第四章 波导传输线

合集下载

第4章 光在波导中的传播

第4章 光在波导中的传播

φ0 p = arctan
2 n12 sin 2 θ − n0 2 n0 cosθ / n1
特征方程中 特征方程 k0 n1 cosθ 是薄膜中波矢量在x方向的分量,它是 薄膜中的横向相位常数,可表示为:
k1x = k0 n1 cosθ
于是特征方程可写为: 2k1x h − 2φ1 − 2φ0 = 2mπ 该式表明,由波导的某点出发,沿波导横向往复一次回到原 处,总的相位变化应是 2π 的整数倍。这使原来的波加强,即 横向谐振条件。 相当于在波导的横向谐振,因而叫做波导的横向谐振条件 横向谐振条件 横向谐振特性是波导导波的一个重要特性。 2.导波的模式 对给定的波导、工作波长和整数m,由特征方程可求出形 成导波的入射角。以该角入射的平面波即形成一个导波模式。
2 2h n12 − n2 对于n 的所谓对称平板波导,截止波长为: 对于 2=n0的所谓对称平板波导,截止波长为: λc = m
该式对TE模和TM模都适用,这就是说,对于对称波导,模序 数相同的TE模和TM模具有相同的截止波长 λc 。但是,TE0模 (或TM0模)的截止波长=∞,此时没有截止现象,这是对称 波导的特有性质。
第四章 光在波导中的传播
光波被约束在确定的介质中传播 时,由这种介质构成的光波通道称 为光学介质波导,或简称为光波导 为光学介质波导,或简称为光波导
光通信的迅速发展, 光通信的迅速发展,促进了对与之有密切联系的光波导技 术的研究。光波导技术是一种以光的电磁场理论为基础, 术的研究。光波导技术是一种以光的电磁场理论为基础,对 光波实施限制和传输的技术。其中, 光波实施限制和传输的技术。其中,介质波导和光纤是两种 最常用和最重要的光波导。下面将以射线理论和电磁场理论 射线理论和电磁场 最常用和最重要的光波导。下面将以射线理论和电磁场理论 分析光波在介质波导和光纤中的传导模式和传播特性, 介质波导和光纤中的传导模式和传播特性 分析光波在介质波导和光纤中的传导模式和传播特性,并介 绍导波光学器件的典型应用。 绍导波光学器件的典型应用。 第一节 光在平板波导中的传播

电动力学课件 4.5 波导

电动力学课件 4.5 波导
4
Ex ( A sin k x x B cos k x x)(C sin k y y D cos k y y )ei ( kz z t ) i ( k z z t ) E ( A sin k x B cos k x )( C sin k y D cos k y ) e y x x y y i ( k z z t ) E ( A sin k x B cos k x )( C sin k y D cos k y ) e x x y y z
d 2Y 2 k yY 0 2 dy
X ( x) A sin k x x B cos k x x Y ( y ) C sin k y y D cos k y y
u ( x , y ) X ( x )Y ( y )
这里的 A、 B、C、 D、kx、ky都是待定常数。至此得到沿 z 轴方向传播的电磁波电场的三个分量为:
E
k
H
TE
k
z kz
TE波和 TM波是相对于叠加波的传播方向而言的
10
c) 截止频率
2 2
kx
m a
n m n 2 2 2 2 2 ky kz k k x k y kz k b a b 其中波数 k取决于波源的频率ω和波导内介质的性质,即
k
2 若电磁场的激发频率ω足够小,以致于 k 2 k x2 k y ,则 kz是
纯虚数, k z i ,显然由因子 e 能在该波导内传播。
i ( k z z t )
e z e i t 看到,这不再
是行波,而是场随着z的增加而指数衰减,所以此时电磁场不
2 2 2 2 ( 2 2 )u ( x , y ) ( k k z )u ( x , y ) 0 x y

