电磁场与电磁波课后习题及答案七章习题解答 (2)

合集下载

《电磁场与电磁波》西安交大出版社 课后答案(全)

《电磁场与电磁波》西安交大出版社 课后答案(全)
, F2 ( x, y, z) y 分别用圆柱和圆 1.8 将直角坐标系中的矢量场 F1 ( x, y, z) x
球坐标系中的坐标分量表示。 解:在圆柱坐标系中
F1 cos sin 0 Fx1 cos sin 0 1 cos F sin cos 0 F sin cos 0 0 sin 1 y1 F 0 0 1 F 0 0 1 0 0 z1 z1 ˆ sin ˆ F1 ( , , z ) cos F 2 cos sin 0 Fx 2 cos sin 0 0 sin F sin cos 0 F sin cos 0 1 cos 2 y2 F 0 0 1 F 0 0 1 0 0 z2 z2 ˆ cos ˆ F2 ( , , z ) sin
ˆ 2y ˆz ˆ 证明 :因为 A B 2 x
A ( B) C 0
所以三个矢量 A 、B 和 C 形成一个三角形 此三角形的面积为
ˆ x 1 S A B Ax 2 Bx ˆ y Ay By ˆ y ˆ ˆ ˆ z x z Az 5 5 0 5 2 5 2 20 2 / 2 10.6 Bz 3 7 1


(e)A 和 B 之间的夹角 根据 A B AB cos 得
A B 7 cos 0.764 AB 9.163

40.19 0
(f) A 在 B 上的投影
A ˆ B 7 2.86 Ab B 2.45

电磁场与电磁波课后答案

电磁场与电磁波课后答案

第一章 矢量场1.1 z y x C z y x B z y xA ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+=ρρρ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB C ⨯ ; (e) ()ρρρA B C ⨯⨯ (f)()ρρρA B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+==ρρ( c) 7=⋅B A ρρ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ρρ (e)z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ρρρ (f)19)(-=⋅⨯C B A ρρρ 1.2 ρA z =++2∃∃∃ρπϕ; ρB z =-+-∃∃∃ρϕ32 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) B A ρρ+解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A ρρ (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπρρ (e) z B A ˆˆ)3(ˆ-++=+ϕπρρρ 1.3 ρA r=+-22∃∃∃πθπϕ; ρB r =-∃∃πθ 求:(a) A ; (b) ∃b ; (c) ρρA B ⋅ ; (d) ρρB A ⨯ ; (e) ρρA B +解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ρρ ; (d) ϕπθππˆ3ˆ2ˆ22++=⨯rA B ρρ ; (e) ϕπˆ2ˆ3-=+r B A ρρ 1.4 ρA x y z =+-∃∃∃2; ρB x y z =+-α∃∃∃3 当ρρA B ⊥时,求α。

解:当ρρA B ⊥时,ρρA B ⋅=0, 由此得 5-=α1.5 将直角坐标系中的矢量场ρρF x y z xF x y z y 12(,,)∃,(,,)∃==分别用圆柱和圆球坐标系中的坐标分量表示。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案

答案:① aA =
1 14
(ax
+
2ay

3az
)
;②
A−B =
53 ;③ A • B = −11;

θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η

答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η


0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2

1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;

电磁场与电磁波第7章课后答案

电磁场与电磁波第7章课后答案

习题7-1、如果z z H E ,已知,由无源区的麦克斯韦方程,求圆柱坐标系中ϕρϕρH H E E ,,,与z z H E ,的关系。

解: 设z jk z e E E -=),(0ϕρρρ;z jk z e H H -=),(0ϕρρρ则 E jk z E z ρρ-=∂∂;H jk zH z ρρ-=∂∂ 在圆柱坐标系中展开无源区的麦克斯韦方程E j H ρρωε=⨯∇;H j E ρρωμ-=⨯∇得ρϕωεϕρE j H jk H z z =+∂∂1 ρϕωμϕρH j E jk E z z -=+∂∂1 ϕρωερE j H H jk z z =∂∂-- ϕρωμρH j E E jk z z -=∂∂-- z E j H H ωεϕρρρρϕ=∂∂-∂∂1 z H j E E ωμϕρρρρϕ-=∂∂-∂∂1 由以上几式得)1(12ϕρωμρρ∂∂+∂∂-=z z z cH j E jk k E )(12ρωμϕρϕ∂∂+∂∂-=z z z c H j E k j k E )(12ρϕρωερ∂∂-∂∂=z z z cH jk E j k H )(12ϕρρωεϕ∂∂+∂∂-=z z z c H k j E j k H 式中 222z c k k k -=7-2证明() 式为式的解。

