《概率论与数理统计》课程教案
概率论与数理统计 教案

概率论与数理统计教案教案标题:引入概率论与数理统计的基本概念教学目标:1. 了解概率论和数理统计的基本概念和重要性;2. 掌握概率和统计的基本术语和符号;3. 能够应用概率和统计的方法解决简单问题;4. 培养学生的数学思维和分析问题的能力。
教学内容:1. 概率论的基本概念和应用;2. 数理统计的基本概念和应用;3. 概率和统计的关系和区别;4. 概率和统计在实际生活中的应用。
教学步骤:一、导入(5分钟)1. 引入概率论和数理统计的重要性和应用领域;2. 激发学生对概率和统计的兴趣。
二、概率论的基本概念(15分钟)1. 介绍概率的定义和基本性质;2. 解释概率的计算方法和应用;3. 通过例题让学生掌握概率的计算方法。
三、数理统计的基本概念(20分钟)1. 介绍统计的定义和基本性质;2. 解释统计的计算方法和应用;3. 通过例题让学生掌握统计的计算方法。
四、概率与统计的关系和区别(10分钟)1. 对比概率和统计的定义和应用;2. 强调概率和统计在实际问题中的互补性。
五、概率与统计的应用(15分钟)1. 介绍概率和统计在实际生活中的应用场景;2. 分析并解决实际问题,应用概率和统计的方法。
六、小结与展望(5分钟)1. 总结本节课学习的内容;2. 展望下节课的教学内容。
教学方法:1. 讲授法:通过讲解和示范引导学生理解概率论和数理统计的基本概念;2. 互动讨论法:通过提问和回答的方式激发学生的思考和参与度;3. 实践操作法:通过例题和实际问题的解决培养学生的应用能力。
教学评估:1. 课堂练习:布置概率和统计的练习题,检查学生对概念和方法的掌握程度;2. 课堂讨论:引导学生参与讨论,评估学生对概率和统计的理解和应用能力。
教学资源:1. 教科书和教学课件:提供基本概念和例题;2. 练习册和习题集:提供练习题和实际问题。
教学延伸:1. 指导学生进行实际调查和数据收集,应用概率和统计的方法进行分析;2. 引导学生阅读相关的科普文章和研究报告,拓宽对概率和统计的理解。
概率论与数理统计(选修)简易教案

概率论与数理统计(选修) 简易教案一、教学目标1. 了解概率论与数理统计的基本概念和原理。
2. 掌握基本的概率计算和统计方法。
3. 能够应用概率论与数理统计解决实际问题。
二、教学内容1. 概率论的基本概念:随机事件、样本空间、概率公式。
2. 条件概率和独立性:条件概率的定义和计算、独立事件的概率计算。
3. 概率分布:离散型随机变量的概率分布、连续型随机变量的概率分布。
4. 统计学基本概念:总体、样本、参数、统计量。
5. 描述性统计分析:频数、频率、图表、均值、方差等。
三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。
2. 案例分析法:通过实际案例讲解概率计算和统计分析的应用。
3. 练习法:学生通过练习题巩固所学知识和技能。
四、教学准备1. 教材或教学资源:概率论与数理统计教材或相关教学资源。
2. 投影仪或白板:用于展示案例和讲解。
3. 练习题:准备相关的练习题供学生练习。
五、教学过程1. 导入:引入概率论与数理统计的概念和重要性。
2. 讲解:讲解概率论与数理统计的基本概念、原理和方法。
3. 案例分析:通过实际案例讲解概率计算和统计分析的应用。
4. 练习:学生进行练习题,巩固所学知识和技能。
5. 总结:对本节课的内容进行总结和回顾。
六、教学评估1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。
2. 练习题完成情况:检查学生完成练习题的正确率和解题思路。
3. 小组讨论:评估学生在小组讨论中的合作和交流能力。
七、扩展活动1. 研究项目:学生可以自主选择一个感兴趣的概率论与数理统计相关的研究项目,进行深入研究和分析。
2. 数据分析竞赛:组织学生参加数据分析竞赛,应用所学的概率论与数理统计知识解决实际问题。
八、教学反思1. 教师应在教学过程中不断反思和调整教学方法,以提高教学效果。
2. 教师应关注学生的学习反馈,及时解决学生遇到的问题。
九、教学资源1. 教材或教学资源:提供概率论与数理统计的教材或相关教学资源,供学生自主学习和参考。
国家精品课 概率论与数理统计教案

国家精品课概率论与数理统计教案国家精品课“概率论与数理统计”教案一、课程概述课程名称:概率论与数理统计授课人:XXX授课对象:本科生课程时长:48学时二、教学目标1. 知识目标:掌握概率论与数理统计的基本概念、原理和方法,理解其在实际问题中的应用。
2. 能力目标:培养学生运用概率论与数理统计知识解决实际问题的能力,提高其逻辑思维和创新能力。