电磁场与微波技术第4章1-2传输线理论.ppt

电磁场与微波技术第4章1-2传输线理论.ppt

z
A2e z
I
I
z
§1.1 传输线方程
c)电压、电流的定解
始端
终端
上面两个解中的两项分别代表向+z方向和-z方向传播的电 磁波,+z方向的为入射波,-z方向的为反射波。
式中的积分常数由传输线的边界条件确定。
三种边界条件: • 已知终端电压VL和电流IL; • 已知始端的电压V0和电流I0; • 已知电源电动势EG、电源阻抗ZG 与负载阻抗ZL。
EG I0ZG V (z)
ILZL
I (z)
A1e z
1 Z0
A1e
联立求解,可得:
A2e z z A2e z
A1
EG Z0 Z G Z 0 1 G L e 2l
A2
EG Z 0L e 2l Z G Z 0 1 G L e 2l
§1.1 传输线方程
代入式中,并令d = l - z,则解为:
l
而传输线的长度一般都在几米甚至是几十米之长。 因此在传输线上的等效电压和等效电流是沿线变化的。 ——→与低频状态完全不同。
§1.1 传输线方程
传输线理论 长线理论
传输线是以TEM导模方式传 输电磁波能量。
其截面尺寸远小于线的长度, 而其轴向尺寸远比工作波长大 时,此时线上电压只沿传输线 方向变化。
Gl v(z,t) Cl
v( z, t ) t
代入传输线方程,消 去时间因子,可得:
dV z dz
dI z dz
Rl I z j Ll I z GlV z j ClV z
§1.1 传输线方程
整理,可得复有效值的均匀传输线方程:
dV z dz
dI z dz

(Rl j Ll )I z Zl I z

第四章 波导传输线

第四章 波导传输线

EZ 1 EZ 1 EZ 2 kc E z 0 2 2 2 r r r r
TE10模单模存在的频率范围就是矩形波导的工作带宽:
c 20 a c10 2a 中较大者 c 01 2b
TE10场结构
场结构特点
a、横向电场只有Ey分量,沿Y轴大小无变化,沿X轴呈正弦分布。
b、横向磁场HX与横向电场Ey相差一个系数,即波阻抗10,它们 在横截面的分布完全相同,但矢量方向相互正交。
10 0
2


波导的最大传输功率
Em为波导中x = a/2处的电场振幅,为波导横截面上的最大振 幅,也就是说,波导会在这里首先被击穿。波导的最大功 率容量就是由波导中最先被击穿处的电场强度决定的。如 果已知波导的填充介质特性,就可确定波导中的最大功率 容量。令Eb代表波导中的介质最大击穿场强,则有TE10模在 行波状态下的最大传输功率为:
参见P100
矩形波导的等效阻抗
波导的波阻抗不能完全反映波导截面变化对波传播的影响。 例如对于TE10模传输线,其波阻抗为: 0 1
0 10 2
由此可以看出,对于两个宽度相同而不同高度的矩形波导, 它们的TE10模的波阻抗是一样的,显然当这两个不同高度的 波导相连接时,在波导的连接处会产生反射。因此有必要提 出波导等效阻抗的概念来真实反映不同尺寸波导连接时电磁 波的传输特性。 当把矩形波导看成理想传输线时,等效阻抗可以作为波 导的特性阻抗来使用。
TE10模式场表达式
H
Z

H
H
0
cos(
x
a
2 c
)e
x
j ( t z )
x

j
H

第四章-微波网络基础

第四章-微波网络基础

其它几种网络参量的互易特性为
A11 A22 A12 A21 1
~~ ~~ A11 A22 A12 A21 1
S12 S21
T11T22 T12T21 1
S1,1 ,S22
第四章 微波网络基础
(二) 对称网络 一个对称网络具有下列特性
Z11 Z22 Y11 Y22

其它几种网络参量的对称性为
T12 T21
A11 A22
Z01 Z02
由此可见,一个对称二端口网络的两个参考面上的输 入阻抗、输入导纳以及电压反射系数等参量一一对应 相等
第四章 微波网络基础
(三) 无耗网络
利用复功率定理和矩阵运算可以证明,一个无耗网络的散射矩 阵一定满足“么正性”,即
[S]T [S * ] [1]
按微波元件的功能来分
1.阻抗匹配网络 2.功率分配网络 3.滤波网络 4.波型变换网络
第四章 微波网络基础
(二) 微波网络的性质
(1) 对于无耗网络,网络的全部阻抗参量和导纳参量均为纯虚数,
即有
Zij jX ij
Yij jBij i, j 1,2,,n
(2) 对于可逆网络,则有下列互易特性
Zij Z ji
Z 01 Z 02
第四章 微波网络基础
2. 导纳参量
用T1和T2两个参考面上的电压表示两个参考面上的电流,其网 络方程为
I1
I
2
Y11 Y21
各导纳参量元素定义如下
Y12 U1
Y22
U
2
Y11
I1 U1
U2 0
Y22
I2 U2
U1 0
Y12
I1 U2
U1 0
Y21