证明:由() 式z z e V e V z V γγ---++=00)(可得:2200'')()()(γγγγz V e V e V z V z z =+=---+因此 0222=-V dzV d γ 即 式7-2、 从图的等效电路,求5) 和式对应的传输线方程的时域形式。

解:图)()(1z I Z dzz dV -= 5) )()(1z V Y dzz dI -= 6) 串联支路上的电压为dV V dtdi dzL dz iR V +=++11 (1) 并联支路上的电流为 di i dt du dzC dz uG i +=++11 (2) 由(1)和(2)式得dz dtdi L iR dV )(11+-= (3) dz dtdu C uG di )(11+-= (4) 两边同除dz 得)(11dtdi L iR dz dV +-= (5) )(11dt du C uG dz di +-= (6) (5)、(6)式就是5) 和式对应的传输线方程的时域形式。

《电磁场与电磁波》课后习题解答(第七章)

《电磁场与电磁波》课后习题解答(第七章)

第7章习题解答【7.1】 解:设第一个分子的球心位置为原点,即0d (d 为分子直径)处 依题意任意时刻都要满足%5)10()0(0≤-E d d E E (1)其中E 是空间变化的电场,其形式为)exp(0ikx E -=E ,ck ω=,则(1)式变为%5)210exp(1≤--cfdi π (2) 可以求出 15151019.11056.1215⨯≈⨯≤f 所以频率上限的数量级为1510【7.2】解p V k ω=p pg p g p kdV dV d V V V dk dk V d ωωω===+ 1pg pp V V V d ωω=-22()1p i o rcc V n n ωωαω==-+0i n → p V c ∴= g p V V c ==即 2g p V V c ⋅=【7.3】解(1)波数681221501022310k f πππ===⨯⨯⨯⨯=⨯(rad/m ) 相速81.510p v ===⨯ (m/s )波长 21kπλ==(m )波阻抗60ηπ==(Ω) (2)均匀平面波的平均坡印廷矢量26z m S 0.26510z e e -==⨯平均 (W/m 2)得 31010m E -=⨯(V/m )当t = 0,z = 0时33sin 10100.8668.66103m E E π--⎛⎫==⨯⨯=⨯ ⎪⎝⎭(V/m )(3) t = 0.1s μ后210sin 23E ft kz ππ-⎛⎫=-+ ⎪⎝⎭267310sin 21501011028.66103z πππ---⎛⎫=⨯⨯⨯⨯-+=⨯ ⎪⎝⎭得 1sin 3028.66103z πππ-⎛⎫+-=⨯ ⎪⎝⎭15z =(m )【7.4】 解:电磁波的频率为8820310********v f λ-⨯===⨯⨯(Hz ) 在无损耗媒质中的波长为 12810vfλ-==⨯ (m ) 故波速为12888102510210v f λ-==⨯⨯⨯=⨯=(m/s )而无损耗媒质的本征阻抗为505000.1E H η==== (Ω) 联解以下两式:8210=⨯500= 得 1.99, 1.13r r με==【7.5】 解: 803100.2c f fλ⨯===故 883101510()0.2f Hz ⨯==⨯ 而 0.09vfλ== 故 880.090.091510 1.3510(/)v f m s =⨯=⨯⨯=⨯ 又v ===故 2882(/)(310/1.3510) 4.94r c v ε==⨯⨯=【7.6】 解:由题意知 7610ωπ=⨯0.8k π==106016E Hηππ====联解6100.8ππ⨯= 和60π= 得 8,2r r εμ==【7.7】 解:因4101σωε=<<,为低损耗媒质。

电磁场与电磁波课后习题及答案七章习题解答 (2)

电磁场与电磁波课后习题及答案七章习题解答 (2)

《电磁场与电磁波》习题解答 第七章 正弦电磁波求证在无界理想介质内沿任意方向e n (e n 为单位矢量)传播的平面波可写成j()e n r t m βω⋅-=e E E 。

解 E m 为常矢量。

在直角坐标中故 则 而 故可见,已知的()n j e r t m e βω⋅-=E E 满足波动方程 故E 表示沿e n 方向传播的平面波。

试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。

:解 表征沿+z 方向传播的椭圆极化波的电场可表示为式中取显然,E 1和E 2分别表示沿+z 方向传播的左旋圆极化波和右旋圆极化波。

在自由空间中,已知电场3(,)10sin()V/my z t t z ωβ=-E e ,试求磁场强度(,)z t H 。

解 以余弦为基准,重新写出已知的电场表示式这是一个沿+z 方向传播的均匀平面波的电场,其初相角为90︒-。

与之相伴的磁场为 均匀平面波的磁场强度H 的振幅为1A/m 3π,以相位常数30rad/m 在空气中沿z -e 方向传播。

当t=0和z=0时,若H 的取向为y -e,试写出E 和H 的表示式,并求出波的频率和波长。

解 以余弦为基准,按题意先写出磁场表示式 与之相伴的电场为由rad/m β=30得波长λ和频率f 分别为 '则磁场和电场分别为一个在空气中沿ye +方向传播的均匀平面波,其磁场强度的瞬时值表示式为(1)求β和在3ms t =时,z H =的位置;(2)写出E 的瞬时表示式。

