南京 盐城高三数学二模试卷

合集下载

南京市、盐城市2024届高三年级第二次模拟考试及答案

南京市、盐城市2024届高三年级第二次模拟考试及答案

南京市、盐城市2024届高三年级第二次模拟考试英语第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题; 每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例: How much is the shit?A.£ 19.15.B. £ 9.18.C.£9.15.答案是C.1. Where does the conversation take place?A. At a flower shop.B. At a concert.C. At a wedding.2. What are the speakers talking about?A.A photo.B. A drawing.C. An artist.3. How does the man sound?A. Surprised.B. Fearful.C. Worried.4. Who wants to borrow the book?A. David.B. Alice.C. Jane.5. Why did the woman get a ticket?A. She drove too fast.B. She ran a red light.C. She parked illegally.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独自后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6. Why does the man talk to the woman?A. To take a picture of her.B. To apply for a new ID card.C. To check his personal information.7. How will the man get the bill?A. By having it mailed.B. By picking it up in person.C. By downloading it from an email.听第7段材料,回答第8至10题。

2024届江苏南京市、盐城市高三高考模拟训练评估卷(5)数学试题

2024届江苏南京市、盐城市高三高考模拟训练评估卷(5)数学试题

2024届江苏南京市、盐城市高三高考模拟训练评估卷(5)数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数2log (1),1()3,1xx x f x x -->⎧=⎨≤⎩,则[](2)f f -=( ) A .1B .2C .3D .42.已知函数()1xf x xe-=,若对于任意的0(0,]x e ∈,函数()20()ln 1g x x x ax f x =-+-+在(0,]e 内都有两个不同的零点,则实数a 的取值范围为( ) A .(1,]eB .2(,]e e e-C .22(,]e e e e-+ D .2(1,]e e-3.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左、右焦点,过2F 的直线交椭圆于,P Q 两点.若2211||,||,||,||QF PF PF QF 依次构成等差数列,且1||PQ PF =,则椭圆C 的离心率为A .23B .34C .5D 4.秦九韶是我国南宁时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n 、x 的值分别为3、1,则输出v 的值为( )A .7B .8C .9D .105.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .6.已知函数2()e (2)e xx f x t t x =+--(0t ≥),若函数()f x 在x ∈R 上有唯一零点,则t 的值为( )A .1B .12或0 C .1或0 D .2或07.8x x ⎛ ⎝的二项展开式中,2x 的系数是( )A .70B .-70C .28D .-288.已知点(m ,8)在幂函数()(1)n f x m x =-的图象上,设,(ln ),()m a f b f c f n n π⎛⎫=== ⎪⎝⎭,则( ) A .b <a <cB .a <b <cC .b <c <aD .a <c <b9.已知1F 、2F 分别为双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,过1F 的直线l 交C 于A 、B 两点,O为坐标原点,若1OA BF ⊥,22||||AF BF =,则C 的离心率为( ) A .2B .5C .6D .710.在直角坐标平面上,点(),P x y 的坐标满足方程2220x x y -+=,点(),Q a b 的坐标满足方程2268240a b a b ++-+=则y bx a--的取值范围是( ) A .[]22-,B .4747,33⎡⎤---+⎢⎥⎣⎦C .13,3⎡⎤--⎢⎥⎣⎦D .6767,33⎡⎤-+⎢⎥⎣⎦11.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是( )A .B .C .D .12.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅ 二、填空题:本题共4小题,每小题5分,共20分。

南京市、盐城市高三二模数学试题(原卷版).docx

南京市、盐城市高三二模数学试题(原卷版).docx

高中数学学习材料唐玲出品一、填空题1.函数f (x )=ln x +1-x 的定义域为 ▲ .2. 已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 ▲ .3. 某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4. 盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为 ▲ .5. 已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为 ▲ . 6. 执行如图所示的流程图,则输出的k 的值为 ▲ .7. 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π3)的值为 ▲ .8. 在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ .9. 表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10. 已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ . 11. 在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12. 已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1),且. 若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ .13. 在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ .14. 设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .二、解答题15. (本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AB ⊥平面ABCD ,P A ⊥PB , BP =BC ,E 为PC 的中点.(1)求证:AP ∥平面BDE ;(2)求证:BE ⊥平面P AC .16. (本小题满分14分)在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2). (1)若x 1=35,求x 2; (2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.17. (本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q .(1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程;(3)若F 1P →=λQF 1→,且λ∈[12,2],求OP OQ 的最大值. 19. (本小题满分16分)已知函数f (x )=ax +b xe x ,a ,b ∈R ,且a >0. (1)若a =2,b =1,求函数f (x )的极值;(2)设g (x )=a (x -1)e x -f (x ).① 当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;② 设g′(x )为g (x )的导函数.若存在x >1,使g (x )+g′(x )=0成立,求b a的取值范围.20. (本小题满分16分)已知数列{a n }的各项都为正数,且对任意n ∈N *,a 2n -1,a 2n ,a 2n +1成等差数列,a 2n ,a 2n +1,a 2n +2成等比数列.(1)若a 2=1,a 5=3,求a 1的值;(2)设a 1<a 2,求证:对任意n ∈N *,且n ≥2,都有a n +1a n <a 2a 1.数学附加题21.【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.21.【题文】A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F .(1)求证:四边形ACBE 为平行四边形;(2)若AE =6,BD =5,求线段CF 的长.B .选修4—2:矩阵与变换已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ;(2)若A ⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,求x ,y 的值.C .选修4—4:坐标系与参数方程在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.(必做题)22. (本小题满分10分)某中学有4位学生申请A ,B ,C 三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A 大学的概率;(2)求被申请大学的个数X 的概率分布列与数学期望E (X ).23. (本小题满分10分)设f (n )是定义在N *上的增函数,f (4)=5,且满足:①任意n ∈N *,f (n )∈Z ;②任意m ,n ∈N *,有f (m )f (n )=f (mn )+f (m +n -1).(1)求f (1),f (2),f (3)的值;(2)求f (n )的表达式.。

