勾股定理1

合集下载

勾股定理的内容

勾股定理的内容

勾股定理的内容勾股定理,又称勾股定理,是古代数学中的一个重要定理。

在直角三角形中,直角三角形的两条直角边的平方和等于斜边的平方。

其数学表达形式为:a^2 + b^2 = c^2其中a、b、c分别代表直角三角形的两条直角边和斜边。

起源与发展勾股定理虽然现在被称为勾股定理,但最早是在《周髀算经》中发现的,成为世界上最早的几何著作之一。

据传,勾股定理是周公提出的,故得名“周公定理”。

后来被《算经》作者张丘建列入《增衍之术》中,并首次用文字表达了这一定理。

在中国古代,勾股定理的应用非常广泛,不仅用于地测和农业,还被运用在建筑和军事领域。

随着数学的发展,勾股定理也在世界各地广泛传播,并成为数学中的重要定理之一。

数学证明勾股定理的证明有多种方法,其中最著名的是毕达哥拉斯的证明。

毕达哥拉斯定理利用几何形状和平行移动来证明直角三角形的两个边的平方和等于斜边的平方。

这一证明方法被后人发扬光大,成为数学学科中的一个经典证明。

应用场景勾股定理在现代生活中的应用也非常广泛。

例如,在建筑领域中,利用勾股定理可以计算建筑物的结构稳定性;在工程设计中,可以测量距离和角度;在电子领域中,可以应用于信号传输和数据处理等方面。

总的来说,勾股定理是数学中的一个重要定理,不仅对几何学有重要意义,还在现代科学技术中有着广泛的应用。

结语通过对勾股定理的介绍,我们可以看到它在数学史上的重要地位和广泛应用。

了解勾股定理不仅有助于我们理解数学知识的深层含义,还可以帮助我们应用数学知识解决现实生活中的问题。

在学习数学的过程中,我们应该对勾股定理有更多的了解和探索,进一步探索数学世界的奥秘。

1勾股定理课件

1勾股定理课件
19.9(1)勾股定理
创设情境 一根电线杆在离地面3米处断裂,电线杆顶部落 在离电线杆底部4米处,电线杆折断之前有多高?
? 3m
4m
动手实验
总结:等腰直角三角形中,两条直角 边的平方和等于斜边的平方。
得出猜想
直角三角形两条直角边的 平和,等于斜边的平方。
验证:
a c
b
c
b a
a b
c
b c
a
AB2 AC2 BC2
C
B
例题讲授:
例1:在Rt⊿ABC中,∠C=90.设a、b、c分 别为∠A,∠B,∠C所对的边。 A
(1)已知b=4,c=5,求a;
(2)已知a=5,c=13,求b;
(3)已知a=b=1,求c;
(2)解:在Rt⊿ABC中,∠C=90
c2 a2 b2 (勾股定理 )
C
(b a)2 4 1 ab c2 2
b2 2ab b2 2ab c2
a2 b2 c2
验证:
a c
b
c b
a
a b
c
b c
a
这是中国汉代数学家 赵爽的验证方法。 被称为“赵爽弦图”。
归纳:
勾股定理:
直角三角形两条直角边的平方和,
等于斜边的平方。
A
字母表示:
在Rt⊿ABC中, ∵∠C=90°
杆顶部落在离电线杆底部4米处,电线杆折断之前
有多高?
解:在RtABC中
B
A 90
BC 2 AB2 AC 2 (勾股定理 )
3
BC AB2 AC2 (等式性质) A
4C
AB 3, AC 4
BC 32 42 16 5
AB BC 3 5 8

《勾股定理》PPT(第1课时)

