2023考研数学高数备考冲刺:16种求极限的方法

合集下载

高等数学求极限的14种方法

高等数学求极限的14种方法

高等数学求极限的14种方法高等数学求极限的14种方法一、极限的定义极限的保号性很重要。

设$x\to x_0$,$limf(x)=A$,则有以下两种情况:1)若$A>0$,则有$\delta>0$,使得当$00$;2)若有$\delta>0$,使得当$0<|x-x_0|<\delta$时,$f(x)\geq 0$,则$A\geq 0$。

极限分为函数极限和数列极限,其中函数极限又分为$x\to\infty$时函数的极限和$x\to x_0$的极限。

要特别注意判定极限是否存在,收敛于$a$的充要条件是它的所有子数列均收敛于$a$。

常用的是其推论,即“一个数列收敛于$a$的充要条件是其奇子列和偶子列都收敛于$a$”。

二、解决极限的方法如下:1.等价无穷小代换。

只能在乘除时候使用。

2.XXX(L'Hospital)法则。

它的使用有严格的使用前提。

首先必须是$x$趋近,而不是$n$趋近,所以面对数列极限时候先要转化成求$x$趋近情况下的极限,数列极限的$n$当然是趋近于正无穷的,不可能是负无穷。

其次,必须是函数的导数要存在,假如只告诉$f(x)$、$g(x)$,而没有告诉是否可导,不可直接用洛必达法则。

另外,必须是“比”或“无穷大比无穷大”,并且注意导数分母不能为$0$。

洛必达法则分为三种情况:1)$\infty/\infty$时,直接用$\infty$;2)$0\cdot\infty$、$\infty-\infty$、$0^0$、$\infty^0$时,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。

通分之后,就能变成(1)中的形式了。

即$f(x)g(x)=\frac{f(x)}{g(x)}$或$f(x)g(x)=\frac{g(x)}{f(x)}$;3)$1^\infty$、$0^0$、$1^{\infty-\infty}$、$\infty^0$对于幂指函数,方法主要是取指数还取对数的方法,即$e^{f(x)g(x)}=e^{g(x)lnf(x)}$,这样就能把幂上的函数移下来了,变成$0/0$型未定式。

高等数学中几种求极限的方法

高等数学中几种求极限的方法

高等数学中几种求极限的方法一、直接代入法这种方法超级简单,就是当函数在某一点连续的时候,直接把那个点的值代入函数里就好啦。

比如说啊,对于函数f(x)=x+1,当我们求x趋近于1的极限的时候,直接把1代入函数,就得到极限是2啦。

就像你走在路上,看到一个敞开的门,直接就可以走进去一样轻松。

二、因式分解法有时候函数看起来很复杂,但是我们可以对它进行因式分解呢。

比如说求lim(x→1)(x² - 1)/(x - 1),这个时候我们可以把分子因式分解成(x + 1)(x - 1),然后和分母的(x - 1)约掉,就变成了求lim(x→1)(x + 1),再用直接代入法就得到极限是2啦。

这就好比整理杂乱的房间,把东西整理好了,就很容易找到我们想要的啦。

三、有理化法当函数里有根式的时候,这个方法就很有用啦。

例如求lim(x→0)(√(1 + x)- 1)/x,我们可以把分子有理化,分子分母同时乘以(√(1 + x)+ 1),这样分子就变成了1 + x - 1 = x,然后和分母的x约掉,就得到极限是1/2啦。