江苏省南京市、盐城市届高三年级第二次模拟考试数学试题含附加题纯word解析版

江苏省南京市、盐城市届高三年级第二次模拟考试数学试题含附加题纯word解析版

江苏省南京市、盐城市 2021届高三年级第二次模拟考试数学试题2021.3一、填空题〔本大题共 14小题,每题5分,合计70分.不需要写出解答过程,请将答案填写在答题卡相应的地点上.〕.........1.会合A=xx2k1,k Z,B=xx(x5)0,那么AIB=.答案:{1,3}考点:会合交集运算分析:∵会合A=xx2k1,k Z,B=xx(x5)0,∴A I B={1,3}.2.复数z=1+2i,此中i为虚数单位,那么z2的模为.答案:5考点:复数分析:z214i4i234i,∴z25.3.如图是一个算法流程图,假定输出的实数y的值为﹣1,那么输入的实数x的值为.答案:1 4考点:算法与流程图分析:当x0时,log2(2x1)1,解得x 1切合题意,4当x0时,2x1,该等式无解.故x1.44.某校初三年级共有500名女生,为了认识初三女生1分钟“仰卧起坐〞工程训练状况,统计了全部女生1分钟“仰卧起坐〞测试数据(单位:个),并绘制了以下频次散布直方图,那么1分钟起码能做到30个仰卧起坐的初三女生个.1答案:325 考点:频次散布直方图0.01)分析:x2,∴++0.01)×10×500=325.5.从编号为1,2,3,4的4张卡片中随机抽取一张,放回后再随机抽取一张,那么第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除的概率为 .答案:12考点:随机事件的概率 分析:先后取两次共有16种取法,此中第二次抽得的卡片上的数字能被第一次抽得的卡片上数字整除有8种,故P =81 .162a6.函数f(x)是定义在R 上的奇函数,且周期为2,当x(0,1]时,f(x)x ,3那么f(a)的值为 .答案:0考点:函数的奇偶性与周期性分析:当x(0,1]时,f(x)xa,∴f(1)1 a ,33a ,∵函数f(x)是定义在R 上的奇函数,∴f(1)f(1)13∵函数f(x)周期为 2,∴f( 1) f(1),解得a =﹣3,∴f( 1)f(1) 0,∴f(a)f(3)f( 3 2)f(1)0.7.假定将函数f(x)sin(2x)的图象沿 x 轴向右平移 ( >0)个单位后所得的图象与3f(x)的图象对于x 轴对称,那么的最小值为 .答案:2考点:三角函数的图像与性质2T分析:由题意知.228.在△ABC中,AB=25,AC=5,∠BAC=90°,那么△ABC绕BC所在直线旋转一周所形成的几何体的表面积为.答案:65考点:圆锥的侧面积分析:有题意可知该几何体是由底面半径为2,母线长分别为25,5的两个圆锥拼成的图形,故表面积=2(255)65.9.数列a n为等差数列,数列b n为等比数列,知足{a1,a2,a3}={b1,b2,b3}={a,b,﹣2},此中a>0,b>0,那么a+b的值为.答案:5考点:等差、等比中项分析:不如令a>b,那么ab4,2ba2,那么b=1,a=4,∴a+b=5.10.点P是抛物线x24y上动点,F是抛物线的焦点,点A的坐标为(0,﹣1),那么PFPA 的最小值为.答案:22考点:抛物线的性质分析:令直线l为:y=﹣1,作PG⊥l于点G,那么PFPG cosAPGcos PAF,PA PA当直线AP且抛物线与点P时,∠PAF最大,此时cos∠PAF最小,即PF最小,PA 令直线AP:y=kx﹣1,与抛物线联立:x24y,x24kx40,y kx1当(4k)2440,解得k=±1,进而有∠PAF=45°,即cos PAF=2.2 11.x,y为正实数,且xy+2x+4y=41,那么x+y的最小值为.答案:8考点:根本不等式分析:∵xy+2x+4y=41,∴(x4)(y2)49,∴(x4)(y2)2(x4)(y2)14,当且仅当x=3,y=5取“=〞,∴x+y≥8,即x+y的最小值为8.12.在平面直角坐标系xOy中,圆C:(x m)2y2r2(m>0).过原点O且互相垂3直的两条直线 l 1和l 2,此中l 1 与圆C 订交于A ,B 两点,l 2与圆C 相切于点D .假定AB =OD ,那么直线 l 1的斜率为 .25答案:5考点:直线与圆综合分析:作CE ⊥AB 于点E ,那么CE 2BC 2BE 2 BC 21AB 2 BC 2 1OD 24 4r 21(m 2 r 2)5r 2 m 2 ,44由OECD 是矩形,知CE 2=OD 2,∴5r 2m 2 m 2 r 2,化简得r5 ,4m3即cos ∠OCD =CD =r 5,tan ∠COB =tan ∠OCD =25,OCm 352 5.∴直线l 1的斜率为5.在△ 中, 为定长, uuuruuur uuurABC BC AB 2AC =3BC .假定△ABC 的面积的最大值为2,那么13边BC 的长为.答案:2考点:平面向量与解三角形分析:方法一:依据题意作图以下,且令在△ ABC 中,角A ,B ,C 所对的边分别为 a ,b ,c ,uuur uuuruuur此中C 是AD 中点,E 是BD 中点,那么AB 2AC2AE ,uuuruuur uuuruuur 3uuur3∴AB2AC =3BC 可转变为AEBCa ,22 依据三角形中线公式得,AE1 2(AD 2AB 2)BD 2,BC1 2(AB2 BD 2) AD 2,22即3a1 2(4b2 c 2) BD 2 ,a 1 2(c 2 BD 2)4b 2,消BD 2得,2 2211a 2 6b 2 3c 2,作AF ⊥BC 于点F ,设CF =x ,那么BF =ax ,AF =h ,411a 2 6b 2 3c 2 可转变为11a 2 6(x 2 h 2)3[h 22],ax化简得h 29x 26ax8a 2 a 22a ,,当x3 时,h 取最大值a,即h 的最大值为9∴S max1 aa 2,解得a =2,即BC 的长为2. 2方法二:14.函数f(x)e x x b (e 为自然对数的底数,b R),假定函数g(x)f(f(x)1 )恰有24个零点,那么实数b 的取值范围为.答案:(1,1ln2)2考点:函数与方程分析:∵f(x)e x x b ,∴f(x)e x1,当x <0,f (x)<0,那么f(x)在(,0)上单一递减,当x >0,f(x)>0,那么f(x)在(0,)上单一递加,∴f(x)的最小值为f(0) 1b ,简单知道当1b 0,函数g(x)f(f(x)1)没有零点;2当1b0 ,函数g(x)f(f(x)1)有且仅有两个零点;2要使函数g(x)f(f(x)1)恰有4个零点,一定1b0,即b >12此时f(x)恰有2个零点,令这两个零点为t 1,t 2,规定t 1<0<t 2,那么f(x)1 =t 或t 2,f(x)=1 t 或 1 t,易知f(x)=1 t 有两个不相等的2 12 1 2 22 2实根,那么f(x)=1t 1一定知足有且仅有两个不相等的实根,故1 t 11 b ,即t 112 12b ,由于函数 f(x)在( b ,t 1)上单一递减, 2 2∴f(11 b 11b)f(t 1)0,即e2 ( b)b0,解得bln2, 22251综上所述,1 bln2.2二、解答题〔本大题共 6小题,合计 90分.请在答题纸指定地区 内作答,解允许写出文字.......说明,证明过程或演算步骤. 〕 15.〔本题总分值 14分〕如图,三棱锥P —ABC 中,点D ,E 分别为AB ,BC 的中点,且平面PDE ⊥平面ABC . 〔1〕求证:AC ∥平面PDE ;〔3〕假定PD =AC =2,PE = 3,求证:平面 PBC ⊥平面ABC .( 解:〔1〕∵D ,E 分别为AB ,BC 的中点,( DE ∥AC , ( AC平面PDE ,DE 平面PDE ,∴AC ∥平面PDE( 2〕∵D ,E 分别为AB ,BC 的中点, ∴DE1AC12在△PDE 中,DE 2PE 2 PD 24,PE ⊥DE∵平面PDE ⊥平面ABC ,平面PDE I 平面ABC =DE ,PE 平面PDE PE ⊥平面ABC PE 平面PBC∴平面PBC ⊥平面ABC16.〔本题总分值14分〕在△ABC 中,角A ,B ,C 所对的边分别为 a ,b ,c ,且a =bcosC +csinB .〔1〕求B 的值;〔2〕设∠BAC 的均分线AD 与边BC 交于点D ,AD =17,cosA =7 ,求b7 25的值.解:〔1〕由正弦定理得sinA =sinBcosC +sinCsinB6Sin[﹣π(B +C)]=sinBcosC +sinCsinB sin(B +C)=sinBcosC +sinCsinB sinBcosC +sinCcosB =sinBcosC +sinCsinB sinCcosB =sinCsinB∵B 、C (0,),sinB >0,sinC >0,cosB =sinB ,tanB =1,由B(0,), 得B = .4 2〕记A =2 AD 是∠BAC 的角均分线∴∠BAD =∠CAD =∵cosA =7 ,A(0,),2524∴sinA =1 cos2 A =25sinC =sin(A +B)=17 250∵cosA =2cos 2112sin 2 ,A(0,),22∴sin =4,cos=355∴sin ∠ADC =sin(B +)=7210在△ADC 中,由正弦定理得:b AD , AD sinADC sinCADC=5∴bsinsinC17.〔本题总分值14分〕如图,湖中有一个半径为1千米的圆形小岛,岸边点 A 与小岛圆心C 相距3千米.为方便游人到小岛参观,从点A 向小岛建三段栈道 AB ,BD ,BE .湖面上的点B 在线段AC上,且BD ,BE 均与圆C 相切,切点分别为D ,E ,此中栈道AB ,BD ,BE 和小岛在同一个平面上.沿圆 C 的优弧〔圆C 上实线局部〕上再修筑栈道?DE .记∠CBD 为.( 1〕用表示栈道的总长度f(),并确立sin 的取值范围;( 2〕求当为什么值时,栈道总长度最短.7解:〔1〕连结CD ,在Rt △CBD 中,CD =1,CB =1 ,BD = 1,sin tan?( 2)12DEf() 312 2tansin11,1),当B 与A 重合时,sin,∴sin[33〔2〕∵sin[1,1),∴cos(0,22 ],33求得f()cos (2cos1)sin2∴时,即cos1,f()minf() 35323318.〔本题总分值16分〕如图,在平面直角坐标系x 2 y 2 1(a >b >0)的离心率为1xOy 中,椭圆C :b 2,且过a 2 2点(0,3).〔1〕求椭圆C 的方程;〔2〕△BMN 是椭圆C 的内接三角形,①假定点B 为椭圆C 的上极点,原点O 为△BMN 的垂心,求线段MN 的长;②假定原点 O 为△BMN 的重心,求原点O 到直线MN 距离的最小值.8解:〔1〕由题意得c1 ,b 3,b 2a 2 c 2,解得a =2,b 23a 2 椭圆方程为:x 2 y 2143〔2〕①B(0, 3),O 是△ABC 的垂心,设M(x 0,y 0)(y 0<0),那么N(x 0,﹣y 0)知足x2y 0 2 1,OM ⊥BN ,那么有y 0y 03 1,43x 0 x 0解得x 0 2 33,y 04 3377那么MN =433,7设M(x 1,y 1),N(x 2,y 2),B(x 0,y 0),O 是△ABC 的重心,那么x 1x 2x 0,y 1y 2 y 0,那么有(x 1x 2)2(y 1 y 2)212431,那么2x 1x 2 3y 1y 210,I 假定MN 斜率不存在,那么M(﹣1,3 3),N(﹣1, ),d =1,22II 假定MN 斜率存在,那么y kx m ,联立得(4k 23)x 28mkx 4m 2 120,3x 2 4y 21248(4k220,那么x 1 x 28km,x 1x 24m 22 m3) 4k 234k2,3整理得4k 23 4m 2,那么点O 到MN 的距离dm11,当k =0时,取d3k 22,14k 429综上,当k =0时,d min3 .219.〔本题总分值16分〕函数f(x)x 3x 2 (a16)x ,g(x)alnx ,aR .函数h(x)f(x) g(x)x的导函数h(x)在[5,4]上存在零点.2〔1〕务实数 a 的取值范围;〔2〕假定存在实数a ,当x[0,b]时,函数f(x)在x =0 时获得最大值,求正实数b 的最大值;〔3〕假定直线l 与曲线y f(x)和yg(x)都相切,且l 在y 轴上的截距为﹣12,务实数a 的值.解:〔1〕由题意,h(x)x 2 x (a16) alnx ,h(x)2x 1a在[5,4]上存在零点,5,4]上有解,ax2即2x 2x a0 在[2x 2x ,2x 2 x [10,28],因此a 的取值范围是[10,28]. 2〔2〕f(x)3x 2 2x(a 16),f (0) 0 a 16令f(x)=0,x 113a4713a 473,x 23,当0<b ≤x 2时,明显f(x)在x =0时取最大值当bx 2时,f(x)在[0,x 2]上单一递减,在 [x 2,b]上单一递加,因此只要f(b) f(0)0,即b 3b 2 (a16)bb 2 b a16,∵a max28,∴b 的最大值为 4,〔3〕设f(x)上切点为(x 1,f(x 1)),f(x)3x 2 2x(a 16) ,可得切线方程为y x 13 x 12 (a 16)x 1[3x 122x 1 (a 16)](x x 1),点(0,﹣12)在其上,可得(x 12)(2x 123x 1 6) 0,因此x 12设g(x)上切点为(x 2,g(x 2)),g(x)a ,x10可得切线方程为y alnx 2a(xx 2),点(0,﹣12)在其上,x 2可得12alnx 2 a ,由于公切线,因此 3x 122x 1(a 16)a,将x 12代入,可得24aax 2x 212 alnx 2ax 2 1由 a,因此a 的值为12.a,可得1224 x 2a20.〔本题总分值16分〕无量数列a n 的各项均为正整数,其前 n 项和为S n ,记T n 为数列a n 的前a n 项和,即T n a 1 a 2 Laa n.〔1〕假定数列 a n 为等比数列,且 a 1 1,S 45S 2,求T 3的值;〔2〕假定数列a nT n 2 ,求数列a n为等差数列,且存在独一的正整数n(n ≥2),使得a n的通项公式;〔3〕假定数列T n 的通项为T nn(n 1)a n 为等差数列.2,求证:数列a 11q2 TS 15;解:〔1〕S 4 5S 234〔2〕由于无量等差数列,因此d ≥0,且a 1 N ,d N ,当d =0时,a n 和T n 均为常数,故不存在独一的整数知足条件,舍去;2n1T ni1a iII 当d ≥2时,a n1 2(n1)2n12n 13,舍去a na na 1 n1故d =1,T ni1a in(n 1)n(n 1)a 11) 2 2 a 1 a n a 1n 12(a 1 n2(a 1 n 1) 假定a 12,那么没有知足条件的n ,因此a 12,此时 T n n(n 1)n2, n2 211故a n n〔3〕T11,T23,T36a11,a22,a33,又T n T n1a n a n1因此a n n;假定a n n,T n a1a2L a a n a1a2L a n12Ln(n1)n与原命题2矛盾,∴a n n,a n a n11为常数,因此数列a n为等差数列.12。

