02实验二 制流电路和分压电路101021

02实验二  制流电路和分压电路101021
02实验二  制流电路和分压电路101021

实验二制流电路和分压电路

一、实验目的:

1、学习和掌握万用电表的操作规则及具体使用方法。

2、掌握制流与分压电路的联结方法、性能和特点。

二、实验仪器:

万用电表(指针式、数字式各一块)、低压电源(直流型、交流型各一台)、滑线变器、电阻箱、导线。

1、万用电表的原理和结构:

万用电表是实验室常用的一种仪表,可用来测量电压、电流、电阻、交流电压及电流等,还可用以检查电路和排除电路故障。

2、万用电表的操作规程:

(1)、使用指针式万用电表前必须认清两极和刻度盘,熟悉转换开关的作用和用法,据待测量的种类和大小(交流和直流电压、电流,电阻) ,将转换开关转到适当位置并接好表笔。

(2)、被测量不能确定其大概值时,应将转换开关旋到最大量程处。

(3)、使用前,指针不指在0位,就首先调零;读数时,视线正对着指针。有反射镜的应使指针与像重合。

(4)、测量电流时,将万用表串联在被测电路中;测量电压时,将万用表并联在被测电路两端(红表笔代表“+”,黑表笔代表“-”) 。

(5)、测试时,不能旋转转换开关。

(6)、测量电流、电压时,先用跃接法试探大小,再用稳接法测量。

(7)、测量电路中电阻时,应将电路中的电源和有关电阻断开,不能带电测电阻。

(8)、每次更换电阻档后,都要调节测零点,测试电阻时,不得用双手同时接触两表笔的金属部分。若调不到零点,须更换电池。

(9)、测量完毕,务必将转换开关旋至空档或最大交流电压档。

(10)、数字万用表使用完毕必须关闭电源。当屏幕出现+,-号时,必须更换电池。

三、实验原理:

电路可以千变万化,但一个电路一般可以分为电源、控制和测量三个部分。测量电路是先根据实验要求而确定好的,例如要校准某一电压表,需选一标准的电压表和它并联,这就是测量线路,它可等效于一个负载,这个负载可能是容性的、感性的或简单的电阻,以R2为负载。根据测量的要求,负载的电流值I和电压值U在一定的范围内变化,这就要求有一个合适的电源。控制电路的任务就是控制负载的电流和电压,使其数值和范围达到预定的要求。常用的是制流电流和分压电路。控制元件主要使用滑线变阻器或电阻箱。

1、制流电路

电路如图三所示,图中E 为直流(或交流)电源;1R 为滑线变阻器,A 为

电流表;2R 为负载,本实验采用电阻;K 为电源开关。它是将滑线变阻器的滑

动头C 和任一固定端(如A 端)串联在电路中, 作为一个可变电阻,移动滑动头的位置可以连续改变AC 之间的电阻R AC ,从而改变整个电路的电流I 。

2、分压电路 分压电路如图四所示,图中E 为直流(或交流)电源,滑线变阻器两个固定端A 、B 与电源E 相接,负载R 2接滑动端C 和固定端A (或B )上,当滑动头C 由A 端滑至B 端,负载上电压由0变至E ,调节的范围与变阻器的阻值无关。

3、制流电路与分压电路的差别与选择

(1)调节范围

分压电路的电压调节范围大,可从E →0;而制流电路电压调节范围小,只能从

E E R R R →?+122

(2)细调程度

当2/21R R ≤时,在整个调节范围内调节基本均匀,但制流电路可调范围小;

负载上的电压值小,能调得较精细,而电压值大时调节变得很粗。

(3)功率损耗

使用同一变阻器,分压电路消耗电能比制流电路要大。基于以上的差别,当 负载电阻较大,调节范围较宽时选分压电路;反之,当负载电阻较小,功耗较大,图1

图2

调节范围不太大的情况下则选用制流电路。若一级电路不能达到细调要求,则可采用二级制流(或二段分压)的方法以满足细调要求。

四、实验步骤:

l、用万用电表电阻档, 测量导线、电阻器的阻值, 判断好坏,选用正常器件。

2、把交流电源的输出电压调到5V,若电源没有电表显示,则用指针表的交流电压挡测量,把表笔并接在电源输出端测量,且调至5V。断电后再按图1(b)连好电路,检查无误后通电,将数字万用表转换开关旋至交流电流的合适档(按欧姆定律估算出I)。把表笔串入电路,分别测定C端位于A、B及中点的电流I i,用指针表测量R2上电压U R2。

说明:万用电表交流档测电压、电流的读数均为有效值。

3、把直流电源的输出电压调到10V,若电源没有电表显示,则用指针电表测量。断电后再按图2(a)连好电路,检查无误后通电,将数字万用表转换开关旋至直流电压的合适档,将表笔并接在电源两端,分别C在A点、中点、B点时测输出电压U AC。

4、分别使C端位于R1的两端A、B, C点,测定I、I1、I2。

五、数据记录及处理:

1、列表记录数据

表一制流电路的测量(交流)单位:Ω、V、A

表二分压电路的U i,I i测量(直流)单位:Ω、V、mA

2、实验结论:

由表一测量数据可知, 制流电路的负载R2上电流变化范围。电压变化范围是。

由表二数据可知, 分压电路的负载R2上的电压变化范围。最大电压与电源电压_________。

六、思考题:

1、以下电路能够制流或分压吗?若有错误请说明原因,并改正之。

参考:(a)(b)(c)不能限制流也不能分压;滑头至最左端时,电路短路。(d)滑头至最右端时,电路短路。

改正:(a)(b)可改为图(4)的分压电路。(c)(d)可改为图(5)的制流电路。

制流与分压电路实验报告

实验一制流电路与分压电路 【目的与任务】 1、学习和掌握万用电表的操作规则及具体使用方法; 2、完成制流与分压电路的联结和电路中的电流和电压的测量; 3、总结制流与分压电路各自的特点及其应用。 【仪器与设备】 万用电表(指针式、数字式各一块),低压电源(直流型、交流型各一台),滑线变阻器,电阻箱,导线。 1、万用电表的原理和结构 万用电表是实验室常用的一种仪表,可用来测量直流电压、电流,交流电压及电流,电阻等,还可用以检查电路和排除电路故障。 万用电表主要由磁电型测量机构(亦称表头)和转换开关控制的测量电路组成。实际上它是根据改装电表的原理,将一个表头分别连接各种 测量电路而改成多量程的电流表、电压表及欧姆表,是既能测量直流又 能测量交流的复合表,如图1所示。它们合用一个表头,表盘上有相应 于测量各种量的几条标度尺。表头用来指示被测量的数值,测量线路的 作用是将各种被测量转换到适合表头测量的直流微小电流,转换开关实 现对不同测量线路的选择,以适应各种测量的要求。电表的表盘上按表 的功能有各种不同的刻度,以指示相应的值,如:电流值,电压值(有 交、直流之分)及电阻值等。对于某一测量的内容一般分成大小不同的 几档,测量电阻时每档标明的是不同的倍率;测量电流、电压时每档标 明的是它相应的量限(即使用该档测量时所允许的最大值),而各种 量、各种不同的量限所对应的测量电路均通过转换开关实现和表头的连 接。

图1 图2 欧姆表测量电阻的简单原理如图2所示。 表头(其内阻R z)、干电池E、可变电阻R0及待测电阻R x串联构成回路,电流I通过表头即可使表头指针偏转,其值为 由上式可知在电池电压一定的条件下,指针偏转和回路的总电阻成反比。当被测电阻R x改变时,电流I就随着变化,表头的指针位置也有相应的变化,可见表头的指针位置与被测电阻的大小是一一对应的,如果表头的标度尺按电阻刻度,这样就可以直接用来测量电阻了。被测电阻R x越大,则回路电流I越小,指针的偏转越小,当R x为无穷大时(即表棒两端开路),则I=0,表头指针为零,因此欧姆表的标尺刻度与电流表、电压表的标尺刻度方向相反。由于工作电流I与被测电阻R x不成正比关系,所以电阻的标度尺的分度是不均匀的。 由于电池的电动势会渐渐下降,这将会造成较大的测量误差,故该结构形式的欧姆表都设有“零欧姆”调整电路,使用时先将表棒二端短路(即R x=0),调节“零欧姆”旋钮,使指针指向满度,即指针指向0Ω处。每当改变欧姆表的量程后,都必须重新调节“零欧姆”旋钮。 2、万用电表的操作规程 (1) 使用指针式万用电表前必须认清两极和刻度盘,熟悉转换开关的作用和用法,据待测量的种类和大小(交流和直流电压、电流、电阻),将转换开关转到适当位置并接好表笔。 (2) 被测量不能确定其大概值时,应将转换开关旋到最大量程处。 (3) 使用前,若指针不在零位,首先调零;读数时,视线正对着指针。有反射镜的应使指针与像重合。 (4) 测量电流时,将万用表串联在被测电路中;测量电压时,将万用表并联在被测电路两端(红表笔代表“+”,黑表笔代表“-”)。 (5) 测试时,不能旋转转换开关。 (6) 测量电流、电压时,先用跃接法试探大小,再用稳接法测量。 (7) 测量电路中电阻时,应将电路中的电源和有关电阻断开,不能带电测电阻。 (8) 每次更换电阻档后,都要调节“零欧姆”旋钮,使指针指向满度,若调不到零点,须更换电池。测试电阻时,不得用双手同时接触两表笔的金属部分。 (9) 测量完毕,务必将转换开关旋至空档或最大交流电压档。

实验三--单相交流调压电路实验

信息科技大学 电力电子技术实验报告 实验项目:单相交流调压电路实验 学院:自动化 专业:自动化(信息与控制系统) /学号:贾鑫玉/2012010541 班级:自控1205班 指导老师:白雪峰 学期: 2014-2015学年第一学期

实验三单相交流调压电路实验 一.实验目的 1.加深理解单相交流调压电路的工作原理。 2.加深理解交流调压感性负载时对移相围要求。 二.实验容 1.单相交流调压器带电阻性负载。 2.单相交流调压器带电阻—电感性负载。 三.实验线路及原理 本实验采用了锯齿波移相触发器。该触发器适用于双向晶闸管或两只反并联晶闸管电路的交流相位控制,具有控制方式简单的优点。 晶闸管交流调压器的主电路由两只反向晶闸管组成。 四.实验设备及仪器 1.教学实验台主控制屏 2.NMCL—33组件 3.NMEL—03组件 4.NMCL-05(A)组件或NMCL—36组件 5.二踪示波器 6.万用表 五.注意事项 在电阻电感负载时,当α