解(1)781π10πrad /m rad /m 0.105rad /m 31030β==⨯==⨯在t =3ms 时,欲使H z =0,则要求 若取n =0,解得y =。

考虑到波长260mπλβ==,故因此,t =3ms 时,H z =0的位置为(2)电场的瞬时表示式为在自由空间中,某一电磁波的波长为0.2m 。

当该电磁波进入某理想介质后,波长变为0.09m 。

设1r μ=,试求理想介质的相对介电常数r ε以及在该介质中的波速。

《电磁场与电磁波》(第四版)习题集:第7章 导行电磁波

《电磁场与电磁波》(第四版)习题集:第7章  导行电磁波

第7章 导行电磁波前面我们讨论了电磁波在无界空间的传播以及电磁波对平面分界面的反射与透射现象。

在这一章中我们将讨论电磁波在有界空间的传播,即导波系统中的电磁波。

所谓导波系统是指引导电磁波沿一定方向传播的装置,被引导的电磁波称为导行波。

常见的导波系统有规则金属波导(如矩形波导、圆波导)、传输线(如平行双线、同轴线)和表面波波导(如微带线),图7.0.1给出了一些常见的导波系统。

导波系统中电磁波的传输问题属于电磁场边值问题,即在给定边界条件下解电磁波动方程,这时我们可以得到导波系统中的电磁场分布和电磁波的传播特性。

在这一章中,将用该方法讨论矩形波导、圆波导和同轴线中的电磁波传播问题以及谐振腔中的场分布及相关参数。

然而,当边界比较复杂时,用这种方法得到解析解就很困难,这时如果是双导体(或多导体)导波系统且传播的电磁波频率不太高,就可以引入分布参数,用“电路”中的电压和电流等效前面波导中的电场和磁场,这种方法称为“等效传输线”法。

这一章我们还将用该方法讨论平行双线和同轴线中波的传播特性。

7.1导行电磁波概论任意截面的均匀导波系统如图7.1.1所示。

为讨论简单又不失一般性,可作如下假设: (1)波导的横截面沿z 方向是均匀的,即导波内的电场和磁场分布只与坐标x ,y 有关,与坐标z 无关。

(2)构成波导壁的导体是理想导体,即σ=∞。

(3)波导内填充的媒质为理想介质,即0σ=,且各向同性。

(4)所讨论的区域内没有源分布,即0ρ=0=J 。

a 矩形波导b 圆柱形波导c 同轴线传输线d 双线传输线e 微带线图7.0.1 常见的几种导波系统(5)波导内的电磁场是时谐场,角频率为ω。

设波导中电磁波沿+z 方向传播,对于角频率为ω的时谐场,由假设条件(1)和(2)可将其电磁场量表示为()()()(),,,,,,,z z x y z x y e x y z x y e γγ--==E E H H (7.1.1)式中γ称为传播常数,表征导波系统中电磁场的传播特性。

《电磁场与电磁波》课后习题解答(全)

《电磁场与电磁波》课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c += 即只要满足3b+8c=1就可以使向量和向量垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=- 可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221a b +=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3) )()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r 的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a )所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223yz A x yze xy e =+ 而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y xe x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试求穿过r=1000m的半球壳的平均功率。
解将电场、磁场写成复数形式
平均坡印廷矢量为
故穿过r=1000m的半球壳的平均功率为
式中dS为球坐标的面积元矢量,对积分有贡献是

7.21在自由空间中, 。试求 平面内的边长为30mm和15mm长方形面积的总功率。
解将已知的电场写成复数形式
得与 相伴的磁场
故平均坡印廷矢量为
解自由空间的相位常数
,故
在理想电介质中,相位常数 ,故
电介质中的波速则为
7.10在自由空间中,某均匀平面波的波长为12cm;当该平面波进入到某无损耗媒质时,波长变为8cm,且已知此时的 , 。求该均匀平面波的频率以及无损耗媒质的 、 。
解自由空间中,波的相速 ,故波的频率为
在无损耗媒质中,波的相速为
对于z>0的区域,求 。