波导传输线理论课件

波导传输线理论课件
以及实现多功能化设计。
新型材料与工艺在波导传输线中的应用
要点一
新材料
要点二
新工艺
采用新型材料如碳纳米管、石墨烯等可以改善波导传输线 的性能,提高传输效率、减小损耗等。未来需要研究如何 实现新材料在波导传输线中的稳定制备和性能优化。
采用新型工艺如纳米压印、微纳加工等可以减小波导传输 线的尺寸、降低成本,提高集成度。未来需要研究如何实 现新工艺的稳定性和可重复性,以及在波导传输线制作中 的广泛应用。
矩形波导具有全封闭的结构, 能够提供良好的电磁场隔离, 减少外部干扰和辐射损耗。
在矩形波导中,电磁波的能量 主要集中在波导内部,传输过 程中能量损失较小。此外,矩 形波导的截止频率和传播常数 等参数可以通过调节其尺寸来 控制。
圆波导
总结词
圆波导是一种特殊类型的波导,其横截面呈圆形。
总结词
圆波导的优点在于其封闭性和均匀性,能够提供 较好的电磁场隔离和传输稳定性。
波导传输线理论课件
目录
PART 01
波导传输线概述
定义与特点
定义
波导传输线是一种用于传输电磁 波的结构,通常由两个平行的金 属板或导电壁构成。
特点
具有定向传播电磁波的特性,能 够控制电磁波的传播方向和模式, 常用于微波和毫米波频段的信号 传输和能量传输。
波导传输线的历史与发展
历史
波导传输线最早可以追溯到19世纪 末,随着无线电和雷达技术的发展, 波导传输线逐渐得到广泛应用。
• 总结词:光纤波导的优点在于其传输速度快、带宽大、抗电磁干扰性能好和保密性强。 • 详细描述:光纤波导的尺寸通常用纤芯直径d来表示,其截止频率和传播常数等参数与纤芯直径、折射率和涂覆层厚度有关。在某些应用中,光纤波导还可以通过弯曲来改变传输方向。

第四章 光波导(光纤)传输理论PPT课件

第四章 光波导(光纤)传输理论PPT课件

概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
光波 ?是高频率的电磁波,其频率 为1014HZ量级,波长为微米量级。 光纤 ?是工作在光频的一种介质波 导,它引导光沿着与轴线平行的方 向传输。 电磁波的频谱图
3
图4.1 电磁波谱图4
可得光纤中导波特征方程:
[n12 1J'm(U)1K'm(W)][1J'm(U)1K'm(W)] n22UJm(U) WKm(W) UJm(U) WKm(W)
m2(11)(n12 11) U2 W2 n22U2 W2
(4.15) 35
对于弱导波光纤n2≈n1 ,则特征方程可简化为:
U 1J J'm m ((U U ))W 1K K 'm m ((W W )) m (U 1 2W 12) (4.16)
25
贝塞尔函数曲线 第二类修正贝塞尔函数曲26 线
2. U、W、V和β作用
(在光纤中引入的几个重要参数)
U叫导波径向(r向)归一化相位常数,它描述 了导波电场和磁场在纤芯横截面上的分布; W叫导波径向(r向)归一化衰减常数,它描述 了导波电场和磁场在包层横截面上的分布; V叫归一化频率,它是表示光波频率大小的无量 纲的量; β为导波沿光纤轴向传输时的相位常数。
(4.4) 24
在纤芯中应为振荡解,故其解取贝塞尔函数;在 包层中应是衰减解,故其解取第二类修正的贝塞 尔函数解。于是R(r)可写为:
R(r)Jm[n21k202]1/2r
R (r)K m [ 2n22k20]1/2r
ra

