生电路、PI调节器、MATLAB仿真

前言 随着交流调速的迅速发展,交流调速技术越趋成熟,但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。采用转速负反馈和PI调节器的单闭环调速系统可以在保证系统稳定的条件下实现转速无静差。但如果对系统的动态性能要求较高,如要求快速起制动、突加负载动态速降时,单闭环系统就难以满足。这主要是因为在单闭环系统中不能完全按照需要来控制动态过程中的电流或转矩。在单闭环系统中,只有电流截至负反馈环节是专门用来控制电流的,但它只是在超过临界电流值以后,靠强烈的负反馈作用限制电流的冲击,并不能很理想的控制电流的动态波形。实际工作中,在电机最大电流受限的条件下,充分利用电机的允许过载能力,最好是在过渡过程中始终保持电流转矩为允许最大值,使电力拖动系统尽可能用最大的加速度启动,到达稳定转速后,又让电流立即降下来,使转矩马上与负载相平衡,从而转入稳态运行。实际上,由于主电路电感的作用,电流不能突跳,为了实现在允许条件下最快启动,关键是要获得一段使电流保持为最大值的恒流过程,按照反馈控制规律,电流负反馈就能得到近似的恒流过程。问题是希望在启动过程中只有电流负反馈,而不能让它和转速负反馈同时加到一个调节器的输入端,到达稳态转速后,又希望只要转速负反馈,不要电流负反馈发挥主作用,因此需采用双闭环直流调速系统。这样就能做到既存在转速和电流两种负反馈作用又能使它们作用在不同的阶段。 项目预期成果: 设计一个双闭环可逆直流无静差调速系统,其稳态性能指标实现要求如下:电流超调量S≤5%调速范围 D=20;其动态性能指标:转速超调量δn=10%;调整时间时间ts=2s;电流超调量δi≤5% 。

双闭环直流调速系统工程设计

第七章 双闭环直流调速系统 工程设计方法 本章要点 本章主要介绍典型系统的数学模型、参数和性能指标关系,系统结构的近似处理 和非典型系统的典型化,速度、电流双闭环直流调速系统工程设计方法 在双闭环调速系统中,电动机、晶闸管整流装置、触发装置都可按负载的工艺要求来选择和设计。根据生产机械和工艺的要求提出系统的稳态和动态性能指标,而系统的固有部分往往不能满足性能指标要求,所以需要设计合适的校正环节来达到。 校正方法有许多种类,而且对一个系统来说,能够满足性能指标的校正方案也不是唯一的。在直流调速系统中,常用的校正方法有串联校正和并联校正两种,其中串联校正简便,且可利用系统固有部分中的运算放大器构成有源校正网络来实现。因此,本章重点讨论直流调速系统的串联校正方法。 自动控制原理中,为了区分系统的稳态精度,按照系统中所含积分环节的个数,把系统分为0型、I 型、II 型…系统 。系统型别越高,系统的准确度越高,但相对稳定性变差。0型系统的稳态精度最低,而III 型及III 型以上的系统则不易稳定,实际上极少应用。因此,为了保证一定的稳态精度和相对稳定性,通常在I 型和II 型系统中各选一种作为典型,称为典型I 型和II 型系统,作为工程设计方法的基础。 第一节 典型系统 一、典型I 型系统 1、 数学模型 1)框图及标准传递函数 典型I 型系统的框图如图7-1所示,其开环传递函数为: ) 1()(+= Ts s K s G 其中,参数有二个:K 、和T ,T 一般为系统保留下来的固有参数,K 为需要选定的参数。

2)Bode 图 由图可知,在ω=1处,L(ω)=20lgK ,在ω=ωc 处,L(ω)=0,根据 20lg 1lg 0lg 20-=--c K ω (当ωc <1/T 时) 可得 K=ωc 为使系统具有较好的相对稳定性,通常要求T c 1< ω,即T K 1< ,这也是典型I 型系统的条件。 3)参数和性能指标关系 典型I 型系统为二阶系统,典型二阶系统的参数和性能指标关系在第三章中已分析由图7-1可得典型I 型系统的闭环传递函数为: 2 2 2 2 2 2///) 1(1)1() ()(n n n s s T K T s s T K K s Ts K Ts S K Ts s K s R s C ωξωω++= ++= ++= ++ +=

德国西门子直流调速装置的工作原理

德国西门子直流调速装置的工作原理 直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 调速方案一般有下列3种方式 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流电动机的工作原理图。 (1)构成: 磁场:图中 N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组;--; 容量较小的发电机是用磁铁做磁极的。容量较大的发电机的磁场是

直流PWMM可逆调速系统的设计与仿真

基础课程设计(论文) 直流PWM-M可逆调速系统的设计与仿真 专业:电气工程及其自动化 指导教师:刘雨楠 小组成员:陈慧婷(20114073166) 石文强(20114073113) 刘志鹏(20114073134) 张华国(20114073151) 信息技术学院电气工程系 2014年10月20日

摘要 当今,自动化控制系统已经在各行各业得到了广泛的应用和发展,而直流调速控制作为电气传动的主流在现代化生产中起着主要作用。本文主要研究直流调速系统,它主要由三部分组成,包括控制部分、功率部分、直流电动机。长期以来,直流电动机因其具有调节转速比较灵活、方法简单、易于大范围内平滑调速、控制性能好等特点,一直在传动领域占有统治地位。微机技术的快速发展,在控制领域得到广泛应用。本文对基于微机控制的双闭环可逆直流PWM调速系统进行了较深入的研究,从直流调速系统原理出发,逐步建立了双闭环直流PWM调速系统的数学模型,用微机硬件和软件发展的最新成果,探讨一个将微机和电力拖动控制相结合的新的控制方法,研究工作在对控制对象全面回顾的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件的探讨,控制策略和控制算法的探讨等内容。在硬件方面充分利用微机外设接口丰富,运算速度快的特点,采取软件和硬件相结合的措施,实现对转速、电流双闭环调速系统的控制。论文分析了系统工作原理和提高调速性能的方法,研究了IGBT模块应用中驱动、吸收、保护控制等关键技术.在微机控制方面,讨论了数字触发、数字测速、数字PWM调制器、双极式H型PWM变换电路、转速与电流控制器的原理,并给出了软、硬件实现方案。 关键词:直流可逆调速数字触发PWM 数字控制器