高三年级第二次模拟考试(南京、盐城)2数学DA

高三年级第二次模拟考试(南京、盐城)2数学DA

2019届高三年级第二次模拟考试(南京、盐城)数学参考答案1.{x|1<x<4}2.-23.184.165.356.-47.y =±233x 8.3 9.4+4 310. (-2,3) 11.±21 12.2 13.⎝⎛⎭⎫-9,13 14.2+1215. (1) 由a +b 与a -b 互相垂直,可得(a +b )·(a -b )=a 2-b 2=0, 所以cos 2α+λ2sin 2α-1=0.(2分) 又因为sin 2α+cos 2α=1, 所以(λ2-1)sin 2α=0.(4分)因为0<α<π2,所以sin 2α≠0,所以λ2-1=0.又因为λ>0,所以λ=1.(6分) (2) 由(1)知a =(cosα,sinα). 由a·b =45,得cosαcosβ+sinαsinβ=45,即cos(α-β)=45.(8分)因为0<α<β<π2,所以-π2<α-β<0,所以sin(α-β)=-1-cos 2(α-β)=-35.(10分)所以tan(α-β)=sin (α-β)cos (α-β)=-34,(12分)因此tanα=tan(α-β+β)=tan (α-β)+tanβ1-tan (α-β)tanβ=12.(14分)16. (1) 连结A 1B ,在三棱柱ABCA 1B 1C 1中,AA 1∥BB 1且AA 1=BB 1, 所以四边形AA 1B 1B 是平行四边形. 又因为D 是AB 1的中点,所以D 也是BA 1的中点.(2分)在△BA 1C 中,D 和E 分别是BA 1和BC 的中点,所以DE ∥A 1C. 又因为平面ACC 1A 1,A 1平面ACC 1A 1, 所以DE ∥平面ACC 1A 1.(6分)(2) 由(1)知DE ∥A 1C ,因为A 1C ⊥BC 1, 所以BC 1⊥DE.(8分)又因为BC 1⊥AB 1,AB 1∩DE =D ,AB 1,平面ADE ,所以BC 1⊥平面ADE. 又因为平面ADE ,所以AE ⊥BC 1.(10分) 在△ABC 中,AB =AC ,E 是BC 的中点, 所以AE ⊥BC.(12分)因为AE ⊥BC 1,AE ⊥BC ,BC 1∩BC =B , BC 1,平面BCC 1B 1, 所以AE ⊥平面BCC 1B 1.(14分)17.过点O 作OH 垂直于AB ,垂足为H.在直角三角形OHA 中,OA =20,∠OAH =α, 所以AH =20cosα,因此AB =2AH =40cosα.(4分) 由图可知,点P 处的观众离点O 最远.(5分) 在三角形OAP 中,由余弦定理可知 OP 2=OA 2+AP 2-2OA·AP·cos ⎝⎛⎭⎫α+2π3(7分) =400+(40cosα)2-2×20×40cosα·(-12cosα-32sinα)=400(6cos 2α+23sinαcosα+1)=400(3cos2α+3sin2α+4) =8003sin ⎝⎛⎭⎫2α+π3+1600.(10分) 因为α∈⎝⎛⎭⎫0,π3,所以当2α=π6,即α=π12时, (OP 2)max =8003+1600,即OP max =203+20.(12分) 因为203+20<60,所以观众席内每一个观众到舞台O 处的距离都不超过60米.(13分) 故对于任意α,上述设计方案均能符合要求.(14分)18. (1) 依题意得⎩⎪⎨⎪⎧c a =22,a =2,解得⎩⎨⎧c =1,a =2,所以b 2=a 2-c 2=1,所以椭圆C 的方程为x 22+y 2=1.(2分)(2) 解法一:设直线的方程为y =k(x -2),代入椭圆C 的方程,消去y ,得(1+2k 2)x 2-8k 2x +8k 2-2=0. 因为直线l 交椭圆C 于两点,所以Δ=(-8k 2)2-4(1+2k 2)(8k 2-2)>0, 解得-22<k<22.(4分) 设点A(x 1,y 1),B(x 2,y 2), 则x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2.①设AB 的中点为M(x 0,y 0),则x 0=x 1+x 22=4k 21+2k 2,y 0=k(x 0-2)=-2k1+2k 2.(6分) 当k ≠0时,因为QA =QB ,所以QM ⊥l ,即k QM ·k =-2k 1+2k 2-04k 21+2k 2-m ·k =-1.解得m =2k 21+2k 2.(8分)当k =0时,可得m =0,符合m =2k 21+2k 2.因此m =2k 21+2k 2.由0≤k 2=m 2(1-m )<12,解得0≤m<12.(10分)②因为点Q 为△FAB 的外心,且点F(-1,0),所以QA =QB =QF.由⎩⎪⎨⎪⎧(m +1)2=(x -m )2+y 2,x 22+y 2=1,(12分) 消去y ,得x 2-4mx -4m =0, 所以x 1,x 2也是此方程的两个根, 所以x 1+x 2=4m ,x 1x 2=-4m.(14分) 又因为x 1+x 2=8k 21+2k 2,x 1x 2=8k 2-21+2k 2,所以8k 21+2k 2=-8k 2-21+2k 2,解得k 2=18, 所以m =2k 21+2k 2=15.(16分)解法二:①设点A(x 1,y 1),B(x 2,y 2),AB 中点为M(x 0,y 0). 依题意⎩⎨⎧x 212+y 21=1,x 222+y 22=1,两式作差,得y 1-y 2x 1-x 2×y 0x 0=-12(x 0≠0).又因为y 1-y 2x 1-x 2=k AB =y 0-0x 0-2,所以y 20=-12x 0(x 0-2). 当x 0=0时,y 0=0,符合y 20=-12x 0(x 0-2).(ⅰ)(4分) 又因为QA =QB ,所以QM ⊥l ,所以(x 0-m)(x 0-2)+(y 0-0)(y 0-0)=0, 即y 20=-(x 0-m)(x 0-2).(ⅱ)(6分) 由(ⅰ)(ⅱ),解得x 0=2m ,因此y 20=2m -2m 2.(8分)因为直线l 与椭圆C 相交,所以点M 在椭圆C 内,所以(2m )22+(2m -2m 2)<1,解得m<12.又y 20=2m -2m 2≥0,所以0≤m ≤1.综上,实数m 的取值范围是⎣⎡⎭⎫0,12.(10分) ②因为点Q 为△FAB 的外心,且点F(-1,0),所以QA =QB =QF.由⎩⎪⎨⎪⎧(m +1)2=(x -m )2+y 2,x 22+y 2=1消去y , 得x 2-4mx -4m =0.(ⅲ)(12分)当y 0≠0时,则直线l 为y =-x 02y 0(x -2),代入椭圆的方程,得(2y 20+x 20)x 2-4x 20x +4x 20-4y 20=0.将(ⅰ)代入上式化简得x 2-2x 0x +3x 0-2=0.(ⅳ)当y 0=0时,此时x 0=0,x 1=-2,x 2=2也满足上式.(14分) 由①可知m =x 02,代入(ⅲ)化简得x 2-2x 0x -2x 0=0.(ⅴ)因为(ⅳ)(ⅴ)是同一个方程, 所以3x 0-2=-2x 0,解得x 0=25,所以m =x 02=15.(16分)19. (1) 当a =2时,f(x)=lnx -2x -2x +3,f′(x)=1x -8(x +3)2,则f′(1)=12. 又因为f(1)=0,所以函数f(x)的图象在x =1处的切线方程为y =12(x -1),即x -2y -1=0.(2分) (2) 因为f(x)=lnx -2x -2x -1+2a,所以f′(x)=1x -4a(x -1+2a )2=x 2-2x +4a 2-4a +1x (x -1+2a )2=(x -1)2+4a 2-4a x (x -1+2a )2,(4分)且f(1)=0.因为a>0,所以1-2a<1. ①当4a 2-4a ≥0,即a ≥1时,因为f′(x)>0在区间(1,+∞)上恒成立, 所以函数f(x)在区间(1,+∞)上单调递增. 当x ∈[1,+∞)时,f(x)≥f(1)=0, 所以a ≥1满足条件.(6分) ②当4a 2-4a<0,即0<a<1时,由f′(x)=0,得x 1=1-2a -a 2∈(0,1),x 2=1+2a -a 2∈(1,+∞), 当x ∈(1,x 2)时,f′(x)<0,则函数f(x)在区间(1,x 2)上单调递减,所以当x ∈(1,x 2)时,f(x)<f(1)=0,这与x ∈[1,+∞)时,f(x)≥0恒成立矛盾, 所以0<a<1不满足条件.综上,实数a 的取值范围为[1,+∞).(8分) (3) ①当a ≥1时,因为函数f′(x)≥0在区间(0,+∞)上恒成立, 所以函数f(x)在区间(0,+∞)上单调递增, 所以函数f(x)不存在极值, 所以a ≥1不满足条件;(9分) ②当12<a<1时,1-2a<0,所以函数f(x)的定义域为(0,+∞), 由f′(x)=0,得x 1=1-2a -a 2∈(0,1), x 2=1+2a -a 2∈(1,+∞). 列表如下:由于函数f(x)在区间(x 1,x 2)是单调减函数,此时极大值大于极小值,不合题意, 所以12<a<1不满足条件.(11分)③当a =12时,由f′(x)=0,得x =2.列表如下:此时函数f(x)仅存在极小值,不合题意, 所以a =12不满足条件.(12分)④当0<a<12时,函数f(x)的定义域为(0,1-2a)∪(1-2a ,+∞),且0<x 1=1-2a -a 2<1-2a , x 2=1+2a -a 2>1-2a. 列表如下:所以函数f(x)存在极大值f(x 1)和极小值f(x 2),(14分) 此时f(x 1)-f(x 2)=lnx 1-2x 1-2x 1-1+2a -lnx 2+2x 2-2x 2-1+2a=ln x 1x 2-4a (x 1-x 2)(x 1-1+2a )(x 2-1+2a ).因为0<x 1<1-2a<x 2,所以ln x 1x 2<0,x 1-x 2<0,x 1-1+2a<0,x 2-1+2a>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 所以0<a<12满足条件.综上,实数a 的取值范围为⎝⎛⎭⎫0,12.(16分) 20. (1) 因为(a 1a 2)2=a 31a 3,所以a 22=a 1a 3, 因此a 1,a 2,a 3成等比数列.(2分)设公比为t ,因为a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,即4×a 2a 1=1+3×a 3a 1,于是4t =1+3t 2,解得t =1或t =13,所以a 2a 1=1或13.(4分)(2) ①因为(a 1a 2…a n )2=a n +11a n -1n +1,所以(a 1a 2…a n a n +1)2=a n +21a nn +2,两式相除得a 2n +1=a 1·a n n +2a n -1n +1,即a n +1n +1=a 1a nn +2,(*)(6分)由(*),得a n +2n +2=a 1a n +1n +3,(**)(*)(**)两式相除得a n +2n +2a n +1n +1=a n +1n +3a n n +2,即a 2n +2n +2=a n +1n +1a n +1n +3, 所以a 2n +2=a n +1a n +3,即a 2n +1=a n a n +2,n ≥2,n ∈N *,(8分)由(1)知a 22=a 1a 3,所以a 2n +1=a n a n +2,n ∈N *, 因此数列{a n }为等比数列.(10分) ②当0<q ≤2时,由n =1时,可得0<a 1≤1,所以a n =a 1q n -1≤2n -1,因此a 1+a 2+…+a n ≤1+2+…+2n -1=2n -1, 所以0<q ≤2满足条件.(12分) 当q>2时,由a 1+a 2+…+a n ≤2n-1,得a 1(1-q n )1-q≤2n-1,整理得a 1q n ≤(q -1)2n +a 1-q +1.(14分) 因为q>2,0<a 1≤1,所以a 1-q +1<0, 因此a 1q n<(q -1)2n,即⎝⎛⎭⎫q 2n<q -1a 1,由于q 2>1,因此n<log q 2q -1a 1,与任意n ∈N *恒成立相矛盾,所以q>2不满足条件.综上,公比q 的取值范围为(0,2].(16分)21.A. (1) 因为A =⎣⎢⎡⎦⎥⎤2b a 3,B =⎣⎢⎡⎦⎥⎤110-1,AB =⎣⎢⎡⎦⎥⎤2141,所以⎩⎪⎨⎪⎧2-b =1,a =4,a -3=1,即⎩⎪⎨⎪⎧b =1,a =4.(4分)(2) 因为|A |=2×3-1×4=2,(6分)所以A-1=⎣⎢⎡⎦⎥⎤32-12-4222=⎣⎢⎢⎡⎦⎥⎥⎤32-12-21.(10分) B.直线l 的参数方程为⎩⎨⎧x =t ,y =3t +2(t 为参数),化为普通方程为3x -y +2=0.(2分)设点P(cosθ,3sinθ), 则点P 到直线l 的距离d =|3cosθ-3sinθ+2|(3)2+1=⎪⎪⎪⎪6cos ⎝⎛⎭⎫θ+π4+22,(6分)取θ=-π4时,cos ⎝⎛⎭⎫θ+π4=1,此时d 取最大值, 所以距离d 的最大值为6+22.(10分) C.当x ≥12时,由2x -1-x ≥2,得x ≥3.(4分)当x<12时,由1-2x -x ≥2,得x ≤-13.(4分)综上,原不等式的解集为{x|x ≥3或x ≤-13}.(10分)22. (1) 设“甲从进口A 开始到出口B 经过点C ”为事件M ,甲选中间的路的概率为13,在前面从岔路到达点C 的概率为12,这两个事件相互独立,所以选择从中间一条路走到点C 的概率为P 1=13×12=16.(2分)同理,选择从最右边的道路走到点C 的概率为P 2=13×12=16.因为选择中间道路和最右边道路行走的两个事件彼此互斥, 所以P(M)=P 1+P 2=16+16=13.故甲从进口A 开始到出口B 经过点C 的概率13.(4分)(2) 随机变量可能的取值X =0,1,2,3,4,(5分) 则P(X =0)=C 04×⎝⎛⎭⎫130×⎝⎛⎭⎫234=1681,P(X =1)=C 14×⎝⎛⎭⎫131×⎝⎛⎭⎫233=3281, P(X =2)=C 24×⎝⎛⎭⎫132×⎝⎛⎭⎫232=2481, P(X =3)=C 34×⎝⎛⎭⎫133×⎝⎛⎭⎫231=881, P(X =4)=C 44×⎝⎛⎭⎫134×⎝⎛⎭⎫230=181,(8分) 概率分布为:数学期望E(X)=0×1681+1×3281+2×2481+3×881+4×181=43.(10分)23. (1) 当n =3时,共有6个点,若染红色的点的个数为0或6, 则T =C 36=20;若染红色的点的个数为1或5, 则T =C 35=10;若染红色的点的个数为2或4, 则T =C 34=4;若染红色的点的个数为3,则T =C 33+C 33=2; 因此T 的最小值为2.(3分)(2) 首先证明:任意n ,k ∈N *,n ≥k ,有C k n +1>C kn .证明:因为C k n +1-C k n =C k -1n >0,所以C k n +1>C kn .设这2n 个点中含有p(p ∈N ,p ≤2n)个染红色的点, ①当p ∈{0,1,2}时,T =C 32n -p ≥C 32n -2=(2n -2)(2n -3)(2n -4)6=4×(n -1)(n -2)(2n -3)6.因为n ≥4,所以2n -3>n ,所以T>4×n (n -1)(n -2)6=4C 3n >2C 3n .(5分) ②当p ∈{2n -2,2n -1,2n}时,T =C 3p ≥C 32n -2, 同理可得T>2C 3n .(6分) ③当3≤p ≤2n -3时,T =C 3p +C 32n -p ,设f(p)=C 3p +C 32n -p ,3≤p ≤2n -3, 当3≤p ≤2n -4时,f(p +1)-f(p)=C 3p +1+C 32n -p -1-C 3p -C 32n -p =C 2p -C 22n -p -1, 显然p ≠2n -p -1,当p>2n -p -1即n ≤p ≤2n -4时,f(p +1)>f(p), 当p<2n -p -1即3≤p ≤n -1时,f(p +1)<f(p), 即f(n)<f(n +1)<…<f(2n -3);f(3)>f(4)>…>f(n);因此f(p)≥f(n)=2C 3n ,即T ≥2C 3n . 综上,当n ≥4时,T ≥2C 3n .(10分)。