3. 情感态度价值观:培养学生对概率论与数理统计的兴趣,增强其科学素养,为其今后学习、工作打下坚实基础。
三、教学内容与要求1. 概率论基础:介绍概率的基本概念、条件概率、独立性等,要求学生掌握概率的计算和实际应用。
2. 随机变量及其分布:介绍随机变量及其分布函数,常见的随机变量分布类型,以及随机变量的数字特征等。
3. 数理统计基础:介绍数理统计的基本概念、参数估计和假设检验等,要求学生掌握参数估计和假设检验的方法。
4. 回归分析与方差分析:介绍一元线性回归分析、多元线性回归分析和方差分析等,要求学生掌握相关分析和回归分析的方法。
5. 课程实践:组织学生进行实际问题的概率论与数理统计应用,提高其解决实际问题的能力。
四、教学方法与手段1. 理论教学:采用讲授法、讨论法等教学方法,帮助学生理解概率论与数理统计的基本概念和原理。
2. 实验教学:通过实验课程和课程实践,让学生亲自动手操作,加深对理论知识的理解。
3. 教学手段:采用多媒体教学、在线学习等手段,丰富课程内容的表现形式,提高学生的学习兴趣。
五、教学评价与反馈1. 作业评价:布置适量的作业,及时批改和反馈,了解学生对课程内容的掌握情况。
2. 测验与考试:定期进行测验和考试,检查学生的学习成果,促使其巩固所学知识。
概率论与数理统计教案(48课时)(最新整理)

( x, y )G
,注意二重积分运算知识点的复习。
d) 二维均匀分布的密度函数的具体表达形式。
五.思考题和习题
思考题:1. 由随机变量 X ,Y 的边缘分布能否决定它们的联合分布?
2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求
(1)理解数学期望和方差的定义并且掌握它们的计算公式;
(2)掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用
期望或方差的性质计算某些随机变量函数的期望和方差。
(3)熟记 0-1 分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期
第四节 二维随机变量的函数的分布
已知(X,Y)的分布率 pij 或密度函数 (x, y) ,求 Z f ( X ,Y ) 的分布律或密度
函数Z (z) 。特别如函数形式: Z X Y , Z max( X ,Y ), Z min( X ,Y ) 。
2 学时
三.本章教学内容的重点和难点
a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处;
5.列举正态分布的应用。
习题:
第三章 多维随机变量及其分布
一.教学目标及基本要求
(1)了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。
(2)会用联合概率分布计算有关事件的概率,会求边缘分布。 (3)掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4)会求两个独立随机变量的简单函数(如函数 X+Y, max(X, Y), min(X, Y))的分布。
概率论与数理统计教案随机事件与概率

概率论与数理统计教案-随机事件与概率一、教学目标1. 理解随机事件的定义及其分类。
2. 掌握概率的基本性质和计算方法。
3. 能够运用概率论解决实际问题。
二、教学内容1. 随机事件的定义与分类1.1 随机事件的定义1.2 随机事件的分类1.3 事件的运算2. 概率的基本性质2.1 概率的定义2.2 概率的取值范围2.3 概率的基本性质3. 概率的计算方法3.1 古典概型3.2 条件概率3.3 独立事件的概率3.4 互斥事件的概率4. 随机事件的排列与组合4.1 排列的定义与计算4.2 组合的定义与计算5. 概率论在实际问题中的应用5.1 概率论在社会科学中的应用5.2 概率论在自然科学中的应用三、教学方法1. 讲授法:讲解随机事件的定义、分类及概率的基本性质。
2. 案例分析法:分析实际问题,引导学生运用概率论解决。
3. 互动教学法:提问、讨论,提高学生对知识点的理解和掌握。
四、教学准备1. 教案、教材、课件等教学资源。
2. 计算器、黑板、粉笔等教学工具。
3. 实际问题案例库。
五、教学评价1. 课堂问答:检查学生对随机事件定义、分类和概率基本性质的理解。
2. 课后作业:布置有关概率计算和方法的应用题,检验学生掌握程度。
3. 课程报告:让学生选择一个实际问题,运用概率论进行分析,评价其应用能力。
4. 期末考试:设置有关概率论与数理统计的综合题,全面评估学生学习效果。