微波技术长线理论

微波技术长线理论
பைடு நூலகம்
当接通电源后, 电流通过分布电感逐级向分布 电容充电形成向负载方向传输的电压波和电流波, 即,电压和电流是以波的形式在传输线上传播并 将能量从电源传至负载。
思考题: 1. 什么叫传输线?微波传输线可分为哪几类? 2. 何谓“长线”、“短线” ?举例说明。 3.什么叫分布参数电路?它与集中参数电路 在概念和处理手法上有何不同?
线”。显然,微波传输线属于“长线”的范 畴,
故本章称为 “ 长线理论 ” , 即微波传输 线
2. 分布参数与分布参数电路
长线和短线的区别还在于: 长线为分布参数电路, 短线为集中参数电路。 低频电路中, 电路元件参数(R、L、C)基本上 都集中在相应的元件(电阻、电感器、电容器)中, 称为集中参数。 电路中还存在着元件间连线的电阻、电感和 导线间的电容等,称为分布参数。 低频电路中, 分布参数的量值与集中参数相比, 微乎其微, 可忽略不计。低频传输线为短线, 在电 路中只起连接线作用。低频电路为集中参数电路。
高频信号通过传输线时会产生以下分布参数:
导体周围高频磁场→串联分布电感; 两导体间高频电场→并联分布电容; 导线 有限,高频电流趋肤效应→分布电阻; 导体间非理想绝缘→漏电→并联分布电导。
当双导线工作在微波波段时,分布参数的影响 不容忽视。
例:设双导线的分布电感 L0=0.999nH/mm, 分布电容 C0=0.0111pF/mm ;
3. 均匀传输线的等效电路
对于均匀传输线, 由于分布参数均匀分布,故可任 取一小段线元 dz<< 来讨论,dz可作为“短线”,即集
中 参数电路来处理, 并等效为一个集中参数的型网络。而 整个传输线就可视为由许多相同线元dz的等效网络级联 而成的电路,如图2-5所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TE10模式场表达式
H
Z

H
H
0
cos(
x
a
2 c
)e
x
j ( t z )
x

j
H
z
k

ja

H
0
ቤተ መጻሕፍቲ ባይዱ
si n (
x
a
)e
j ( t z )
E
y

10
H
x

j a

H
0
sin(
x
a
)e
j ( t z )
返回
主模传输特性
(1)截止波长 (5)波阻抗
L L1 L2 s
TE10模衰减因子

P
L
2P

Em Rs 10
2
2 a a g b 2 2a 2 2 E m ab
2
2 a a g b 2 Rs 2 2a 2 ab 10
P max
ab E b 4
0
2
1
2a
2
显然,在驻波状态,波导的功率容量将大大降低。 实际情况:最大传输功率一般为理论值的1/3~1/4。
波导的损耗与衰减
复习传输线衰减的定义
传播因子
j
P( z ) P(0)e 2z
dP 2 az PL 2P 0e dz
c 2a
(2)波导波长

10



1(
0

2a
2
)
g

1(
0

2
(5)相速和群速 相速
2a
)

p

1(
(3)传播常数

2a
2
)
2


2
g


2
0
1(
2a
0 )
2
群速

g
1(

2a
)
矩形波导单模传输条件
m 2 n 2 2 2 K K K K K ( ) ( ) ( ) a b g 2 2 m 2 n 2 2 2 ( ) ( ) ( ) ( ) a b g
本节要求 1、 2、 3、 4、 圆波导的场分布表达式; 圆波导的传播特性; 圆波导的主模和其他主要传播模式; 圆波导与矩形波导的对照比较。
圆柱坐标的纵向场分量波动方程
2 r2
2 T
1 r r
2 1 2 2 r
2 H 1 HZ 2 Z HZ 1 kc H z 0 2 2 2 r r r r 2
参见P100
矩形波导的等效阻抗
波导的波阻抗不能完全反映波导截面变化对波传播的影响。 例如对于TE10模传输线,其波阻抗为: 0 1
0 10 2
由此可以看出,对于两个宽度相同而不同高度的矩形波导, 它们的TE10模的波阻抗是一样的,显然当这两个不同高度的 波导相连接时,在波导的连接处会产生反射。因此有必要提 出波导等效阻抗的概念来真实反映不同尺寸波导连接时电磁 波的传输特性。 当把矩形波导看成理想传输线时,等效阻抗可以作为波 导的特性阻抗来使用。
0 e
2
2a
功率--电流关系
Z
e

2P I
2

2 b
8 a

0 2
1
功率—电压关系 均方电压和电流 关系
Z
e

u
2
2P
2
b a

1
2a
0 2
Z
e

b a

1
2a
2
0
2a
圆波导(cylindrical waveguide)