这就像是给一个不太好看的东西化个妆,让它变得好看又好处理。

四、两个重要极限法1. 第一个重要极限是lim(x→0)sinx/x = 1。

这个极限超级重要哦。

比如说求lim(x→0)sin3x/x,我们可以把它变成3lim(x→0)sin3x/3x,根据第一个重要极限,就得到极限是3啦。

2. 第二个重要极限是lim(x→∞)(1 + 1/x)^x = e。

要是遇到类似lim(x→∞)(1+ 2/x)^x这种的,我们可以把它变形为lim(x→∞)[(1 + 2/x)^(x/2)]²,就等于e²啦。

这两个重要极限就像是数学世界里的宝藏,掌握了就能解决好多问题呢。

五、等价无穷小替换法当x趋近于0的时候,有好多等价无穷小的关系。

比如sinx和x是等价无穷小,tanx和x也是等价无穷小,ln(1 + x)和x也是等价无穷小等等。

16种求极限的方法及一般题型解题思路分享

16种求极限的方法及一般题型解题思路分享

千里之行,始于足下。

16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。

在求极限的过程中,有很多种不同的方法可以使用。

本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。

1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。

这种方法适用于对于给定的变量值函数值可以直接计算的状况。

2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。

3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。

4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。

5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。

6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。

7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。

第1页/共3页锲而不舍,金石可镂。

8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。

9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。

这个法则对于解决0/0和∞/∞型的极限问题格外有用。

10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。

11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。

12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。

13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。

14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。

16种求极限的方法

16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。

求极限的方法有很多种,下面将介绍16种常见的求极限方法。

1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。

2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。

例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。

3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。

4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。

5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。

反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。

6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。

利用无穷小量和无穷大量的性质,可以简化极限的求解过程。

7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。

8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。

9.取对数法:将函数取对数后,利用对数的性质进行极限计算。

10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。

11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。

12.导数法则:利用导数的性质,对函数进行极限计算。

例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。

13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。

14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

高等数学---求极限的各种方法

高等数学---求极限的各种方法

高等数学,这门课啊,真是让人又爱又恨。

爱它,因为它是很多学科的基础,恨它,因为它的难度确实不小。

今天,咱们就聊聊高等数学中的一个让人头疼的点——求极限。

这玩意儿,方法多得是,但每种方法都有它的脾气,得摸清楚了才能用得顺手。

首先,咱们得说说直接代入法。

这个方法简单粗暴,就是把极限值直接代入函数中。

比如,求极限lim(x→2) (x^2 - 4)/(x - 2),你直接代入x=2,结果就是0。

但这个方法有个缺点,就是不是所有函数都适用,有些函数代入后会得到0/0这种未定义的形式,这时候就得换方法了。

接下来是夹逼定理,这个方法听起来挺霸气的,其实也挺实用的。

它的基本思想是,如果一个函数被两个函数夹在中间,而且这两个函数在极限点的极限值相等,那么这个函数在极限点的极限值也等于这两个函数的极限值。

比如,求极限lim(x→0) sin(x)/x,你可以找到两个函数cos(x)和1,它们在x→0时的极限值都是1,而且sin(x)/x在x→0时被这两个函数夹在中间,所以sin(x)/x在x→0时的极限值也是1。

然后是洛必达法则,这个方法适用于函数的极限形式为0/0或∞/∞。

它的基本思想是,如果两个函数的比值的极限形式为0/0或∞/∞,那么这个比值的极限值等于它们的导数的比值的极限值。

比如,求极限lim(x→∞) (x^2 + 1)/(x + 1),这个极限的形式就是∞/∞,所以可以应用洛必达法则,求出它的导数的比值的极限值,结果为2。

再来说说无穷小替换法。

这个方法适用于函数的极限形式为0∞或∞^0。

它的基本思想是,如果一个函数的极限形式为0∞或∞^0,那么可以用一个无穷小量或无穷大量来替换这个函数,然后求极限。

比如,求极限lim(x→0) (1 -cos(x))/x^2,这个极限的形式就是0/0,所以可以用无穷小量sin(x)来替换1 - cos(x),然后求极限,结果为1/2。