2023届江苏省南京市、盐城市高三第二次模拟考试数学卷(含解析)

2023届江苏省南京市、盐城市高三第二次模拟考试数学卷(含解析)

南京市、盐城市2023届高三年级第二次模拟考试数学2023.3第Ⅰ卷(选择题共60分)一、选择题;本大题共8小题,每小题5分,共40分.1.设,2k M x x k ⎧⎫==∈⎨⎬⎩⎭Z ,1,2N x x k k ⎧⎫==+∈⎨⎬⎩⎭Z ,则A.M NÞ B.N MÞ C.M N= D.M N ⋂=∅2.若()()()()1R f x x x x a a =++∈为奇函数,则a 的值为A.-1B.0C.1D.-1或13某种品牌手机的电池使用寿命X (单位:年)服从正态分布()()24,0N σσ>,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为A.0.9B.0.7C.0.3D.0.14.已知函数()()()sin 20f x x ϕϕπ=+<<的图象关于直线6x π=对称,则ϕ的值为A.12π B.6π C.3π D.23π5.三星堆古遗址作为“长江文明之源",被誉为人类最伟大的考古发现之一.3号坑发现的神树纹玉琮,为今人研究古蜀社会中神树的意义提供了重要依据.玉琮是古人用于祭祀的礼器,有学者认为其外方内圆的构造,契合了古代“天圆地方”观念,是天地合一的体现,如图,假定某玉琮形状对称,由一个空心圆柱及正方体构成,且圆柱的外侧面内切于正方体的侧面,圆柱的高为12cm ,圆柱底面外圆周和正方体的各个顶点均在球O 上,则球O 的表面积为A.272cmπ B.2162cmπ C.2216cmπ D.2288cmπ6.设等比数列{}n a 的前n 项和为n S .已知1122n n S S +=+,*N n ∈,则6S =A.312B.16C.30D.6327.已知椭圆E :()222210x y a b a b+=>>的两条弦AB ,CD 相交于点P (点P 在第一象限),且AB x ⊥轴,CD y⊥轴.若:::1:3:1:5PA PB PC PD =,则椭圆E 的离心率为A.5B.5C.5D.58.设,a b ∈R ,462baa=-,562abb=-,则A.1a b<< B.0b a<< C.0b a<< D.1b a <<二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得2分,不选或有错选的得0分.9.新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车等.我国的新能源汽车发展开始于21世纪初,近年来发展迅速,连续8年产销量位居世界第一.下面两图分别是2017年至2022年我国新能源汽车年产量和占比(占我国汽车年总产盘的比例)情况,则A.2017~2022年我国新能源汽车年产量逐年增加B.2017~2022年我国新能源汽车年产量的极差为626.4万辆C.2022年我国汽车年总产量超过2700万辆D.2019年我国汽车年总产量低于2018年我国汽车年总产量10.已知z 为复数,设z ,z ,i z 在复平面上对应的点分别为A ,B ,C ,其中O 为坐标原点,则A.OA OB =B.OA OC ⊥C.AC BC= D.OB AC∥ 11.已知点()1,0A -,()1,0B ,点P 为圆C :2268170x y x y +--+=上的动点,则A.PAB △面积的最小值为8-B.AP 的最小值为C.PAB ∠的最大值为512πD.AB AP ⋅的最大值为8+12.已知()cos 4cos3f θθθ=+,且1θ,2θ,3θ是()f θ在()0,π内的三个不同零点,则A.{}123,,7πθθθ∈ B.123θθθπ++=C.1231cos cos cos 8θθθ=-D.1231cos cos cos 2θθθ++=三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13.编号为1,23,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为___________.14.已知向量a ,b 满足2a = ,3b = ,0a b ⋅= .设2c b a =-,则cos ,a c = ___________.15.已知抛物线24y x =的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为____________.16.直线x t =与曲线1C :()e R xy ax a =-+∈及曲线2C :exy ax -=+分别交于点A ,B .曲线1C 在A 处的切线为1l ,曲线2C 在B 处的切线为2l .若1l ,2l 相交于点C ,则ABC △面积的最小值为____________.四、解答题;本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)在数列{}n a 中,若()*1123n n a a a a a d n N+=⋅⋅-∈⋅,则称数列{}na 为“泛等差数列”,常数d 称为“D 差”.已知数列{}n a 是一个“泛等差数列”,数列{}n b 满足22212123n n n a a a a a a a b =⋅++⋅⋅⋅⋅-⋅+.(1)若数列{}n a 的“泛差”1d =,且1a ,2a ,3a 成等差数列,求1a ﹔(2)若数列{}n a 的“泛差”1d =-,且112a =,求数列{}n b 的通项n b .18.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,()2sin cos c b A A =-.(1)若sin 10sin B C =,求sin A 的值;(2)在下列条件中选择一个,判断ABC △是否存在,加果在在,求h 的最小值;如果不存在,说明理由.①ABC △的面积1S =+;②bc =③222a b c +=.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC △和ACD △均为正三角形,4AC =,BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由;(2)求平面CDE 与平面ABC 所成的锐二面角的正切值.20.(本小题满分12分)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球t 乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为12(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整。