电力拖动自动控制直流调速系统的课后习题

1.设控制对象的传递函数为1 1234()(1)(1)(1)(1) obj K W s T s T s T s T s = ++++,式中K 1=2; T 1=0.4s ;T 2=0.08s ;T 3=0.015s ;T 4=0.005s 。要求阶跃输入时系统超调量σ%<5%。 用PI 调节器将系统设计成典型I 型系统,试设计调节器参数并计算调节时间t s 。 解:用PI 调节器校正时,调节器传递函数为1 ()i PI pi i W s K s ττ+= 取10.4i T s τ==,并将2T 、3T 、4T 看成小时间常数,令 2340.080.0150.0050.1T T T T s s s s =++=++= 则按典型I 型系统校正时系统开环传递函数为 1 111()(1)(1)(1) pi i pi i i K s K K W s K s T s Ts s Ts τττ+== +++ 取1 1 2pi i K K K T τ= = ,则 10.4 12220.1 i pi K K T τ= = =?? 调节时间 660.10.6s t T s s ≈=?= 所以PI 调节器的参数0.4i s τ=,1pi K =;调节时间0.6s t s =。 2.画出直流电动机理想启动时的转速、电流与时间的关系曲线。采用理想启动的目的是什么?如何实现? , (∞) (a) (b) i n I 图1-30 调速系统启动过程的电流和转速波形 理想启动是使启动电流一直保持最大允许值,此时电动机以最大转矩启动, 转速迅速以直线规律上升,以缩短启动时间。 工程上常采用转速电流双闭环负反馈调速系统。启动时,让转速外环饱和不起作 用,电流内环起主要作用,调节启动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用。

直流调速器工作原理

直流调速器工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接, 下端和直流 电动机连接, 直流调速器 将交流电转 化成两路输 出直流电源, 一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 调速方案一般有下列3种方式 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 直流调速分为三种:转子串电阻调速,调压调速,弱磁

调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 1.海拔高度不超过1000米。(超过1000米,额定输出电流值有所降低) 2.周围环境温度不高于40℃不低于-10℃。 3.周围环境相对湿度不大于85[%],无水凝滴。 4.没有显着震动和颠簸的场合。

实验三 开环直流调速系统Matlab仿真

实训三 晶闸管开环直流调速系统的 MATLAB 仿真实训 一、实验实训目的 1.学习并掌握晶闸管开环直流调速系统模型建立及模型参数设置的方法和步骤。 2.熟悉并掌握系统仿真参数设置的方法和步骤。 3.学会利用 MA TLAB 软件对系统进行稳态与动态计算与仿真。 4.巩固并加深对晶闸管开环直流调速系统理论知识的理解。 二、实验实训原理及知识准备 1. 晶闸管开环直流调速系统的原理图如图3-3-1 所示。 图 3-1 晶闸管开环直流调速系统原理图 2.晶闸管开环直流调速系统的直流电动机电枢电流、电磁转矩与转速之间的关系。 3.复习实验实训指导书中 MA TLAB 基本操作和 MA TLAB/Simulink/Power System工具 箱内容。 4.预习实验实训指导书中实验实训二,并写好预习报告。 5.画出晶闸管开环直流调速系统的动态结构图。 三、实验实训内容及步骤 直流调速系统的仿真有两种方法,一是根据系统的动态结构图进行仿真,二是用 Power System的相关模块仿真,下面分别对两种方法进行介绍。 方法一:使用 Simulink 中的 Power System模块对直流调速系统进行仿真 1.建立系统的仿真模型和模型参数的设置 (1)建立一个仿真模型的新文件。在 MA TLAB 的菜单栏上点击工具栏上的 simulink工 具 ,选择 File→New→Model,新建一个 simulink文件,绘制电路的仿真模型如图 3-3-1。

3-3-1 (2)按图 3-3-1 要求提取电路元器件模块。在仿真模型窗口的菜单上点击图标调出模 型库浏览器,在模型库中提取所需的模块放到仿真窗口,设置各模块参数。晶闸管开环直流 调速系统由主电路(交流电源、晶闸管整流桥、平波电抗器、直流电动机、触发电路)和控 制电路(给定环节)组成,具体设置如下: 1)三相交流电源的模型建立和参数设置 ①三相交流电源的模型建立 首先从Simpowersystes 中的Electrical sources 电源模块组 中选取一个交流电压源模块 AC Voltage Source,再用复制的 方法得到三相电源的另两个电压源模块,用 Format(格式设 定)菜单中 Rotate block(Ctrl +R)将模块水平放置,并点击模 块标题名称,将模块标签分别改为“Uu ” 、 “Uv ” 、 “Uw ” ,然 后从连接器模块 Connectors 中选取“Ground (output )” 元件 , 按图 3-3-2 进行连接。 ②三相交流电源的参数设置 双击 U 相交流电源图标,打开电压源参数设置对话框,幅值取 220V ,初相位设置成 0 图 3-3-2 三相交流电源模型

相关文档
最新文档