习惯上矩形波导宽边尺寸a
大于窄边尺寸b,故在矩形波导中,
TE10模的截止波长最长,是最低传播模式。当波导中传输的电 磁波的工作频率低于TE10模的截止频率时,电磁波将很快衰减, 不能在波导中传播。
欲使波导中单独存在最低模式TE10模,则需保证高次模式不能
出现。当较低次的高次模截止时,较高的高次模也必然截止。
10 2
Rs E m b 2 a
10
2
P

L2
R
2
s
2
2 m 2
a
0
2 E m si n2 x cos x dx 2 a a a 10
只要知道波导表面切向磁场的分布,就可得出管壁电流分布。 由TE10模的磁场表达式(省去传播因子),有:
H
H
x
Z

H 0 COS (

x
a
)

j a
H
0
sin(
x
a
)
壁电流分布
窄壁电流分布
在X=0和X=a的窄壁上,电流只有y分量, 电流密度为常数。
宽壁电流分布
在y=0和y=b的宽壁上,电流密度既有z分量,也有x分量, 电流密度是x的函数。
2 2 x 2 y 2 z 2 c 2
m 2 2 2 ( ) ( ) ( ) ......( c时 g ) a g
2
2
对TE10 对TE20 和TE01
c10 2a
c 20 a c 01 2b
单 模 条 件
c 20 a c10 2a 中较大者 c 01 2b
Hz
2
2
2
b
H i dy b
2
2
0
横向磁场为 H x
E
2

m 2

a
2
x)
10
E a
2 m 2 10
cos (
2
dy Hi 2
2
a
x)
s 2 从而得到 P L1 R 0 2
b
Em dy 2 a
场结构特点
c、HZ沿纵向呈余弦分布,在横截面上沿X方向呈正弦分布; HZ和HX在波导纵截面上构成了一个闭合的磁力线。
场分布
d、磁力线总是闭合曲线,磁力线和电力线正交,总满足波 印廷矢量关系。电(磁)力线越稀疏,变化越快(变化率 最大),电(磁)力线最密,变化越慢(变化率最小)。 e 、在同一平面上达到最大值,横向电场和磁场同相,但与 纵向磁场相差,即相位差为。 f、任意点合成场功率:电磁波在波导中的力量不是直接沿z 方向传播,而是入射波和反射波在波导内壁上曲折反射的 结果,合成后形成纵向功率流。
TE10模单模存在的频率范围就是矩形波导的工作带宽:
c 20 a c10 2a 中较大者 c 01 2b
TE10场结构
场结构特点
a、横向电场只有Ey分量,沿Y轴大小无变化,沿X轴呈正弦分布。
b、横向磁场HX与横向电场Ey相差一个系数,即波阻抗10,它们 在横截面的分布完全相同,但矢量方向相互正交。
Rs a
2

E
10
2 1 a
2 2 a a g b 2 2a 2
Em 2 利用 g 得到 P P P R 10
a b


对TE10模 令
j a
E

m


2
H
0
2
1 a ( 2 2
2
a H
2 2 2
2 0
si n (
2
2

a
x )dxdy
2
ab H 0) 2
2
2
a
b
2
4
2
H
2 0
E
a
H 得
0
2
ab E m ab E m ab 2 P 10 4 E m 4 4 1 2a
矩形波导尺寸的选择
保证单模传输,有效抑制高次模 选择原则
2a {
a 2b
衰减尽量小,保证传输效率高
功率容量大
参见P86 工作波型
色散小
考虑单模参数和带宽,一般取 中心波长(几何中值)选择为
标准波导:
1.6a 1.05a

1 . 3 a 0
参见P99
b =0.5a ; 加高波导:最大传输功率; 扁波导:不考虑功率,b 一般取(0.1~0.2)a。
dP
P
L
L
1 2
R J J
S S
2 S l
S

1 2
R Hi
S
2
1 2
R Hi
dl
f Rs 2
RS为导体的 表面电阻
TE10模导体损耗
对于TE10模
1 a P L 2 Rs 0
2
H i dx a
si n (
2
2
0
H i dx 0
2a
矩形波导“ 电压”和“ 电流”的定义
由传输线理论可知,传输线的特性阻抗等于入射波电压和入 射波电流之比,因此要首先定义波导中的等效电压和电流。 波导等效电压定义 波导横截面中央的电场从波导顶面到底面的线积分。
相关文档
最新文档