限流电路和分压电路

图3 限流电路和分压电路 1. 限流和分压接法的比较 (1)限流电路:如图2所示,实际上滑动变阻器的右边部分并没 有电流流过。该电路的特点是:在电源电压不变的情况下,R 用两端的 电压调节范围:U ≥U 用≥UR 用/(R 0+R 用),电流调节范围:U /R 用≥I 用 ≥U /(R 0+R 用 )。即电压和电流不能调至零,因此调节范围较小。要使 限流电路的电压和电流调节范围变大,可适当增大R 0。另外,使用该电 路时,在接通电前,R 0 应调到最大。 (2)分压电路:如图3所示,实质上滑动变阻器的左边部分与R 用 并联后再与滑动变阻器的右边串联。注意滑动变阻器的两端都有电流流 过,且不相同。该电路的特点是:在电源电压不变的情况下,R 用两端 的电压调节范围为U ≥U 用≥0,即电压可调到零,电压调节范围大。电 流调节范围为E /R 用≥I 用≥0。 使用分压电路,在当R 0

模拟电路自主设计实验

姓名_____________________班级_____________________学号_____________________ 日期_____________节次______________成绩__________教师签字__________________ 哈尔滨工业大学模拟电路自主设计实验 实验名称:运算放大器在限幅电路中的应用 一、实验目的 1、深入了解运算放大器的放大作用和深度负反馈; 2、灵活运用运算放大器的多种应用; 二、总体技术路线 2.1 当输入信号电压进入某一范围内,其输出信号的电压不再跟随输入信号电压的变化。 串联限幅电路:当输入电压U i <0或U i为数值较小的正电压时,D1截止,运算放大器的输出电压U0=0;仅当输入电压U i>0且U i为数值大于或等于某一个的正电压U th时,D1才正偏导通,电路有输出,且U0跟随输入信号U i变化。 并联限幅电路:当输入信号U i较小时,输出电压U0也较小,D1和D2没有击穿,U0跟随输入信号U i变化而变化,传输系数为:A uf=-R1 /R2;当U i幅值增大,使U0的幅值增大,并使D1和D2击穿,输出U0的幅度保持+(U z+U D)值不变,电路进入限幅工作状态。 2.2绝对值电路 当输入电压U i>0,则运算放大器的输出电压U1,D1导通,D2截止,输出电压U0 =0;当输入电压U i <0,则运算放大器的输出电压U1 >0,D2导通,D1截止,输出电压U0 =-R1 U i/R2。并通过反向放大器将整流信号放大两倍,再增加一个同相加法器,让输入信号的另一极性电

压不经整流,而直接送到加法器,与来自整流电路的输出电压相加,便构成了绝对值电路。 三、实验电路图 1、串联限幅电路: 2、并联限幅电路:

限流和分压电路的选取(新)

图3 图 2 限流和分压电路的选取 在测量待测电阻以及电学实验的创新设计类问题中,常常涉及到滑动变阻器的分压式或限流式接法,这类问题常常困绕着老师们的教与学生们的学。笔者在此问题上有一点粗浅的认识,现提出来与同仁、专家们商榷。 一、两种接法 1、限流式 如图1所示的电流中变阻器起限流作用,待测电阻R x 的电压可调范围为εε~R R R x x +(电源内阻不计)。在合上开关前要使变阻器所使用的阻值最大,因此,在闭合开关s 前一定要检查滑动触头p 是否在B 端。 2、分压式 如图2所示的电路中变压器起分压作用,待测电阻R x 的电压可调范围为0~ε(电源内阻不计),显然比限流时电压调节范围大。在合上开关s 前滑动触头p 应在A 端,此时对R x 的输出电压为0,滑动触头p 向B 滑动过程,使待测电阻R x 的电压、电流从最小开始变化。 限流和分压电路的选取,总的来说,应从测量的要求和电路的调节两个方面考虑。 二、测量要求 若题目中明确要求电压从0开始测量,电路的连接一定用分压式。 例1:(1999广东卷)用图3中所给的实验器材测量一个“12V ,5W ”的小灯泡在不同电压下的功率,其中电流表有3A 、0.6A 两档,内阻可忽略,电压表有15V 、3V 两档,内阻很大。测量时要求加在灯泡两端的电压可连续地从0V 调到12V 。 ⑴按要求在实物图上连线(其中部分线路已连好)。 ⑵其次测量时电流表的指针位置如下图(b )所示,其读数为 A 5W ”的小灯泡其额定电流大约是I= 12 5<0.6A ,故安培表的量程分析:对于“12V 、应选0~0.6A 。根据测量要求,电压连续地从0V 调到12V ,应接成分压电路,而不应接限流电路。又因为电流表内阻可忽略,电压表内阻很大,对电路无影响,电流表内接或外接都可以。 4所示 ⑵0.36A (或0.360) 解法指导 实物连接图的画法,要先画出原理图,其中涉及的电学元件按实物图位置排放,便于实物连接。 图4 X R 图1