《勾股定理》PPT(第1课时)
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
ac
b
课程讲授
1 勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c b a
b-a
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4S三角形+S小正方形,
课程讲授 2 勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及 正多边形、圆都具有相同的结论:两直角边上图 形面积的和等于斜边上图形的面积.本例考查了 勾股定理及半圆面积的求法,解答此类题目的关 键是仔细观察所给图形,面积与边长、直径有平 方关系,就很容易联想到勾股定理.
课程讲授Biblioteka 2 勾股定理与图形面积定有a2+b2=c2.
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
课程讲授
1 勾股定理
几何语言: ∵在Rt△ABC中 ,∠C=90°,
B ac

∴a2+b2=c2(勾股定理).
C
勾股定理揭示了直角三角形三边之间的关系.
bA
课程讲授 1 勾股定理
例 在Rt△ABC中,∠C=90°,AB=10 cm, BC=8 cm,求AC的长.
(1)正方形P的面积是 1 平方厘米; (2)正方形Q的面积是 1 平方厘米; (3)正方形R的面积是 2 平方厘米.
AR P
CQ B
上面三个正方形的面积之间有什么关系? SP+SQ=SR
(图中每一格代表一平方厘米)
课程讲授 1 勾股定理
直角三角形ABC三边长度之间存在什么关系吗? SP=AC2 SQ=BC2 SR=AB2 AC2+BC2=AB2

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

第三讲 勾股定理1

第三讲 勾股定理1

第三讲 勾股定理【基础知识】 知识点1:勾股定理 相关知识链接直角三角形的两锐角互余直角三角形中30°的锐角所对的直角边等于斜边的一半 斜边、直角边对应相等的两个直角三角形全等三角形的面积:2高底⨯正方形的面积:边长的平方梯形的面积:2高下底)(上底⨯+知识点一 勾股定理定义: 注:(1)勾股定理应用的前提是这个三角形必须是直角三角形,解题时,只能是在同一直角三角形中,才能利用它求第三边在式子222c b a =+中,a ,b 代表直角三角形的两条直角边长,c 代表斜边长,它们之间的关系不能弄错勾股定理把“形”与“数”有机地结合起来,即把直角三角形这一“形”与三边关系这一“数”结合起来,是数形结合思想方法的典范例1:在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 的对边分别是a,b,c (1)已知a=b=6,求c ; (2)已知c=3,b=2,求a ;(3)已知a :b=2:1,c=5,求b. 知识点2:勾股定理的应用(1)已知直角三角形的任意两边求第三边(2)已知直角三角形的任意一边确定另两边的关系 (3)证明包含有平方(算术平方根)关系的几个问题(4)构造方程(或方程组)计算有关线段的长度,解决生产、生活中的实际问题。

例2:如图,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为320cm ,在无风的天气里,彩旗自然下垂,如图.求彩旗下垂时最低处离地面的最小高度h .彩旗完全展平时的尺寸如左图的长方形(单位:cm )知识点3:利用勾股定理作长为n(n为大于1的整数)的线段例3:作长为2,3,5的线段题型一:利用勾股定理求直角三角形的边长1.若直角三角形的两边长分别为3cm,4cm,则第三边长为题型二:勾股定理在轴对称问题中的应用2.牧童在河边A处放牛,家在河边B处,时近傍晚,牧童驱赶牛群先到河边饮水,然后在天黑前赶回家,已知A点到河边C的距离为500米,点B到河边的距离为700米,且CD=500米.(1)请在原图上画出牧童回家的最短路线;(2)求出最短路线的长度.题型三:勾股定理在梯子移动问题中的应用3.一架梯子长为5m,斜靠在一面墙上,梯子底端离墙3m.如果梯子的顶端下滑了1m(如图(2)),那么梯子的底端在水平方向上滑动的距离为()题型四:勾股定理与方程(组)的综合应用4.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.题型五勾股定理在航海问题中的应用如图所示,甲船以16 n mile/h的速度离开港口,向东南航行,乙船在同时同地向西南方向航行,已知它们离开港口1.5h 后分别到达B,A 两点,且知AB=30n mile ,问乙船每小时航行多少海里?题型六 勾股定理在图形折叠和求图形面积问题1、如图所示,把长方形纸条ABCD 沿EF ,GH 同时折叠,B,C 两点恰好落在AD 边的点P 处,若∠FPH=90°,PF=8,PH=8,则长方形ABCD 的边BC 的长为( ) A 、20 B 、22 C 、24 D 、302、如图所示的阴影部分是两个正方形,图中还有一个正方形和两个直角三角形,求两阴影正方形面积的和。