可见,在f=1.5MHz的频率该导体可视为良导体。故
分界面上的透射系数为
入射波电场的复数表示式可写为
则z>0区域的透射波电场的复数形式为
与之相伴的磁场为

7.14一圆极化波垂直入射到一介质板上,入射波电场为
求反射波与透射波的电场,它们的极化情况又如何?
解设媒质1为空气,其本征阻抗为 ;介质板的本征阻抗为 。故分界面上的反射系数和透射系数分别为
则穿过z=0平面上 的长方形面积的总功率为
7.22均匀平面波的电场强度为
(1)运用麦克斯韦方程求出H:(2)若该波在z=0处迁到一理想导体平面,求出z<0区域内的E和H;(3)求理想导体上的电流密度。
解(1)将已知的电场写成复数形式
由 得
写成瞬时值表示式
(2)均匀平面波垂直入射到理想导体平面上会产生全反射,反射波的电场为
解(1)根据已知条件求得如下参数。
在空气中(媒质1)
在有损耗媒质中
分界面上的反射系数为
透射系数为
故反射波的电场和磁场的复数表示式为
则其瞬时表示式为
而媒质2中的透射波电场和磁场为
故其瞬时表示式为
(2)
7.25一右旋圆极化波垂直入射到位于z=0的理想导体板上,其电场强度的复数表示式为
(1)确定反射波的极化方式;(2)求导体板上的感应电流;(3)以余弦为基准,写出总电场强度的瞬时值表示式。
《电磁场与电磁波》习题解答 第七章 正弦电磁波
7.1求证在无界理想介质内沿任意方向en(en为单位矢量)传播的平面波可写成 。
解Em为常矢量。在直角坐标中




可见,已知的 满足波动方程
故E表示沿en方向传播的平面波。
7.2试证明:任何椭圆极化波均可分解为两个旋向相反的圆极化波。
解表征沿+z方向传播的椭圆极化波的电场可表示为
f=100MHz时
f=1GHz时
7.8求证:电磁波在导电媒质内传播时场量的衰减约为55dB/λ。
证明在一定频率范围内将该导电媒质视为良导体,此时
故场量的衰减因子为
即场量的振幅经过z=λ的距离后衰减到起始值的0.002。用分贝表示。
7.9在自由空间中,一列平面波的相位常数 ,当该平面波进入到理想电介质后,其相位常数变为 。设 ,求理想电介质的 和波在电介质中的传播速度。
[讨论]
(1)上述分析方法可推广到n层媒质的情况,通常是把坐标原点O选在最右侧的分界面上较为方便。
(2)应用前面导出的等效波阻抗公式(9),可以得出一种很有用的特殊情况(注意:此时 )。
取 ,则有
由式(9)得
若取 ,则
此时,分界面①上的反射系数为
即电磁波从媒质1入射到分界面①时,不产生反射。可见,厚度 的介质板,当其本征阻抗 时,有消除反射的作用。
故由式(3)得
(4)
将良导体中的传播常数 和波阻抗 代入式(4),得
这样,只要取理想介质层的厚度 ,而良导体涂层的厚度 ,就可消除分界面③上的反射波。即雷达发射的电磁波从空气中投射到分界面③时,不会产生回波,从而实现飞机隐身的目的。此结果可作如下的物理解释:由于电磁波在理想导体表面(即分界面①上产生全反射,则在离该表面 处(即分界面②出现电场的波腹点。而该处放置了厚度为d2的良导体涂层,从而使电磁波大大损耗,故反射波就趋于零了。


7.7海水的电导率 ,相对介电常数 。求频率为10kHz、100kHz、1MHz、10MHz、100MHz、1GHz的电磁波在海水中的波长、衰减系数和波阻抗。
解先判定海水在各频率下的属性
可见,当 时,满足 ,海水可视为良导体。此时
f=10kHz时
f=100kHz时
f=1MHz时
f=10MHz时
当f=100MHz以上时, 不再满足,海水属一般有损耗媒质。此时,
由式1和2得2222222211222221122212211jdjdjdjdmmmmmjdjdjdjdmmmmmeeeeeeeeeeeeeeeeee??????????????????????????????????????????6将分界面上的总电场与总磁场之比定义为等效波阻抗或称总场波阻抗由式1得11111111111mmmmefmmmmeeeeeeee?????????????????7将式6代入式7得2222222jdjdefjdjdeeee?????????????8将式5代入式8并应用欧拉公式得3222232tantanefjdjd???????????9再由式7得分界面上的反射系数11111efmmefee???????????10显然若分界面上的等效波阻抗ef?等于媒质1的本征阻抗1?则10??即分界面上无反射
(1)求波的频率和波长;(2)以余弦函数为基准,写出入射波电场和磁场的瞬时表示式;(3)确定入射角;(4)求反射波电场和磁场的复数表示式;(5)求合成波电场和磁场的复数表示式。
即 区域内的反射波电场为
与之相伴的反射波磁场为
至此,即可求出 区域内的总电场E和总磁场H。