最后是泰勒展开法。

这个方法适用于函数的极限形式为0^0或1^∞。

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字

考研数学:求极限的16种方法1500字极限是数学中的重要概念,是解析数学中很多问题的基础。

求极限的方法有很多种,下面就介绍一下求极限的16种常用方法。

1. 直接代入法:对于某个函数在某个点的极限,如果可以直接将极限点代入函数中计算出极限值,则可以使用直接代入法。

2. 连续性法则:如果一个函数在某个点处连续,那么该点的极限值就是函数在该点的函数值。

3. 无穷小量的性质:利用无穷小量的性质对极限进行求解,例如利用已知的极限,对函数进行分子分母的化简、展开等操作。

4. 夹逼法:当一个函数夹在两个函数之间时,利用两个函数的极限值可以求出该函数的极限值。

5. 单调有界原理:对于单调有界的函数,可以通过证明上下确界得到极限值。

6. 极限的四则运算法则:对于两个函数的极限,可以利用四则运算法则求出其和、差、积、商的极限。

7. 换元法:通过对函数进行变量替换,将原来的极限问题转化为更简单的问题求解。

8. 泰勒级数展开法:对于某些函数,可以利用泰勒级数展开的性质,将函数进行级数展开,然后求出极限值。

9. 符号常用极限法:对于一些特殊的函数,例如正弦函数、指数函数等,可以通过符号常用极限值来求出其极限。

10. 隐函数极限法:对于隐函数的极限问题,需要通过隐函数求导的方式来求出极限值。

11. 单调列法:对于一个递增(递减)且有上(下)界的序列,可以通过极限的单调列法求出极限。

12. Stolz定理:当一个数列为无穷大与无穷小的极限的商时,可以利用Stolz定理求出极限。

13. 递推法:对于递归定义的数列,可以通过递推的方式求出极限。

14. 分部积分法:对于一些函数的积分,可以通过分部积分法转化为极限问题求解。

15. L'Hospital法则:对于一些不定型的极限问题,可以通过L'Hospital法则来求出其极限。

16. 堪培拉法则:对于一些含有多个变量的函数,可以利用堪培拉法则求出其极限。

以上是求解极限的16种常用方法,掌握这些方法可以更好地应对极限求解问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023考研数学高数备考冲刺:16种求极限的
方法
2023考研数学高数备考冲刺:16种求极限的方法
1、极限分为一般极限,还有个数列极限
〔区别在于数列极限是发散的,是一般极限的一种〕。

2、解决极限的方法如下
1〕等价无穷小的转化,〔只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限仍然存在〕e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。

全部熟记。

〔x趋近无穷的时候复原成无穷小〕2〕洛必达法那么〔大题目有时候会有暗示要你使用这个方法〕
首先他的使用有严格的使用前提。

必须是X趋近而不是N 趋近。

〔所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。

还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!〕必须是函数的导数要存在!〔假设告诉你g〔x〕,没告诉你是否可导,直接用无疑是死路一条〕必须是0比0,无穷大比无穷大!当然还要注意分母不能为0。

洛必达法那么分为三种情况
1〕0比0无穷比无穷时候直接用
2〕0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了
3〕0的0次方,1的无穷次方,无穷的0次方
对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的原因,ln〔x〕两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候ln〔x〕趋近于0〕
3、泰勒公式
〔含有ex的时候,尤其是含有正余旋的加减的时候要特变注意!〕ex展开,sinx展开,cos展开,ln〔1+x〕展开对题目简化有很好帮助
4、面对无穷大比上无穷大形式的解决方法
取大头原那么最大项除分子分母!看上去复杂处理很简单。

5、无穷小与有界函数的处理方法
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!
6、夹逼定理
〔主要对付的是数列极限〕这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

7、等比等差数列公式应用
〔对付数列极限〕〔q绝对值符号要小于1〕
8、各项的拆分相加
〔来消掉中间的大多数〕〔对付的还是数列极限〕可以使用待定系数法来拆分化简函数。

9、求左右求极限的方式
〔对付数列极限〕例如知道Xn与Xn+1的关系,Xn的极限存在的情况下,Xn的极限与Xn+1的极限是一样的,应为极限去掉有限工程极限值不变化。

10、两个重要极限的应用
这两个很重要!对第一个而言是x趋近0时候的sinx与x比值。

第2个就假如x趋近无穷大无穷小都有对有对应的形式〔第二个实际上是用于函数是1的无穷的形式〕〔当底数是1的时候要特别注意可能是用第二个重要极限〕
11、还有个方法,非常方便的方法
就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。

x的x次方快于x!,快于指数函数,快于幂数函数,快于对数函数〔画图也能看出速率的快慢〕。

当x趋近无穷的时候他们的比值的极限一眼就能看出来了
12、换元法
是一种技巧,不会对某一道题目而言就只需要换元,但是换元会夹杂其中
13、假设要算的话四那么运算法那么也算一种方法,当然也是夹杂其中的。

14、还有对付数列极限的一种方法,就是当你面对题目实在是没有方法走投无路的时候可以考虑转化为定积分。

一般是从0到1的形式。

15、单调有界的性质
对付递推数列时候使用证明单调性。

16、直接使用求导数的定义来求极限。

相关文档
最新文档