【数学课件】勾股定理(1)

【数学课件】勾股定理(1)

同学们,再见
1、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之毁灭。——卢梭 2、教育人就是要形成人的性格。——欧文 3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种 最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间ห้องสมุดไป่ตู้人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身 上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱 心就是流淌在班级之池中的水,时刻滋润着学生的心田。——夏丐尊 20、教育不能创造什么,但它能启发儿童创造力以从事于创造工作。——陶行知

八上-第一章勾股定理

八上-第一章勾股定理

第一章勾股定理第1课时认识勾股定理1 我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称弦·直角三角形三边之间的关系称为勾股定理。

2 勾股定理是指直角三角形两直角边的平方和等于边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么 a2+b2=c2 。

预学感知在Rt△ABC中,∠B=90°,AC=10,AB=6,则则BC的长为。

知识点一勾股定理的认识【例1】在△ABC中,∠ACB=90°,∠A,∠B,∠C的对边分别为a,b,C.当a=9,c=41时,则b= 。

【名师点拔】由于∠ACB=90°,则有a2=c2,因而只需把已知数据代入相应字母,即可求出第三条线段的长。

知识点二勾股定理的简单运用【例2】如图,△ABC中,∠ACB=90°,AC=7,BC=24,CD⊥AB于点D。

求:(1)AB的长;(2)CD的长。

【名师点拔】由于△.ABC为直角三角形,就可先由匀股定理理求出AB,再根据面积求出CD的长。

1.已知直角三角形中两条边长,要弄清哪条是斜边,哪条是直角边,不能确定时,要分类讨论;2.在直角三角形中求斜边上的高,一般是借助面积这个中间量,21ab=21ch 。

1.在Rt △ABC 中,两直角边长分别为10和24,则斜边长等于 ( )A.25B.26C.27D.282.在Rt △ABC 中,斜边长BC =3,则AB 2+AC 2= 。

3. 如图,分别以直角三角形的三边为边向外作正方形,则正方形A 的面积是 ,B 的面积是 。

4. 要登上某建筑物,靠墙有一架梯子,底端离建筑物5m ,顶端离地面12m ,则梯子的长度为 。

5. 如图,有两棵树,一棵高12m ,另一棵高6m ,两树相距8m ,一只鸟从一棵树的树梢飞到另一棵树梢,则小鸟至少飞行 m 。

6. 某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙同时以20海里/时的速度离开港口向东航行,则它们离开港口2h 后相距 海里。