限流电路和分压电路

图3 限流电路和分压电路 1.限流和分压接法的比较 有电流流过。该电路(1)限流电路:如图2所示,实际上滑动变阻器的右边部分并没 的特点是:在电源电压不变的情况下,R 用两端的电压调节范围:U ≥U 用≥UR 用/(R 0+R 用),电流调节范围:U /R 用≥I 用≥U /(R 0+R 用)。即电压和电流不能调至零, 因此调节范围较小。要使限流电路的电压和电流调节范围变大,可适当增大R 0。另外,使用 该电路时,在接通电前,R 0应调到最大。 后再与滑动变阻器 (2)分压电路:如图3所示,实质上滑动变阻器的左边部分与R 用并联用=0。 2A B ① 例1、. 例2、(,5W ”的A ②总电阻,须用分压式电路。若接成限流式,当改变滑动变阻器的阻值时,电路中电流变化例3”的小电珠在额定电压下较准确的电阻值,可供选择的器材有: A.300mA ,内阻约4Ω)C.电压表(0~10V ,内阻Ω)D.电 压表(0,最大允许电流2A )F.电源(额定电压9V ,最大允许电流1A )G.⑴为使测量安全和尽可能准确,应选用的器材是 。(用字母代号填写) ⑵在右边虚线框内画出电路图,并把图6所示实物图用线连接起来。 分析:①表及内外解法的选取 小电珠的额定电流额I =U P =A 3 .61≈0.16A=16mA <300mA ,电流表应选B 。额U =6.3V <10V ,电压表选C ,电源选F 。珠R =1 3.62 2 P U Ω≈40Ω比10K Ω小得多,仅比毫安表内阻大10倍,故选用安培表外接法。 ②滑动变阻器及连接方法的选取 图2

将可变电阻H 接到电源两端,其上电流大若致为I=50 9A=0.18A ,而H 的额定电流H I =505.0=0.1A <0.18A ,而G 的额定电流为1A ,故从安全性上考虑不宜选用H 。由于40Ω是可变电阻G 的中值的8倍,故选用分压式连接方式。若使用限流式,则在灯泡额定电压下,额I =63 10A ,具体操作时额I ≈0.16A 应体现在安培表上,故滑动变阻器此时大约分压为滑U =9V -6.3V=2.7V 。故此时滑动 变阻器调节的阻值R=10 7 .2≈17Ω>10Ω,因此G 不可能用限流法,必须使用分压 、电流表(量程);、电流表 (量程);、电流表(量程)(最大阻值);、电源 若干。 要求:画出用伏安法测上述电阻丝的电阻的电路图,测量数据要尽量 多。 分析:若采用限流式接法,由于电阻丝阻值为10Ω,在3V 电压(电 压表的量程)下工作,则流过它的最大电流为,改变滑动变阻器的阻值(0~20Ω),电路中电 流变化范围约为,电流取值范围比较小,故采用分压式 接法比较好。电路图如图4所示。 ③采用限流接法时限制不住,电表总超量程,用电器总超额定值。 在安全(I 滑额够大,仪表不超量程,用电器上的电流、电压不超额定值,电源不过载)、有效(调节范围够用)的前题下,若R 用>R 0,则只能采用分压电路. 例6、用伏安法测量一个定值电阻的器材规格如下:待测电阻R x (约100Ω);直流电流表(量程0~10mA 、内阻50Ω);直流电压表(量程0~3V 、内阻5k Ω);直流电源(输出电压4V 、内阻 图4

电路设计实验报告

电子技术课程设计 题目: 班级: 姓名: 合作者:

数字电子钟计时系统 一、设计要求 用中、小规模集成电路设计一台能显示时、分、秒的数字电子钟,基本要求如下: 1、采用LED显示累计时间“时”、“分”、“秒”。 2、具有校时功能。 二、设计方案 数字电子钟主要由振荡器、分频器、计数器、译码器、显示器等几部分组成,其整体框图为 其中,秒信号发生器为:

由石英晶体发出32768Hz的振荡信号经过分频器,即CD4060——14级串行二进制计数器/分频器和振荡器,输出2Hz 的振荡信号传入D触发器,经过2分频变为秒信号输出。 校时电路为: 当K1开启时,与非门一端为秒信号另一端为高电位,输出即为秒信号秒计数器正常工作,当K1闭合,秒信号输出总为0,实现秒暂停。 当K2/K3开启时,分信号/时信号输入由秒计数器输出信号及高电平决定,所以输出信号即为分信号/时信号,当K2/K3闭合时,秒信号决定分信号/时信号输出,分信号/时信号输出与秒信号频率一致, 以实现分信号/时信号的加速校时。 秒、分计数器——60进制

首先,调节CD4029的使能端,使其为十进制加法计数器。将输入信号脉冲输入第一个 计数器(个位计数器)计十个数之后将,进位输出输给下一个计数器(十位计数器)的进位 输入实现十秒计数。当计数器的Q1,Q2输出均为1时经过与门电路,输出高电平,作为分 脉冲或时脉冲并同时使两计数器置零。 时计数器——24进制 时脉冲 首先,调节CD4029的使能端,使其为十进制加法计数器。将输入信号脉冲输入第一个 计数器(个位计数器)计十个数之后将,进位输出输给下一个计数器(十位计数器)的进位 输入实现十秒计数。当十位计数器Q1和个位计数器Q2输出均为1时经过与门电路,输出 高电平使两计数器置零。 译码显示电路