江苏省南京市、盐城市2022届高三下学期二模数学试题(含答案解析)

江苏省南京市、盐城市2022届高三下学期二模数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知集合ln {|()}2A x y x ==-,2{|430}B x x x =-+≤则A B ⋃=( ) A .[13],B .(2]3,C .[1)+∞,D .(2)+∞,2.若()2i i z +=,其中i 为虚数单位,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知a ,b 为单位向量.若52a b -=,则2a b +=( )AB C D .54.利用诱导公式可以将任意角的三角函数值转化为0~90︒︒之间角的三角函数值,而这个范围内的三角函数值又可以通过查三角函数表得到.下表为部分锐角的正弦值,则tan1600︒的值为( )(小数点后保留2位有效数字)30 400.5000 0.6427A .0.42-B .0.36-C .0.36D .0.425.已知圆锥的顶点和底面圆周均在球O 的球面上.若该圆锥的底面半径为6,则球O 的表面积为( ) A .32πB .48πC .64πD .80π6.泊松分布是统计学里常见的离散型概率分布,由法国数学家泊松首次提出.泊松分布的概率分布列为()()!e 012kk P X k k λλ-==⋯=,,,,其中e 为自然对数的底数,λ是泊松分布的均值.已知某种商品每周销售的件数相互独立,且服从参数为()0λλ>的泊松分布.若每周销售1件该商品与每周销售2件该商品的概率相等,则两周共销售2件该商品的概率为( ) A .42e B .44e C .46e D .48e 7.已知椭圆2222:0()x y C a b a b +>>的左焦点为F ,右顶点为A ,上顶点为B ,过点F 与x 轴垂直的直线与直线AB 交于点P .若线段OP 的中点在椭圆C 上,则椭圆C 的离心率为( )A B C D 8.已知实数1()a b ∈+∞,,,且()22e 2ln 1a a b b +=++,e 为自然对数的底数,则( ) A .1b a << B .2a b a <<C .2e a a b <<D .2e e a a b <<二、多选题9.我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.2017年~2021年某市城镇居民、农村居民年人均可支配收入比上年增长率如下图所示.根据下面图表,下列说法一定正确的是( )A .该市农村居民年人均可支配收入高于城镇居民B .对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C .对于该市居民年人均可支配收入比上年增长率的中位数,农村比城镇的大D .2021年该市城镇居民、农村居民年人均可支配收入比2020年有所上升10.已知抛物线24y x =的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是( )A .若O 为线段PQ 中点,则2PF =B .若4PF =,则OP =C .存在直线l ,使得PF QF ⊥D .PFQ △面积的最小值为211.设函数()2si 0)n 3(f x x πωω=+,>,下列说法正确的是( )A .当2ω=时,()f x 的图象关于直线π12x =对称 B .当12ω=时,()f x 在[0]2π,上是增函数 C .若()f x 在[0]π,上的最小值为2-,则ω的取值范围为76ω≥D .若()f x 在[0]π-,上恰有2个零点,则ω的取值范围为43ω≥ 12.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PA ⊥平面ABCD ,且2PA =.若点E ,F ,G 分别为棱AB ,AD ,PC 的中点,则( )A .AG ⊥平面PBDB .直线FG 和直线AB 所成的角为4π C .当点T 在平面PBD 内,且2TA TG +=时,点T 的轨迹为一个椭圆D .过点E ,F ,G 的平面与四棱锥P ABCD -表面交线的周长为三、填空题13.实数a ,b 满足()lg lg lg 2a b a b +=+,则ab 的最小值为___________.14.2022年北京冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”,有着可爱的外表和丰富的寓意,深受各国人民的喜爱.某商店有4个不同造型的“冰墩墩”吉祥物和3个不同造型的“雪容融”吉祥物展示在柜台上,要求“冰墩墩”和“雪容融”彼此间隔排列,则不同的排列方法种数为___________.(用数字作答)15.已知定义在R 上的奇函数()f x 满足()()112f x f x -++=,当]1[0x ∈,时,()22f x x x =-,若()f x x b ≥+对一切x ∈R 恒成立,则实数b 的最大值为___________.16.某中学开展劳动实习,学生需测量某零件中圆弧的半径.如图,将三个半径为20cm 的小球放在圆弧上,使它们与圆弧都相切,左、右两个小球与中间小球相切.利用“十”字尺测得小球的高度差h 为8cm ,则圆弧的半径为___________cm .四、解答题17.在平面四边形ABCD 中,已知23ABC π∠=,6ADC π∠=,AC 平分BAD ∠. (1)若3BAD π∠=,2AC =,求四边形ABCD 的面积;(2)若CD =,求tan BAC ∠的值.18.已知数列{}n a ,当12[)2k k n -∈,时,2k n a =,N k *∈.记数列{}n a 的前n 项和为n S .(1)求2a ,20a ;(2)求使得2022n S <成立的正整数n 的最大值.19.如图,在四棱锥P ABCD -中,四边形ABCD 是边长为2的菱形,PAB △是边长为2的等边三角形,PD AB ⊥,PD =(1)求证:平面PAB ⊥平面ABCD ;(2)求平面PAB 和平面PCD 所成锐二面角的大小.20.最新研发的某产品每次试验结果为成功或不成功,且试验成功的概率为(01)p p <<.现对该产品进行独立重复试验,若试验成功,试验结束;若试验不成功,则继续试验,且最多试验10次.记X 为试验结束时所进行的试验次数,且每次试验的成本为(0)a a >元. (1)①写出X 的分布列; ①证明:()1E X p<; (2)某公司意向投资该产品.若0.25p =,且试验成功则获利5a 元,则该公司如何决策投资,并说明理由.21.双曲线2222:1(0,0)x y C a b a b-=>>经过点)且渐近线方程为y x =±.(1)求a ,b 的值;(2)点A ,B ,D 是双曲线C 上不同的三点,且B ,D 两点关于y 轴对称,ABD △的外接圆经过原点O .求证:直线AB 与圆221x y +=相切.22.设函数()e sin 32xf x a x x =+--,e 为自然对数的底数,a R ∈.(1)若0a ≤,求证:函数()f x 有唯一的零点; (2)若函数()f x 有唯一的零点,求a 的取值范围.参考答案:1.C 【解析】 【分析】根据对数型函数的定义域,结合解一元二次不等式的方法、集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,[13]B =,,所以[1,)A B =+∞. 故选:C 2.A 【解析】 【分析】首先根据复数代数形式的除法运算化简复数z ,再根据复数的几何意义判断即可; 【详解】 解:因为()()()2i 12i 12i 2i 2i 25i i 5i 5z -+====+++-,所以复数z 在复平面内所对应的点的坐标为12,55⎛⎫⎪⎝⎭,位于第一象限. 故选:A 3.B 【解析】 【分析】根据平面向量数量积的运算性质进行求解即可. 【详解】 因为()()22222222444410a ba b a b a b a b a b -++=+-⋅+++⋅=,又52a b -=,所以25a b +=. 故选:B 4.B 【解析】 【分析】利用诱导公式化简得原式sin 20sin 70︒︒=-即得解.【详解】解:sin 20tan1600tan(4360160tan160tan 20cos 2)0︒︒︒︒︒︒=⨯+=-==-sin 200.34200.36sin 700.9397︒︒=-=-≈-故选:B 5.C 【解析】 【分析】设球心到圆锥底面的距离为d ,由题设可得关于d 的方程,求出其解后可得球的半径,从而可求其表面积. 【详解】因为6> 设球心到圆锥底面的距离为d ,则有222(6)d d --=,解得2d =,则圆半径64R d =-=, 表面积2464S R ππ==. 故选:C 6.D 【解析】 【分析】根据题干解方程可得2λ=,进而可得概率. 【详解】依题意得()()12P X P X ===,即2e e 2λλλλ=,解得2λ=,所以22()!k P X k e k -==,所以()022210e 0!e P X -===,()122221e 1!e P X -===,()222222e 2!eP X -===,则两周销售2件的概率为2122222241228C C e e e P e⎛⎫=⋅⋅+= ⎪⎝⎭. 故选:D.【解析】 【分析】联立直线AB 与x c =-,得到()(,)a c b P c a +-,继而得到()(,)22c a c bM a+-,代入椭圆求解即可 【详解】由题意,(,0),(,0),(0,)F c A a B b -由直线方程的截距式可得直线AB 为:1x ya b+=过点F 与x 轴垂直的直线为:x c =-联立1x ya b x c⎧+=⎪⎨⎪=-⎩可得(),a c b x c y a +=-=故()(,)a c b P c a +-,OP 中点()(,)22c a c bM a+-, 代入椭圆方程得2222222()331004422c a c c c e e a a a a ++=⇔+-=⇔+-=,解得e = 故选:A 8.D 【解析】 【分析】化简条件后根据形式构造函数,利用单调性判断不等式 【详解】因为22()e 2ln 1a a b b +=++,所以2ln e 212(ln 1)2(e ln 1)a b a b b b --=--=--,函数()()()e 1e 10,x xf x x f x f x =--⇒->'=在(0,)+∞上单调递增,且()00f =,因为()1ln 0ln 0b b f b >⇒>⇒>所以(2)2(ln )(ln )f a f b f b =>,所以2ln a b >,即2e a b <,又2e 212(e 1)a a a a -->--,所以(2)2(ln )2()f a f b f a =>,所以ln a b <,即e a b <,综上,2e e a a b <<. 故选:D【解析】 【分析】根据表中数据逐一判断即可. 【详解】由增长率高,得不出收入高,即A 错误;由表中数据,可知城镇居民相关数据极差较大,即B 正确; 由表中数据,可知农村居民相关数据中位数较大,即C 正确; 由表中数据,可知增长率为正,即D 正确. 故选:BCD 10.AD 【解析】 【分析】对于A ,求出P 点的横坐标,再根据抛物线的定义求出PF ,即可判断; 对于B ,根据抛物线的定义求出P 点的横坐标,再求出OP ,即可判断, 对于C ,()2,2P a a ,则21,Q a ⎛⎫-- ⎪⎝⎭,判断0FP QF ⋅=是否有解,即可判断;对于D ,根据12P Q PFQ S OF y y =⋅⋅-,结合基本不等式即可判断.【详解】解:抛物线24y x =的准线为1x =-,焦点()1,0F ,若O 为PQ 中点,所以1P x =,所以12p PF x =+=,故A 正确;若4PF =,则413P x =-=,所以OP =,故B 错误;设()2,2P a a ,则21,Q a ⎛⎫-- ⎪⎝⎭,所以()21,2FP a a =-,22,QF a ⎛⎫= ⎪⎝⎭,所以22224220FP QF a a ⋅=-+=+>,所以FP 与FQ 不垂直,故C 错误;212112212PFQP Q Sa OF a y a ay =+=⋅⨯⨯=+⋅-≥, 当且仅当1a a=,即1a =±时,取等号,所以PFQ △面积的最小值为2,故D 正确. 故选:BD.11.AC 【解析】 【分析】根据正弦型函数的对称性、单调性、最值的性质、零点的性质逐一判断即可. 