六、教学内容6. 大数定律与中心极限定理6.1 大数定律6.2 中心极限定理7. 随机变量及其分布7.1 随机变量的概念7.2 离散型随机变量7.3 连续型随机变量7.4 随机变量分布函数8. 随机变量的数字特征8.1 数学期望8.2 方差8.3 协方差与相关系数9. 抽样分布与抽样误差9.1 抽样分布的概念9.2 抽样误差的估计9.3 抽样方案的设计10. 估计量的性质与假设检验10.1 估计量的性质10.2 假设检验的基本概念10.3 常用的假设检验方法七、教学方法1. 讲授法:讲解大数定律、中心极限定理、随机变量及其分布等概念。
概率论与数理统计教案

概率论与数理统计教案【篇一:概率论与数理统计教案】《概率论与数理统计》课程教案第一章随机事件及其概率一.本章的教学目标及基本要求(1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,;(3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5) 理解条件概率、全概率公式、bayes 公式及其意义。
理解事件的独立性。
二.本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率 2学时第三节等可能概型(古典概型) 2 学时第四节条件概率第五节事件的独立性 2 学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系; 2)古典概型及概率计算;3)概率的性质;4)条件概率,全概率公式和bayes公式 5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件a?b,a?b,a?b,a?b,ab??,a…的具体含义,理解事件的互斥关系;3)让学生掌握事件之间的运算法则和德莫根定律;4)古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;5)讲清楚抽样的两种方式——有放回和无放回;五.思考题和习题思考题:1. 集合的并运算?和差运算-是否存在消去律?2. 怎样理解互斥事件和逆事件?3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布一.本章的教学目标及基本要求(1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布) 2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质 2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时三.本章教学内容的重点和难点a) 随机变量的定义、分布函数及性质;b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a) 注意分布函数f(x)?p{x?x}的特殊值及左连续性概念的理解; b)构成离散随机变量x的分布律的条件,它与分布函数f(x)之间的关系;c) 构成连续随机变量x的密度函数的条件,它与分布函数f(x)之间的关系; d) 连续型随机变量的分布函数f(x)关于x处处连续,且p(x?x)?0,其中x为任意实数,同时说明了p(a)?0不能推导a??。
概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5)理解条件概率、全概率公式、Bayes公式及其意义。
理解事件的独立性。
本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。
《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{X=m,Y=n}=(1-p)•…•(1-p)•p•(1-p)…•(1-p)•p=p2(1-p)n-2
第m次第n次
即联合分布律为P{X=m,Y=n}=p2(1-p)n-2,m=1,2,…,n=2,3,…,m<n
又关于X的边缘分布律:
P{X=m}= = = =p(1-p)m-1,
m=1,2,…
P{Y=n}= =(n-1)p2(1-p)n-2,n=2,3,…
二维随机变量的条件分布
教学方法
提问、讲授、启发、讨论
工具仪器
多媒体教具、教材、教案、教学课件、考勤表、平时成绩登记表
教学安排
考勤、复习相关知识点、新课内容概述、组织教学、布置作业、课后小结
教学过程
教学组织、具体教学内容及教学方法、手段、时间分配及其它说明
备 注
第一部分:旧知识点复习和新课内容概述(5分钟)
当y=0时,及y=1/2时fX|Y(x|y)均是相应区间上的均匀分布,但区间长短和概率密度值不同。