制流和分压电路

制流和分压电路 【实验目的】 1. 学习使用变阻器组成制流、分压电路,了解两种电路的特点 2. 测量不同负载电阻对分压电阻分压比的影响,了解如何根据电路调控要求选择变阻器 【实验原理】 1. 制流电路 制流基本电路如图1所示,当AC 间电阻改变时,改变了电路中的总电阻,从而起到限制电流的作用。 AC L E I R R = +(忽略电源内阻的情况下) max L E I R = , 0 mix L E I R R =+ 故:制流电路不可能调节到电流为零,只能使电流在一定范围内变化。其范围为: L L E E I R R R ?= - + 注:为了保证安全,在接通前,必须将C 滑至B 端。如果R L 为二极管等小功耗用电器,需与此用电器串联一个电阻作为保护电阻。 2. 分压电路 分压基本电路如图2所示。如果负载电阻无穷大,则可以认为负载上没有电流,则负载上的电压可以认为电阻AC R 所分 配到的电压。当C 滑到B ,则负载电阻上的电压为E ,当C 滑到A ,则负载上的电压为零。故起电压调节范围为0~E 定义电阻比:()AC AB R K x R = 。 定义负载电阻与变阻器全电阻之比:0 L R R β= 定义分压电路的分压比:() L U x Y E = 很容易可以推导出他们之间的关系, ()()()[1()]L U x K x Y E K x K x β β = =-+ 根据上式可得:不同的β,分压比与电阻比不同,可画出不同β值时的()Y K x -图线(如图3)。由图线可知,β越大,调节越均匀。但此时变阻器上消耗的电能越大,因此在选择分压电路的滑动变阻器时,应权衡考虑。 【实验器材】 直流稳压电源,变阻器2个(全电阻分别为100Ω和1000Ω),电阻箱一个,数字万用表2块,导线,开关,多圈电位器1个(1000Ω,带电阻比显示) 【实验步骤】

限流电路和分压电路

WORD 格式可编辑 限流电路和分压电路 1. 限流和分压接法的比较 ( 1)限流电路: 如图 2 所示,实际上滑动变阻器的右边部分并没 有电流流过。该电路的特点是:在电源电压不变的情况下, R 用两端的 电压调节范围: U ≥U 用≥UR 用/(R 0+R 用),电流调节范围: U/R 用≥I 用 ≥U/(R 0+R 用 )。即电压和电流不能调至零,因此调节范围较小。要使 限流电路的电压和电流调节范围变大, 可适当增大 R 0。另外, 使用该电 路时,在接通电前, R 0 应调到最大。 ( 2)分压电路: 如图 3 所示,实质上滑动变阻器的左边部分与 R 用 并联后再与滑动变阻器的右边串联。 注意滑动变阻器的两端都有电流流 过,且不相同。该电路的特点是:在电源电压不变的情况下, R 用 两端 的电压调节范围为 U ≥U 用≥0,即电压可调到零,电压调节范围大。电 流调节范围为 E/R 用≥ I 用≥ 0。 使用分压电路,在当 R 0

数字电路及设计实验

常用数字仪表的使用 实验内容: 1.参考“仪器操作指南”之“DS1000操作演示”,熟悉示数字波器的使用。 2.测试示波器校正信号如下参数:(请注意该信号测试时将耦合方式设置为直流耦合。 峰峰值(Vpp),最大值(Vmax),最小值(Vmin), 幅值(Vamp),周期(Prd),频率(Freq) 顶端值(Vtop),底端值(Vbase),过冲(Overshoot), 预冲(Preshoot),平均值(Average),均方根值(Vrms),即有效值 上升时间(RiseTime),下降时间(FallTime),正脉宽(+Width), 负脉宽(-Width),正占空比(+Duty),负占空比(-Duty)等参数。 3.TTL输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低 电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V。 请采用函数信号发生器输出一个TTL信号,要求满足如下条件: ①输出高电平为3.5V,低电平为0V的一个方波信号; ②信号频率1000Hz; 在示波器上观测该信号并记录波形数据。

集成逻辑门测试(含4个实验项目) (本实验内容选作) 一、实验目的 (1)深刻理解集成逻辑门主要参数的含义和功能。 (2)熟悉TTL 与非门和CMOS 或非门主要参数的测试方法,并通过功能测试判断器件好坏。 二、实验设备与器件 本实验设备与器件分别是: 实验设备:自制数字实验平台、双踪示波器、直流稳压电源、数字频率计、数字万用表及工具; 实验器件:74LS20两片,CC4001一片,500Ω左右电阻和10k Ω左右电阻各一只。 三、实验项目 1.TTL 与非门逻辑功能测试 按表1-1的要求测74LS20逻辑功能,将测试结果填入与非门功能测试表中(测试F=1、0时,V OH 与V OL 的值)。 2.TTL 与非门直流参数的测试 测试时取电源电压V CC =5V ;注意电流表档次,所选量程应大于器件电参数规范值。 (1)导通电源电流I CCL 。测试条件:输入端均悬空,输出端空载。测试电路按图1-1(a )连接。 (2)低电平输入电流I iL 。测试条件:被测输入端通过电流表接地,其余输入端悬空,输出空载。测试电路按图1-1(b )连接。 (3)高电平输入电流I iH 。测试条件:被测输入端通过电流表接电源(电压V CC ),其余输入端均接地,输出空载。测试电路按图1-1(c )连接。 (4)电压传输特性。测试电路按图1-2连接。按表1-2所列各输入电压值逐点进行测量,各输入电压值通过调节电位器W 取得。将测试结果在表1-2中记录,并根据实测数据,做出电压传输特性曲线。然后,从曲线上读出V OH ,V OL ,V on ,V off 和V T ,并计算V NH ,V NL 等参数。 表1-1 与非门功能测试表