同样

(3)理想导体平面上的电流密度为
7.23在自由空间中,一均匀平面波垂直投射到半无限大无损耗介质平面上。已知在平面前的自由空间中,合成波的驻波比为3,无损耗介质内透射波的波长是自由空间波长的 。试求介质的相对磁导率 和相对介电常数 。
7.15均匀平面波的电场振幅 ,从空气中垂直入射到无损耗的介质平面上(介质的 ),求反射波和透射波的电场振幅。

反射系数为
透射系数为
故反射波的电场振幅为
透射波的电场振幅为
7.16最简单的天线罩是单层介质板。若已知介质板的介电常数 ,问介质板的厚度应为多少方可使频率为3GHz的电磁波垂直入射到介质板面时没有反射。当频率分别为3.1GHz及2.9GHz时,反射增大多少?
式中
都是实数,故 也是实数。
反射波的电场为
可见,反射波的电场的两个分量的振幅仍相等,相位关系与入射波相比没有变化,故反射波仍然是圆极化波。但波的传播方向变为-z方向,故反射波也变为右旋圆极化波。而入射波是沿+z方向传播的左旋圆极化波。
透射波的电场为
式中, 是媒质2中的相位常数。可见,透射波是沿+z方向传播的左旋圆极化波。
解在自由空间,入射波与反射波合成为驻波,驻波比为
由此求出反射系数
设在介质平面上得到驻波最小点,故取 。而反射系数为
式中的 ,则得
求得

(1)


(2)
联解式(1)和(2)得
7.24均匀平面波的电场强度为 ,该波从空气垂直入射到有损耗媒质 的分界面上(z=0),如题7.24图所示。(1)求反射波和透射波的电场和磁场的瞬时表示式;(2)求空气中及有损耗媒质中的时间平均坡印廷矢量。
(10)
显然,若分界面①上的等效波阻抗 等于媒质1的本征阻抗 ,则 ,即分界面①上无反射。
通常天线罩的内、外都是空气,即 ,由式(9)得
欲使上式成立,必须 。故
频率f0=3GHz时

当频率偏移到f1=3.1GHz时,


故此时的等效波阻抗为
反射系数为
即频率偏移到3.1GHz时,反射将增大6%。
同样的方法可计算出频率下偏到 时,反射将增加约5%。
7.17题7.17图所示隐身飞机的原理示意图。在表示机身的理想导体表面覆盖一层厚度 的理想介质膜,又在介质膜上涂一层厚度为d2的良导体材料。试确定消除电磁波从良导体表面上反射的条件。
解题7.17图中,区域(1)为空气,其波阻抗为
区域(2)为良导体,其波阻抗为
区域(3)为理想介质,其波阻抗为
区域(4)为理想导体 ,其波阻抗为
考虑到波长 ,故
因此,t=3ms时,Hz=0的位置为
(2)电场的瞬时表示式为
7.6在自由空间中,某一电磁波的波长为0.2m。当该电磁波进入某理想介质后,波长变为0.09m。设 ,试求理想介质的相对介电常数 以及在该介质中的波速。
解在自由空间,波的相速 ,故波的频率为
在理想介质中,波长 ,故波的相速为
解以余弦为基准,按题意先写出磁场表示式
与之相伴的电场为
由 得波长 和频率 分别为
则磁场和电场分别为
7.5一个在空气中沿 方向传播的均匀平面波,其磁场强度的瞬时值表示式为
(1)求 和在 时, 的位置;(2)写出E的瞬时表示式。
解(1)
在t=3ms时,欲使Hz=0,则要求
若取n=0,解得y=899992.m。
7.18均匀平面波从自由空间垂直入射到某介质平面时,在自由空间形成驻波。设驻波比为2.7,且介质平面上有驻波最小点;求介质的介电常数。
解自由空间的总电场为
式中
是分界面上的反射系数。
驻波比的定义为

据此求得
因介质平面上是驻波最小点,故应取
反射系数


7.19如题7.19图所示,z>0区域的媒质介电常数为 ,在此媒质前置有厚度为d、介电常数为 的介质板。对于一个从左面垂直入射过来的TEM波,试证明当 且 时,没有反射( 为自由空间的波长)。
相关文档
最新文档