【详解】当2ω=时,2sin 2122f ππ⎛⎫== ⎪⎝⎭,所以12x π=是()f x 图象的一条对称轴,即A 正确;当12ω=时,若0,2x π⎡⎤∈⎢⎥⎣⎦,则7,3312x πππω⎡⎤+∈⎢⎥⎣⎦,则7,2312πππ⎡⎤∈⎢⎥⎣⎦,所以()f x 不单调,即B错误;若[0,]x π∈,则,333x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,由题意,可知332ππωπ+,解得76ω,即C 正确;若[,0]x π∈-,则,333x πππωωπ⎡⎤+∈-+⎢⎥⎣⎦,由题意,可知23ππωππ-<-+-,解得4733ω<,即D 错误. 故选:AC 12.ABD 【解析】【分析】将该四棱锥补成正方体后可判断AB 的正误,结合椭圆的定义可判断C 的正误,结合空间中垂直关系的转化可判断D 的正误. 【详解】将该四棱锥补成正方体,可知AG 位于其体对角线上,则AG ⊥平面PBD ,即A 正确; 设PB 中点为H ,则FG AH ∥,且4HAB π∠=,即B 正确;因为2TA TG +=,故T 在空间中的轨迹为椭圆绕其长轴旋转形成的椭球, 又平面PBD 与其长轴垂直,所以截面为圆,即C 错误;设平面EFG 与PB ,PD 交于点M ,N ,连接,,,,,,,PE EC PF FC EM MG GN NF ,因为,,PA BC AE BE PAE CBE ==∠=∠,故PAE CBE ≅, 所以PE CE =,而PG GC =,故EG PC ⊥,同理FG PC ⊥, 而FGEG G =,故PC ⊥平面EFG ,而EM ⊂平面EFG ,则PC EM ⊥,因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,故PA BC ⊥, 而BC AB ⊥,PA AB A =,故BC ⊥平面PAB , 而EM ⊂平面PAB ,故BC EM ⊥,因BC PC C ⋂=, 则EM ⊥平面PBC ,而PB ⊂平面PBC ,则EM PB ⊥,所以BM EM ===FN DN ==又PG =22PM ==,则GM GN ==而12EF BD ==所以交线长为EF EM MG GN FN ++++=D 正确. 故选:ABD. 【点睛】思路点睛:空间中动点的轨迹,一般可根据平面曲线的定义结合旋转来处理,而截面问题则需结合位置关系的判定与性质或平面的性质来处理. 13.8 【解析】 【分析】利用基本不等式可求ab 的最小值. 【详解】因为log log log log(2)a b ab a b +==+,所以2ab a b =+≥8ab ≥,当且仅当4,2a b ==时等号成立, 故ab 的最小值为8, 故答案为:8. 14.144 【解析】 【分析】根据间隔排列知两端均为“冰墩墩”,可以先排 【详解】先排“冰墩墩”中间有三个空,再排“雪容融”,则4343144A A ⋅=.故答案为:144.15.14-##-0.25【解析】 【分析】根据题设条件画出函数的图象,结合图象可求实数b 的最大值. 【详解】因为()()112f x f x ++-=,故()f x 的图象关于()1,1中心对称当[1,0]x ∈-时,()2()2f x f x x x =--=+,故()f x 的图象如图所示:结合图象可得:只需当[1,0]x ∈-时,2()2f x x x x b =+≥+即可,即21124b x ⎛⎫≤+- ⎪⎝⎭,故14b ≤-,故答案为:14-.16.120 【解析】 【详解】如图所示,设圆弧圆心为O ,半径为R ,三个小球的球心自左至右分别为1O ,2O ,3O ,设134O OO θ∠=, 由题意可知,1120sin 20O Q OO R θ==-, 且()()()222122120cos22020cos2220sin h O M O M O N O P OO OO R R R θθθ=-=-==-=---=-,即()2220sin 8R θ-=,所以()220220820R R ⎛⎫-= ⎪-⎝⎭,解得120R =,故答案为:120. 17.【解析】 【分析】(1)根据正弦定理与面积公式求解 (2)根据正弦定理与三角比有关知识求解 (1)126DAC BAC BAD π∠=∠=∠=,则22,3DC AC ACD π==∠=,在ABC 中,由正弦定理可知sin sin AB ACACB ABC=∠∠,则AB =,则111222222ABCD ABC ACDS S S=+=⨯+⨯⨯(2)设BAC DACα∠=∠=,在ABC中,由正弦定理可知sin sinAB ACACB ABC=∠∠,即sin3ABπα=⎛⎫-⎪⎝⎭,即3ABACπα⎛⎫=-⎪⎝⎭,在ACD中,由正弦定理可知,即sin sinCD ACDAC ADC=∠∠,12AC=2sinα=,则2sin sin3παα⎛⎫-=⎪⎝⎭,解得tanα=.18.(1)24a=,2032a=;(2)51.【解析】【分析】(1)利用给定定义直接计算作答.(2)根据给定定义,对于k值确定出2kna=的所有n值,再分析2022nS<时n值区间,再列式计算作答.(1)因当12[)2k kn-∈,时,2kna=,Nk*∈,而)21222,2-⎡∈⎣,则2224a==,又)515202,2-⎡∈⎣,则520232a==,所以24a=,2032a=.(2)因当12[)2k kn-∈,时,2kna=,Nk*∈,当01[22)n ∈,时,112a =,当12[22)n ∈,时,2232a a ==,当23[22)n ∈,时,34572a a a ====,当34[22)n ∈,时,489152a a a ====,当45[22)n ∈,时,51617312a a a ====,当56[22)n ∈,时,63233632a a a ====,而12345357931222428216222222682S =+⨯+⨯+⨯+⨯=++++=,又1234563579116322242821623222222222022S =+⨯+⨯+⨯+⨯+⨯=+++++>,则有2022n S <时,3163n <<,由6631(31)262082(312)22n S n n S <=+-⋅=+-⋅得:3351531511616n <+=,而N n *∈,于是得max 51n =, 所以使得2022n S <成立的正整数n 的最大值是51. 19.(1)证明见解析; (2)4π. 【解析】 【分析】(1)根据等边三角形的性质,结合线面垂直的判定定理、勾股定理、面面垂直的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可. (1)取AB 中点为M ,连接PM ,DM , 则在等边三角形PAB 中,PM AB ⊥,又因为PD AB ⊥,PM PD P ⋂=,PM 、PD ⊂面PMD , 所以AB ⊥面PMD ,因为MD ⊂面PMD , 所以AB MD ⊥,又2DA AB ==,1AM =,所以60DAB ∠=︒,PM DM ==PD = 所以222PM DM PD +=,即PM DM ⊥, 又PM AB M ⋂=,PM 、AB面PAB ,所以DM ⊥面PAB ,又因为DM ⊂面AC ,所以面PAB ⊥面ABCD ;(2)以点M 为原点,MP 为x 轴,AB 为y 轴,MD 为z 轴建立空间直角坐标系,则(000)M ,,,)0P ,,(00D ,(02C ,由(1)知面PAB 的法向量为0(0MD =,(3,2,3),(3,0,PC PD =-=-设面PCD 的法向量为()m x y z =,,,则00PD m PC m ⎧⋅=⎨⋅=⎩,20y ⎧+=⎪⎨=⎪⎩101()m =∴,,,所以面PCD 和面PAB 的二面角的余弦值为cos 3MD m MD mθ⋅===⋅⨯ 所以面PCD 和面PAB 的二面角为4π. 20.(1)①答案见解析;①证明见解析 (2)应该投资,理由见解析 【解析】 【分析】(1)由题意,1,2,3,...,10X =,19()(1),1,2,,9,(10)(1)k P X k p p k P X p -==-===-,列出分布列即可;列出()E X ,乘公比错位相减法求和0128(1)2(1)3(1)9(1)S p p p p =-+-+-++-,分析可证明()1E X p<; (2)由(1)1()4E X p<=,分析即得解 (1)①由题意,1,2,3,...,10X = 故19()(1),1,2,,9,(10)(1)k P X k p p k P X p -==-===-分布列如下:①02918()(1)2(1)3(1)9(1)10(1)E X p p p p p p p p p =-+-+-++-+-,记0128(1)2(1)3(1)9(1)S p p p p =-+-+-++-,1239(1)(1)2(1)3(1)9(1)p S p p p p -=-+-+-++-,作差可得,()()()()()()()9128991111119191p pS p p p p p p p--=-+-+-++---=--,则910991(1)1(1)1()10(1)(1)p p E X pS p p p p p ----=+-=+-=<,即证. (2)由(1)可知1()4E X p<=,则试验成本的期望小于4a ,又获利5a 大于成本的期望,则应该投资.21.(1)a b ==(2)证明见解析 【解析】 【分析】(1)运用代入法,结合双曲线的渐近线方程进行求解即可;(2)设出直线AB 的方程,与双曲线方程联立,根据一元二次方程根与系数的关系,结合圆的性质进行求解即可. (1)22311a ba b⎧-=⎪⎨⎪=⎩,解得a b ==22:2C x y -=;(2)易知直线AB 一定不为水平直线,设为x my n =+,设()()()112222,,,,A x y B x y D x y -,联立222x y x my n ⎧-=⎨=+⎩,整理得()2221220m y mny n -++-=,则212221n y y m -=-, 由于外接圆过原点且关于y 轴对称,设为220x y Ey ++=,则221112222200x y Ey x y Ey ⎧++=⎨++=⎩, 则()()()()2222222111222112,222y x y y x y y y y y +=++=+,则121y y =,则22212221,11n y y n m m -===+-,则原点到直线AB的距离1d ==,即证.【点睛】关键点睛:利用圆的性质进行求解是解题的关键. 22.(1)证明见解析 (2)(]{},02-∞⋃ 【解析】 【分析】(1)根据导数判断函数的单调性,再根据零点存在定理判断零点个数; (2)构造函数,根据函数的单调性及最值情况求参数值. (1)当0a ≤时,()e cos 30xf x a x '=+-<恒成立,所以()f x 单调递减, 又() 020f a =-<,11331e 313e 033a a a a f a a a --⎛⎫⎛⎫->---=-> ⎪ ⎪⎝⎭⎝⎭,所以存在唯一的01,03a x ⎛⎫∈- ⎪⎝⎭,使得()00f x =,命题得证;(2)由(1)可知,当0a ≤时,()f x 有唯一零点, 当0a >时,()sin 32e e x x x x f x a --⎛⎫=⋅+ ⎪⎝⎭,设()sin 32exx x g x a --=+,则()g x 有唯一零点, ()cos sin 31e xx x x g x -+-'=,设()cos sin 31h x x x x =-+-,则()cos sin 30h x x x '=--+>,所以()h x 单调递增,又()00h =,列表可知,()g x 在(),0∞-单调递减,在()0,∞+单调递增, 即()()min 02g x g a ==-,当2a >时,()0g x >恒成立,无零点,即2a >不符题意,当2a =时,()()man 00g x g ==,即()g x 仅有一个零点0x =,即2a =符合题意, 当02a <<时,()()min 00g x g =<,因为()()11sin1e 0g a -=-+>,9912199271e 313e 0a ag a a a a a --⎛⎫⎛⎫⎛⎫->---=-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以存在()11,0x ∈-,290,1x a ⎛⎫∈- ⎪⎝⎭,使得()()120g x g x ==,即()0,2a ∈不符题意,综上,a 的取值范围为(]{},02-∞⋃. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。