单相交流调功电路正文

1概述 1.1晶闸管交流调功器 交流调功器:是一种以晶闸管为基础,以智能数字控制电路为核心的电源功率控制电器,简称晶闸管调功器,又称可控硅调功器,可控硅调整器,可控硅调压器,晶闸管调整器,晶闸管调压器,电力调整器,电力调压器,功率控制器。具有效率高、无机械噪声和磨损、响应速度快、体积小、重量轻等诸多优点。 1.2 交流调压与调功 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图3-21所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 1.3 过零触发和移相触发 过零触发是在设定时间间隔内,改变晶闸管导通的周波数来实现电压或功率的控制。过零触发的主要缺点是当通断比太小时会出现低频干扰,当电网容量不够大时会出现照明闪烁、电表指针抖动等现象,通常只适用于热惯性较大的电热负载。 移相触发是早期触发可控硅的触发器。它是通过调速电阻值来改变电容的充放电时间再来改变单结晶管的振荡频率,实际改变控制可控硅的触发角。早期可控可是依靠这样改变阻容移相线路来控制。所为移相就是改变可控硅的触发角大小,也叫改变可控硅的初相角。故称移相触发线路。

2系统总体方案 2.1交流调功电路工作原理 单相交流调功电路方框图如图2.1.1所示。 图2.1.1 交流调功电路的主电路和交流调压电路的形式基本相同,只是控制的方式不同,它不是采用移相控制而采用通断控制方式。交流调压是在交流电源的半个周期内作移相控制,交流调功是以交流电的周期为单位控制晶闸管的通断,即负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数和断开周波数的比值来调节负载所消耗的平均功率。如图2.1.2所示,这种电路常用于电炉的温度控制,因为像电炉这样的控制对象,其时间常数往往很大,没有必要对交流电源的各个周期进行频繁的控制。只要大致以周波数为单位控制负载所消耗的平均功率,故称之为交流调功电路。 图2.1.2 LO AD BCR TLC336A1 A2 g u 脉宽可调矩形波信号发生器

电路综合设计实验-设计实验2-实验报告

设计实验2:多功能函数信号发生器 一、摘要 任意波形发生器是不断发展的数字信号处理技术和大规模集成电路工艺孕育出来的一种新型测量仪器,能够满足人们对各种复杂信号或特殊信号的需求,代表了信号源的发展方向。可编程门阵列(FPGA)具有高集成度、高速度、可重构等特性。使用FPGA来开发数字电路,可以大大缩短设计时间,减小印制电路板的面积,提高系统的可靠性和灵活性。 此次实验我们采用DE0-CV开发板,实现函数信号发生器,根据按键选择生产正弦波信号、方波信号、三角信号。频率范围为10KHz~300KHz,频率稳定度≤10-4,频率最小不进10kHz。提供DAC0832,LM358。 二、正文 1.方案论证 基于实验要求,我们选择了老师提供的数模转换芯片DAC0832,运算放大器LM358以及DE0-CV开发板来实现函数信号发生器。 DAC0832是基于先进CMOS/Si-Cr技术的八位乘法数模转换器,它被设计用来与8080,8048,8085,Z80和其他的主流的微处理器进行直接交互。一个沉积硅铬R-2R 电阻梯形网络将参考电流进行分流同时为这个电路提供一个非常完美的温度期望的跟踪特性(0.05%的全温度范围过温最大线性误差)。该电路使用互补金属氧化物半导体电

流开关和控制逻辑来实现低功率消耗和较低的输出泄露电流误差。在一些特殊的电路系统中,一般会使用晶体管晶体管逻辑电路(TTL)提高逻辑输入电压电平的兼容性。 另外,双缓冲区的存在允许这些DAC数模转换器在保持一下个数字词的同时输出一个与当时的数字词对应的电压。DAC0830系列数模转换器是八位可兼容微处理器为核心的DAC数模转换器大家族的一员。 LM358是双运算放大器。内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。LM358的封装形式有塑封8引线双列直插式和贴片式。 本次实验选用的FPGA是Altera公司Cyclone系列FPGA芯片。Cyclone V系列器件延续了前几代Cyclone系列器件的成功,提供针对低成本应用的用户定制FPGA特性,支持常见的各种外部存储器接口和I/O协议,并且含有丰富的存储器和嵌入式乘法器,这些内嵌的存储器使我们在设计硬件电路时省去了外部存储器,节省了资源,而

实验3三相交流调压电路实验

实验3 三相交流调压电路实验 一、实验目的 (1) 了解三相交流调压触发电路的工作原理。 (2) 加深理解三相交流调压电路的工作原理。 (3) 了解三相交流调压电路带不同负载时的工作特性。 二、实验所需挂件及附件 三、实验线路及原理 交流调压器应采用宽脉冲或双窄脉冲进行触发。实验装置中使用双窄脉冲。实验线路如图3-1所示。

图中晶闸管均在DJK02上,用其正桥,将D42三相可调电阻接成三相负载,其所用的交流表均在DJK01控制屏的面板上。 四、实验内容 (1)三相交流调压器触发电路的调试。 (2)三相交流调压电路带电阻性负载。 (3)三相交流调压电路带电阻电感性负载(选做)。 图3-1三相交流调压实验线路图 五、预习要求 (1)阅读电力电子技术教材中有关交流调压的内容,掌握三相交流调压的工作原理。 (2)如何使三相可控整流的触发电路用于三相交流调压电路。 六、实验方法 (1)DJK02和DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。 ②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。 ③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。 ④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。 ⑤将DJK06上的“给定”输出U g直接与DJK02-1上的移相控制电压U ct 相接,将给定开关S2拨到接地位置(即U ct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔”VT1的输出波形,使α=180°。 ⑥适当增加给定U g的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。 ⑦将DJK02-1面板上的U 端接地,用20芯的扁平电缆,将DJK02-1的 lf “正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1~VT6晶闸管门极和阴极之间的触发脉冲是否正常。 (2)三相交流调压器带电阻性负载 使用正桥晶闸管VT1~VT6,按图3-21连成三相交流调压主电路,其触发脉冲己通过内部连线接好,只要将正桥脉冲的6个开关拨至“接通”,“U lf”端接地即可。接上三相平衡电阻负载,接通电源,用示波器观察并记录α=30°、60°、90°、120°、150°时的输出电压波形,并记录相应的输出电压有效值,填入下表:

组合逻辑电路设计实验报告

组合逻辑电路设计实验报告 1.实验题目 组合电路逻辑设计一: ①用卡诺图设计8421码转换为格雷码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③记录输入输出所有信号的波形。 组合电路逻辑设计二: ①用卡诺图设计BCD码转换为显示七段码的转换电路。 ②用74LS197产生连续的8421码,并接入转换电路。 ③把转换后的七段码送入共阴极数码管,记录显示的效果。 2.实验目的 (1)学习熟练运用卡诺图由真值表化简得出表达式 (2)熟悉了解74LS197元件的性质及其使用 3.程序设计 格雷码转化: 真值表如下:

卡诺图: 1 010100D D D D D D G ⊕=+= 2 121211D D D D D D G ⊕=+=

3232322D D D D D D G ⊕=+= 33D G = 电路原理图如下: 七段码显示: 真值表如下: 卡诺图:

2031020231a D D D D D D D D D D S ⊕++=+++= 10210102b D D D D D D D D S ⊕+=++= 201c D D D S ++= 2020101213d D D D D D D D D D D S ++++= 2001e D D D D S +=

2021013f D D D D D D D S +++= 2101213g D D D D D D D S +++= 01213g D D D D D S +⊕+= 电路原理图如下:

4.程序运行与测试 格雷码转化: 逻辑分析仪显示波形:

实验报告制流电路与分压电路

开关。它是将滑线变阻器的滑动头 动滑动头的位置可以连续改变 ‘ : C 和任一固定端(如 A 端)串联在电路中,作为一个可变电阻,移 AC 之间的电阻 R AC ,从而改变整个电路的电流 R Z E R AC (1) 当C 滑至A 点 0,1 max 君,负载处U max E ; 当C 滑至B 点 R AC R 0 , 1 min R Z R o U min E R Z R 0 R Z 电压调节范围: 相应的电流变化为 ■^E R 0 R Z E E R Z R 0 R Z 般情况下负载 R Z 中的电流为 _E _ _ R 0 R z R AC R 0 R 0 R AC R 。. R Z R AC I K I max K X 式中K 电,X R 。 图2表示不同K 值的制流特性曲线, K 越大电流调节范围越小; K 1时调节的线性较好; K 较小时(即 R 0 R Z ),X 接近O 时电流变化很大,细调程度较差; 不论R ° 大小如何,负载上通过的电流都不可能为零。 细调范围的确定:制流电路的电流是靠滑线电阻滑动端位置移动来改变的, 从曲线可以清楚地看到制流电路有以下几个特点: (1) (2) (3) (4) 电子信息与机电工程学院 普通物理实验 课实验报告 级物理(1) 班B 2组 实验日期_ 姓名: ___ 学号25号 老师评定 __________________________ 实验题目: ___ 制流电路与分压电路 实验目的: 1. 了解基本仪器的性能和使用方法; 2. 掌握制流与分压两种电路的联结方法、性能和特点,学习检查电路故障的一般方法; 3. 熟悉电磁学实验的操作规程和安全知识。 实验仪器 毫安表 伏特表 直流电源 滑线变阻器 电阻箱 型号 C19- mA C31- mV DH1718C BX7- 11 ZX21a 规格 1000mA 1000mV 0-30V 5A 10Q 111111Q 实验原理: 1. 制流电路 电路如图1所示,图中E 为直流电源;R o 为滑线变阻箱, A 为电流表;R Z 为负载;K 为电源

7单相交流调压电路实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相交流调压电路实验 实验时间: 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:指导教师签名: 实验(七)项目名称:单相交流调压电路实验 1.实验目的和要求 (1)加深理解单相交流调压电路的工作原理。 (2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。 (3)了解KC05晶闸管移相触发器的原理和应用。 2.实验原理 三、实验线路及原理 本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。 单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-15所示。 图中电阻R用D42三相可调电阻,将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器L d从DJK02上得到,用700mH。 图 3-15 单相交流调压主电路原理图

3.主要仪器设备 1.电路调试

主电路放大电路: (1)KC05集成移相触发电路的调试。 (2)单相交流调压电路带电阻性负载。 (3)单相交流调压电路带电阻电感性负载。 (l)KCO5集成晶闸管移相触发电路调试 将DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根 导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,

电子电路综合设计实验报告

电子电路综合设计实验报告 实验5自动增益控制电路的设计与实现 学号: 班序号:

一. 实验名称: 自动增益控制电路的设计与实现 二.实验摘要: 在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况; 另外,在其他应用中,也经常有多个信号频谱结构和动态围大体相似,而最大波幅却相差甚多的现象。很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。 自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小围变化的特殊功能电路,简称为AGC 电路。本实验采用短路双极晶体管直接进行小信号控制的方法,简单有效地实现AGC功能。 关键词:自动增益控制,直流耦合互补级,可变衰减,反馈电路。 三.设计任务要求 1. 基本要求: 1)设计实现一个AGC电路,设计指标以及给定条件为: 输入信号0.5?50mVrm§ 输出信号:0.5?1.5Vrms; 信号带宽:100?5KHz; 2)设计该电路的电源电路(不要际搭建),用PROTE软件绘制完整的电路原理图(SCH及印制电路板图(PCB 2. 提高要求: 1)设计一种采用其他方式的AGC电路; 2)采用麦克风作为输入,8 Q喇叭作为输出的完整音频系统。 3. 探究要求: 1)如何设计具有更宽输入电压围的AGC电路; 2)测试AGC电路中的总谐波失真(THD及如何有效的降低THD 四.设计思路和总体结构框图 AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放大器(VGA以及检波整流控制组成(如图1),该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。如图2,可变分压器由一个固定电阻R和一个可变电阻构成,控制信号的交流振幅。可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源V REG和大阻值电阻F2组成的直流源直接向短路晶体管注入电流。为防止Rb影响电路的交流电压传输特性。R2的阻值必须远大于R1。

实验报告制流电路与分压电路

电子信息与机电工程学院普通物理实验课实验报告 级物理(1) 班 B 组实验日期 2 姓名:学号 25号老师评定 实验题目:制流电路与分压电路 实验目的: 1.了解基本仪器的性能和使用方法; 2.掌握制流与分压两种电路的联结方法、性能和特点,学习检查电路故障的一般方法; 3.熟悉电磁学实验的操作规程和安全知识。 实验仪器 实验原理: 1.制流电路

电路如图1所示,图中E 为直流电源;0R 为滑线变阻箱,为电流表;Z R 为负载;K 为电源开关。它是将滑线变阻器的滑动头C 和任一固定端(如A 端)串联在电路中,作为一个可变电阻,移动滑动头的位置可以连续改变AC 之间的电阻 AC R ,从而改变整个电路的电流I , AC Z R R E I += (1) 当C 滑至A 点Z AC R E I R = =max ,0,负载处E U =max ; 当C 滑至B 点0R R AC =,0min R R E I Z += , Z Z R R R E U 0 min += 电压调节范围: E E R R R Z Z →+0 相应的电流变化为 Z Z R E R R E →+0 一般情况下负载 Z R 中的电流为 X K K I R R R R R E R R E I AC Z AC Z +=+=+= max 0 00, (2) 式中 .,0 0R R X R R K AC Z == 图2表示不同K 值的制流特性曲线,从曲线可以清楚地看到制流电路有以下几个特点: 图1 图2

(1) K 越大电流调节范围越小; (2) 1≥K 时调节的线性较好; (3) K 较小时(即 Z R R >>0),X 接近O 时电流变化很大,细调程度较差; (4) 不论0R 大小如何,负载上通过的电流都不可能为零。 细调范围的确定:制流电路的电流是靠滑线电阻滑动端位置移动来改变的,最少位移是一圈,因此一圈电阻的大小就决定了电流的最小改变量。因为Z AC R R E I += ,对 AC R 微分 () AC Z AC AC R R R E R I I ??+-=??= ?2 , N R E I R E I I 0202min ?=??=?, (3) 式中N 为变阻器总圈数。从上式可见,当电路中的 0,,R R E Z 确定后,ΔI 与2I 成正比,故电流越大,则细调越困难,假如负载的电流在最大时能满足细调要求,而小电流时也能满足要求,这就要使 max I ? 变小,而0R 不能太小,否则会影响电流的调节 范围,所以只能使N 变大,由于N 大而使变阻器体积变得很大,故N 又不能增得太多,因此经常再串一变阻器,采用二级制流,如图3所示,其中10R 阻值大,作粗调用,20R 阻值小作细调用,一般20R 取 1010R ,但20,10R R 的额定电流必须大于电路中的 最大电流。 图3 图4

制流电路与分压电路实验报告

制流电路与分压电路实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验题目: 制流电路与分压电路 实验目的: 1.了解基本仪器的性能和使用方法; 2.掌握制流与分压两种电路的联结方法、性能和特点,学习检查电路故障的一般方法; 3.熟悉电磁学实验的操作规程和安全知识。 实验仪器 毫安表 伏特表 直流电源 滑线变阻器 电阻箱 型号 C19-mA C31-mV DH1718C BX7-11 ZX25a 规格 1000mA 1000mV 0-30V 5A 10Ω 111111Ω 实验原理: 1. 制流电路 电路如图1所示,图中E 为直流电源;0R 为滑线变阻箱, 为电流表;Z R 为负 载;K 为电源开关。它是将滑线变阻器的滑动头C 和任一固定端(如A 端)串联在电路中, 作为一个可变电阻,移动滑动头的位置可以连续改变AC 之间的电阻 AC R ,从而改变整个电路的电流I , AC Z R R E I += (1) 当C 滑至A 点Z AC R E I R = =max ,0,负载处E U =max ; 当C 滑至B 点0R R AC =,0min R R E I Z +=, Z Z R R R E U 0 min += 电压调节范围: E E R R R Z Z →+0 相应的电流变化为 Z Z R E R R E →+0 一般情况下负载 Z R 中的电流为 X K K I R R R R R E R R E I AC Z AC Z +=+=+= max 0 00, (2) A 图 图

相关文档
最新文档