勾股定理

勾股定理

4. 三角形的三边长为 则这个三角形是( 则这个三角形是( ) A. 等边三角形 B. 钝角三角形 D. 锐角三角形 C. 直角三角形 5.已知一个直角三角形的两边长分别为3和4,则 第三边长是( ) A.5 B.25 C. 7 D.5或 7 =90° =14cm, 6.已知Rt△ABC中,∠C=90°,若a+b=14cm, 已知Rt△ Rt 中 c=10cm,则Rt△ABC的面积是( =10cm, Rt△ 的面积是( ) B. 36cm2 C. 48cm2 D. 60cm2 A. 24cm2 7.直角三角形中一直角边的长为 ,另两边为连续 .直角三角形中一直角边的长为9, 自然数,则直角三角形的周长为( 自然数,则直角三角形的周长为( ) A.121 B.120 C.90 D.不能确 定
A
毕达哥拉斯证法: 毕达哥拉斯证法:
a a c b
1 S大正方形=4× ab+a2+b2 × 2
=2ab+a2+b2
1 S大正方形=4× ab+c2 × 2
b
=2ab+c2 ∵S大正方形=S大正方形 S ∴2ab+a2+b2=2ab+c2 ∴a2+b2=c2
一、相信你一定能选对!(每小题4分,共32分) 相信你一定能选对!(每小题 分 !(每小题 分 1. 三角形的三边长分别为6,8,10,它的最短边上的高 为( ) A. 6 B. 4.5 C. 2.4 D. 8 2 2 2 2 2. 下面几组数:①7,8,9;②12,9,15;③ m + n , m − n , 2 a , a 2 +1 , a 2 + 2 . 2mn(m,n均为正整数,m>n)④ 其中能组成直角三角形的三边长的是( ) A. ①② B. ②③ C. ①③ D. ③④ 三角形的三边为a、 、 , 3. 三角形的三边为 、b、c,由下列条件不能判断 它是直角三角形的是( 它是直角三角形的是( ) A.a:b:c=8∶16∶17 B. a2-b2=c2 . : : ∶ ∶ . C.a2=(b+c)(b-c) D. a:b:c . . : : =13∶5∶12 ∶ ∶
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温陈街道办事处中学教案
年级
科目
课题
课型
时间
主备人
备课教师
集备组长
八年级
数学
7.2勾股定理(1)
新授
2.14
杨永春




1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.经历用面积法探索勾股定理的过程,体会数形结合的思想,渗透观察、归纳、猜想、验证的数学方法,体验从特殊到一般的逻辑推理过程。
小试身手:
1.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)
⑴两锐角之间的关系:;
⑵若D为斜边中点,则斜边中线;
⑶若∠B=30°,则∠B的对边和斜边:;
⑷三边之间的关系:。
四、反思小结,观点提炼
1.勾股定理的内容:
2.勾股定理的用途:
3.涉及到的思想方法:
五、分层作业,各有所获
必做题:习题18.1第1、2题。
已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4× ab+(b-a)2=c2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
பைடு நூலகம்选做题:
1.小明的妈妈买来一部29英寸(74厘米)的电视机,小明量了电视机的荧屏后,发现荧屏只有58厘米长46厘米宽,他认为售货员搞错了,对不对?
2.已知直角三角形的两边长分别为5和12,求第三边。
课后反思
3.培养在实际生活中发现问题总结规律的意识和能力。
教学重点
探索和验证勾股定理。
教学难点
勾股定理的证明。
一、创设情境,引入新课
问题:请同学们认真观察课本封面和本章章前彩图,说一说封面和章前彩图中的图形表示什么意思?它们之间有联系吗?
封面是我国公元3世纪汉代的赵爽在注解《周髀算经》时给出的“弦图”,章前彩图是2002年世界数学家大会的会徽,大会的会徽使用的主体图案就是赵爽“弦图”。
问题1:对于任意的直角三角形也有这个性质吗?
如右图,每个小方格的面积均为1,请分别算出图中正方形A,B,C的面积,看看能得出什么结论。(65页探究)
问题2:由以上你能得出什么结论?
若直角三角形的两条直角边分别为a,b,斜边为c,则a,b,c有什么关系?
问题3:利用拼图游戏验证定理,体会《赵爽弦图》的原理。能用右下图证明这个结论吗?
本节我们一起来解读图中的奥秘,从而引入课题。
二、实验操作,探求新知
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。
(1)你见过这个图案吗?
(2)你知道为什么把这个图案作为这次大会的会徽吗?
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。
⑷勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。
问题4:右边这些图也能证明这个结论吗?
三、得出结论,拓展运用
我们证明了以上结论的正确性,我们就可称之为定理,这就是著名的“勾股定理”。
问题:请同学们用不同的表达方式(文字语言,符号语言)表述这一定理。
相关文档
最新文档