江苏省南京市、盐城市2021届高三第二次模拟考试数学试题含附加题(图片版,答案有解析)

南京市、盐城市 2021 届高三年级第二次模拟考试数学2019.03.20 一、填空题:本大题共 14 小题,每小题 5 分,计 70 分,不需写出解答过程,请把答案写在答题卡的指定位置上。

1. 已知集合A ={x |1 <x < 3}, B ={x | 2 <x < 4},则A ∩B = .【答案】{x |1 <x < 4}【解析】画数轴可得。

【点评】考察集合并集,属于简单题。

2.若复数z 满足【答案】-2za + 2i=i (i 为虚数单位),且实部和虚部相等,则实数a 的值为.【解析】 z =i (a + 2i)=ai - 2, a =-2【点评】复数,简单题3.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20 人,则第三组中人数为.【答案】18【解析】1⨯(0.24+0.16)=0.4 ,总人数: 20 ÷ 0.4=50 (人),第三组: 50 ⨯ 0.36=18【点评】考察频率分布直方图,属于简单题。

4.右图是某算法的伪代码,输出的结果S 的值为.【答案】16i = 1, s = 1 i = 3, s = 4【解析】i = 5, s = 9 i = 7, s = 16【点评】考察算法流程图,属于简单题。

5. 现有 5 件相同的产品,其中 3 件合格,2 件不合格,从中随机抽检 2 件,则一件合格,另一件不合格的概率为 .【答案】 35C 1C 1 3⨯ 2 3 【解析】 P = 3 2 = = 2 10 5【点评】考察排列组合与概率,属于简单题。

6. 等差数列{a n }中, a 4 = 10 ,前 12 项的和 S 12 = 90,则a 18 的值为 .【答案】-4【解析】S 12 = (a 4 + a 9 )⨯ 6 ⇒ a 9 = 5 ⇒ d = -1⇒ a 18 = -4【点评】考察等差数列,属于简单题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京、盐城市2014届高三第二次模拟考试数 学注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题..纸.上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高. 圆柱的侧面积公式:S 侧=2πRh ,其中R 为圆柱的底面半径,h 为圆柱的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.函数f (x )=ln x +1-x 的定义域为 ▲ .2.已知复数z 1=-2+i ,z 2=a +2i(i 为虚数单位,a ∈R ).若z 1z 2为实数,则a 的值为 ▲ . 3.某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 ▲ .4.盒中有3张分别标有1,2,3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为 ▲ .5.已知等差数列{a n }的公差d 不为0,且a 1,a 3,a 7成等比数列,则a 1d的值为6.执行如图所示的流程图,则输出的k 的值为 ▲ .a(第3题图)(第6题图)7.函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0,0<φ<π)的图象如下图所示,则f (π3)的值为 ▲ .8.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=4x 的准线相交于A ,B 两点.若△AOB 的面积为2,则双曲线的离心率为 ▲ .9.表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 ▲ .10.已知|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,则OA →与OC →的夹角大小为 ▲ .11.在平面直角坐标系xOy 中,过点P (5,3)作直线l 与圆x 2+y 2=4相交于A ,B 两点,若OA ⊥OB ,则直线l 的斜率为 ▲ .12.已知f (x )是定义在R 上的奇函数,当0≤x ≤1时,f (x )=x 2,当x >0时,f (x +1)=f (x )+f (1),且. 若直线y =kx 与函数y =f (x )的图象恰有5个不同的公共点,则实数k 的值为 ▲ .13.在△ABC 中,点D 在边BC 上,且DC =2BD ,AB ∶AD ∶AC =3∶k ∶1,则实数k 的取值范围为 ▲ . 14.设函数f (x )=ax +sin x +cos x .若函数f (x )的图象上存在不同的两点A ,B ,使得曲线y =f (x )在点A ,B 处的切线互相垂直,则实数a 的取值范围为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面P AB ⊥平面ABCD ,P A ⊥PB , BP =BC ,E 为PC 的中点. (1)求证:AP ∥平面BDE ; (2)求证:BE ⊥平面P AC .(第7题图)PBCDEA(第15题图)在平面直角坐标系xOy 中,角α的顶点是坐标原点,始边为x 轴的正半轴,终边与单位圆O 交 于点A (x 1 ,y 1 ),α∈(π4,π2).将角α终边绕原点按逆时针方向旋转π4,交单位圆于点B (x 2,y 2).(1)若x 1=35,求x 2;(2)过A ,B 作x 轴的垂线,垂足分别为C ,D ,记△AOC 及 △BOD 的面积分别为S 1,S 2,且S 1=43S 2,求tan α的值.17.(本小题满分14分)如图,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M 、N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C ∶x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2,一条准线方程为x =2.P 为椭圆C 上一点,直线PF 1交椭圆C 于另一点Q . (1)求椭圆C 的方程;(2)若点P 的坐标为(0,b ),求过P ,Q ,F 2三点的圆的方程; (3)若F 1P →=λQF 1→,且λ∈[12,2],求OP →·OQ →的最大值.(第16题图) APMNBC(第17题图)已知函数f (x )=ax +b x e x,a ,b ∈R ,且a >0.(1)若a =2,b =1,求函数f (x )的极值; (2)设g (x )=a (x -1)e x -f (x ).① 当a =1时,对任意x ∈(0,+∞),都有g (x )≥1成立,求b 的最大值;② 设g′(x )为g (x )的导函数.若存在x >1,使g (x )+g′(x )=0成立,求ba 的取值范围.20.(本小题满分16分)已知数列{a n }的各项都为正数,且对任意n ∈N *,a 2n -1,a 2n ,a 2n +1成等差数列, a 2n ,a 2n +1,a 2n +2成等比数列.(1)若a 2=1,a 5=3,求a 1的值;(2)设a 1<a 2,求证:对任意n ∈N *,且n ≥2,都有a n +1a n <a 2a 1.南京市2014届高三年级第二次模拟考试数学附加题注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答.题纸..上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域......内.作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC .过点A 作圆的切线与 DB 的延长线交于点E ,AD 与BC 交于点F .(1)求证:四边形ACBE 为平行四边形;(2)若AE =6,BD =5,求线段CF 的长.B .选修4—2:矩阵与变换 已知矩阵A =⎣⎡⎦⎤1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎡⎦⎤21. (1)求矩阵A ;(2)若A⎣⎡⎦⎤x y =⎣⎡⎦⎤a b ,求x ,y 的值.C .选修4—4:坐标系与参数方程在极坐标系中,求曲线?=2cos θ关于直线θ=π4(?∈R )对称的曲线的极坐标方程.D .选修4—5:不等式选讲已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.A EBC FD第21题A 图【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)某中学有4位学生申请A,B,C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1)求恰有2人申请A大学的概率;(2)求被申请大学的个数X的概率分布列与数学期望E(X).23.(本小题满分10分)设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,f(n)∈Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1)求f(1),f(2),f(3)的值;(2)求f(n)的表达式.参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.(0,1] 2.4 3.300 4.59 5.2 6.4 7.18. 5 9.12 10.60° 11.1或723 12.22-2 13.(53,73) 14.[-1,1]二、解答题15.证:(1)设AC ∩BD =O ,连结OE .因为ABCD 为矩形,所以O 是AC 的中点.因为E 是PC 中点,所以OE ∥AP . …………………………………………4分 因为AP /?平面BDE ,OE ?平面BDE ,所以AP ∥平面BDE . …………………………………………6分 (2)因为平面P AB ⊥平面ABCD ,BC ⊥AB ,平面P AB ∩平面ABCD =AB ,所以BC ⊥平面P AB . ………………………………………8分 因为AP ?平面P AB ,所以BC ⊥P A .因为PB ⊥P A ,BC ∩PB =B ,BC ,PB ?平面PBC ,所以P A ⊥平面PBC . …………………………………………12分 因为BE ?平面PBC ,所以P A ⊥BE .因为BP =PC ,且E 为PC 中点,所以BE ⊥PC . 因为PA ∩PC =P ,P A ,PC ?平面P AC ,所以BE ⊥平面PAC . …………………………………………14分 16.解:(1)解法一:因为x 1=35,y 1>0,所以y 1=1-x 21=45.所以sin α=45,cos α=35. ………………………2分所以x 2=cos(α+π4)=cos αcos π4-sin αsin π4=-210. …………………………………6分解法二:因为x 1=35,y 1>0,所以y 1=1-x 21=45.A (35,45),则OA →=(35,45),…………2分OB →=(x 2,y 2), 因为OA →·OB →=|OA →||OB →|cos ∠AOB ,所以35x 2+45y 2= 2 2 ……4分又x 22+y 22=1,联立消去y 2得50 x 22-302x 2-7=0 解得x 2=-2 10或7210,又x 2<0,所以x 2=- 210. ………………………6分 解法三:因为x 1=35,y 1>0,所以y 1=1-x 21=45. 因此A (35,45),所以tan α=43.………2分所以tan(α+π4)=1+tan α1-tan α=-7,所以直线OB 的方程为y =-7x ……………4分由⎩⎨⎧y =-7x ,x 2+y 2=1.得x =± 2 10,又x 2<0,所以x 2=- 210. …………………6分(2)S 1=12sin αcos α=-14sin2α. …………………………………………8分因为α∈(π4,π2),所以α+π4∈(π2,3π4).所以S 2=-12sin(α+π4)cos(α+π4)=-14sin(2α+π2)=-14cos2α.……………………………10分因为S 1=43S 2,所以sin2α=-43cos2α,即tan2α=-43. …………………………………12分所以2tan α1-tan 2α=-43,解得tan α=2或tan α=-12. 因为α∈(π4,π2),所以tan α=2.………14分17、解法一:设∠AMN =θ,在△AMN 中,MN sin60°=AMsin(120°-θ).因为MN =2,所以AM =433sin(120°-θ) . ………………2分在△APM 中,cos ∠AMP =cos(60°+θ). …………………6分 AP 2=AM 2+MP 2-2 AM ·MP ·cos ∠AMP =163sin 2(120°-θ)+4-2×2×433 sin(120°-θ) cos(60°+θ) ………………………………8分=163sin 2(θ+60°)-1633sin(θ+60°) cos(θ+60°)+4 =83[1-cos (2θ+120°)]-833 sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos (2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0,120°). …………………………………………12分 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值23.答:设计∠AMN 为60?时,工厂产生的噪声对居民的影响最小.……………………………………14分解法二(构造直角三角形): 设∠PMD =θ,在△PMD 中,∵PM =2,∴PD =2sin θ,MD =2cos θ. ……………2分APMNBC 第17题图 D在△AMN 中,∠ANM =∠PMD =θ,∴MN sin60°=AMsin θ,AM =433sin θ,∴AD =433sin θ+2cos θ,(θ≥π2时,结论也正确).……………6分AP 2=AD 2+PD 2=(433sin θ+2cos θ)2+(2sin θ)2=163sin 2θ+833sin θcos θ+4cos 2θ+4sin 2θ …………………………8分 =163·1-cos2θ2+433sin2θ+4=433sin2θ-83cos2θ+203=203+163sin(2θ-π6),θ∈(0,2π3). …………………………12分 当且仅当2θ-π6=π2,即θ=π3时,AP 2取得最大值12,即AP 取得最大值23.此时AM =AN =2,∠P AB =30° …………………………14分 解法三:设AM =x ,AN =y ,∠AMN =α.在△AMN 中,因为MN =2,∠MAN =60°, 所以MN 2=AM 2+AN 2-2 AM ·AN ·cos ∠MAN ,即x 2+y 2-2xy cos60°=x 2+y 2-xy =4. …………………………………………2分 因为MN sin60°=AN sin α,即2sin60°=ysin α,所以sin α=34y ,cosα=x 2+4-y 22×2×x =x 2+(x 2-xy )4x =2x -y 4. …………………………………………6分cos ∠AMP =cos(α+60°)=12cos α-32sin α=12·2x -y 4-32·34y =x -2y4.……………………………8分在△AMP 中,AP 2=AM 2+PM 2-2 AM ·PM ·cos ∠AMP ,即AP 2=x 2+4-2×2×x ×x -2y 4=x 2+4-x (x -2y )=4+2xy .………………………………………12分因为x 2+y 2-xy =4,4+xy =x 2+y 2≥2xy ,即xy ≤4. 所以AP 2≤12,即AP ≤23.当且仅当x =y =2时,AP 取得最大值23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.………………………………14分 解法四(坐标法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系. 设M (x 1,0),N (x 2,3x 2),P (x 0,y 0).∵MN =2,∴(x 1-x 2)2+3x 22=4. …………………………………………2分 MN 的中点K (x 1+x 22,32x 2).∵△MNP 为正三角形,且MN =2.∴PK =3,PK ⊥MN .∴PK 2=(x 0-x 1+x 22)2+(y 0-32x 2)2=3,k MN ·k PK =-1,即3x 2x 2-x 1·y 0-32x 2x 0-x 1+x 22=-1, …………………………………………6分∴y 0-32x 2=x 1-x 23x 2(x 0-x 1+x 22),∴(y 0-32x 2)2=(x 1-x 2)23x 22(x 0-x 1+x 22)2 ∴(1+(x 1-x 2)23x 22)(x 0-x 1+x 22)2=3,即43x 22(x 0-x 1+x 22)2=3,∴(x 0-x 1+x 22)2=94x 22. ∵x 0-x 1+x 22>0 ∴x 0-x 1+x 22=32x 2,∴x 0=12x 1+2x 2,∴y 0=32x 1. …………………………………………8分∴AP 2=x 20+y 20=(2x 2+12x 1)2+34x 21=x 21+4x 22+2x 1x 2 =4+4x 1x 2≤4+4×2=12, …………………………………………12分 即AP ≤23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 解法五(变换法):以AB 所在的直线为x 轴,A 为坐标原点,建立直角坐标系. 设M (x 1,0),N (x 2,3x 2),P (x 0,y 0).∵MN =2,∴(x 1-x 2)2+3x 22=4.即x 21+4x 22=4+2x 1x 2∴4+2x 1x 2≥4x 1x 2,即x 1x 2≤2. …………………4分 ∵△MNP 为正三角形,且MN =2.∴PK =3,PK ⊥MN .MN →顺时针方向旋转60°后得到MP →. MP →=(x 0-x 1,y 0),MN →=(x 2-x 1,3x 2).∴⎣⎢⎡⎦⎥⎤12 32-32 12⎣⎢⎡⎦⎥⎤x 2-x 13x 2=⎣⎢⎡⎦⎥⎤x 0-x 1y 0,即x 0-x 1=12(x 2-x 1)+32x 2,y 0=-32(x 2-x 1)+32x 2.∴x 0=2x 2+12x 1,y 0=32x 1. …………………………………………8分∴AP 2=x 20+y 20=(2x 2+12x 1)2+34x 21=x 21+4x 22+2x 1x 2=4+4x 1x 2≤4+4×2=12, …………………………………………12分 即AP ≤23.答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分解法六(几何法):由运动的相对性,可使△PMN 不动,点A 在运动.由于∠MAN =60°,∴点A 在以MN 为弦的一段圆弧(优弧)上,…………4分 设圆弧所在的圆的圆心为F ,半径为R ,由图形的几何性质知:AP 的最大值为PF +R . …………8分 在△AMN 中,由正弦定理知:MN sin60°=2R ,∴R =23, …………10分 ∴FM =FN =R =23,又PM =PN ,∴PF 是线段MN 的垂直平分线. 设PF 与MN 交于E ,则FE 2=FM 2-ME 2=R 2-12=13.即FE =33,又PE =3. ……………………………12 ∴PF =43,∴AP 的最大值为PF +R =23. 答:设计AM =AN =2 km 时,工厂产生的噪声对居民的影响最小.…………………………14分 18、(1)解:由题意得⎩⎪⎨⎪⎧2c=2,a 2c =2, 解得c =1,a 2=2,所以b 2=a 2-c 2=1.所以椭圆的方程为x 22+y 2=1. …………………………………………2分(2)因为P (0,1),F 1(-1,0),所以PF 1的方程为x -y +1=0.由⎩⎪⎨⎪⎧x +y +1=0,x 22+y 2=1, 解得⎩⎨⎧x =0,y =1,或⎩⎨⎧x =-43,y =-13,所以点Q 的坐标为(-43,-13). ……………………4分解法一:因为k PF 1·k PF 2=-1,所以△PQF 2为直角三角形. ……………………6分 因为QF 2的中点为(-16,-16),QF 2=523,所以圆的方程为(x +16)2+(y +16)2=2518. ……………………8分解法二:设过P ,Q ,F 2三点的圆为x 2+y 2+Dx +Ey +F =0, 则⎩⎨⎧1+E +F =0,1+D +F =0,179-43D -13E +F =0,解得⎩⎨⎧D =13,E =13,F =-43.所以圆的方程为x 2+y 2+13x +13y -43=0. …………………………………………8分(3)解法一:设P (x 1,y 1),Q (x 2,y 2),则F 1P →=(x 1+1,y 1),QF 1→=(-1-x 2,-y 2).APMNBCF E因为F 1P →=λQF 1→,所以⎩⎨⎧x 1+1=λ(-1-x 2),y 1=-λy 2,即⎩⎨⎧x 1=-1-λ-λx 2,y 1=-λy 2,所以⎩⎨⎧(-1-λ-λx 2)22+λ2y 22=1,x 222+y 22=1,解得x 2=1-3λ2λ. …………………………………………12分所以OP →·OQ →=x 1x 2+y 1y 2=x 2(-1-λ-λx 2)-λy 22=-λ2x 22-(1+λ)x 2-λ=-λ2(1-3λ2λ)2-(1+λ)·1-3λ2λ-λ=74-58(λ+1λ) . …………………………………………14分因为λ∈[12,2],所以λ+1λ≥2λ·1λ=2,当且仅当λ=1λ,即λ=1时,取等号. 所以OP →·OQ →≤12,即OP →·OQ →最大值为12. …………………………………………16分解法二:当PQ 斜率不存在时,在x 22+y 2=1中,令x =-1得y =± 22.所以11(1)(222OP OQ ⋅=-⨯-+-=u u u r u u u r,此时11,22λ⎡⎤=∈⎢⎥⎣⎦…………………………2 当PQ 斜率存在时,设为k ,则PQ 的方程是y =k (x +1), 由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1.得(1+2k 2)x 2+4k 2x +2k 2-2=0,韦达定理 22121222422==1212k k x x x x k k --+++, (4)设P (x 1,y 1),Q (x 2,y 2) ,则212121212(1)(1)OP OQ x x y y x x k x x ⋅=+=+++u u u r u u u r22212122222222222(1)()224(1)12122 61215122(12)2k x x k x x k k k k k kk k k k k =++++--=+++++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=-<+分。

相关文档
最新文档