例4:设数X在区间(0,1)上随机地取值,当观察到X=x(0<x<1)时,数Y在区间(x,1)上随机地取值,求Y的概率密度fY(y).由条件概率密度-》联合概率密度-》边缘概率密度
解:由题意,X具有概率密度fX(x)= ,在(0<x<1)区间内,对于任意给定的x,在X=x条件下,Y的条件概率密度为fY|X(y|x)=
几乎处处成立的意义是,除去平面上面积为0的集合(点,线)以外,处处成立
对于离散型随机变量(X,Y),
X和Y相互独立的条件等价于P{X=xi,Y=yj}=P{X=xi}P{Y=yj}对于X和Y的所有可能取值(xi,yj)都成立,或记为pij=pi•p•j,i,j=1,2,…
※在实际中,考察两个随机变量的独立性往往用概率密度和分布律的定义比较方便
=1/(n-1),m=1,2,…,n-1
※在写条件分布律P{Y=n|X=m}时一定在分布律之前给出条件P{X=m}不等于0的范围,而在分布律之后也要注明Y的取值范围。
连续型随机变量的条件概率密度:
对于连续型随机变量由于对于任意的x或者y,P{Y=y}=0,P{X=x}=0,无法用条件概率公式计算P{X=x|Y=y}。
转而求分布函数P{X≤x|Y=y}并记为FX|Y(x|y)
由于P{Y=y}=0,我们讨论在一个充分小的邻域内事件{y-ε<Y≤y+ε}发生的条件下的X≤x的概率P{X≤x|y-ε<Y≤y+ε},其中P{y-ε<Y≤y+ε}>0
然后对任意的x,令ε→0对P{X≤x|y-ε<Y≤y+ε}取极限得到FX|Y(x|y)=P{X≤x|Y=y}
现设(X,Y)在圆域x2+y2≤1上服从均匀分布,求条件概率密度fX|Y(x|y)。
解:1)求联合概率密度
f(x,y)=
2)求边缘概率密度,确定满足fY(y)>0的y的范围
fY(y)= =
3)在y的范围内计算条件概率密度f(x,y)/fY(y)
当-1<y<1时有
fX|Y(x|y)= =
对于区域G,固定y可解得x的fX|Y(x|y)非0范围,注意条件概率中,作为条件的y是确定的实数,y的取值不同获得的条件概率密度也不同
二维正态随机变量(X,Y)的独立性问题
此时(X,Y)~N(μ1,μ2,σ12,σ22,ρ)
f(x,y)= ,-∞<x<∞,-∞<y<∞。
而前面已经证明:X~N(μ1,σ12),Y~N(μ2,σ22)
对任意的x,y有fX(x)fY(y)=
∴有如下结论:
1°当ρ=0时,f(x,y)=fX(x)fY(y)处处成立,X和Y相互独立
在上一节中,我们主要学习了二维随机变量的概念和联合分布以及边缘分布:
其目的是理解并掌握随机变量的二维分布的定义和几何含义,以及边缘分布的计算。本节我们将进一步讨论二维随机变量的条件分布,以及两个随机变量相互独立的条件:
其目的是学会计算二维随机变量的条件分布,会判别两个随机变量是否相互独立。
本次课主要讲解二维随机变量的条件分布以及两个随机变量独立性的判定。
2.具体体现在:本章是第二章一维随机变量的各个概念方法到二维的扩展,本章涉及到很多积分、导数、函数、反函数等的概念和计算。并且将一维分布和条件分布扩展到二维以后,更加适用于实际工程问题。
教学重点
(1)二维随机变量(X,Y)的条件分布的概念和计算(离散型和连续型);
(2)两个随机变量相互独立的判别。
教学难点
先)=fX(x)fY(y)=
为求概率首先画出区域|y-x|≤1/12
概率密度函数与区域|y-x|≤1/12的公共部分G是四边形BCC′B′仅当X和Y的取值落在区域G内时,相差不超过1/12小时,于是
P{|X-Y|≤1/12}= =1/8×(G的面积)(由于f(x,y)是均匀分布)
⑤独立性
若对于所有的实数x1,x2,…xn有F(x1,x2,…xn)=FX1(x1)FX2(x2)…FXn(xn)
则称X1,X2,…,Xn相互独立。
⑥独立性2
若对于所有的实数x1,x2,…xm,y1,y2,…yn有
F(x1,x2,…xm,y1,y2,…yn)=F1(x1,x2,…xm)F2(y1,y2,…yn),其中F1,F2,F依次为随机变量(X1,X2,…,Xm),(Y1,Y2,…,Yn)和(X1,X2,…,Xn,Y1,Y2,…,Yn)的分布函数,则称随机变量(X1,X2,…,Xm)和(Y1,Y2,…,Yn)是相互独立的。
2°若X和Y相互独立,则由于f(x,y)及fX(x)和fY(y)是连续函数,对任意的x,y有f(x,y)=fX(x)fY(y),不妨令x=μ1,y=μ2代入等式有 = ,即ρ=0。
综上:对于二维正态随机变量(X,Y),X和Y相互独立的充要条件是参数ρ=0
在第二节的例1中,F和D由于P{D=1,F=0}=1/10P{D=1}P{F=0}因而不是相互独立的
第二部分:二维随机变量的条件分布(55分钟)
由条件概率自然引出条件概率分布的概念
离散型随机变量的条件分布律:
设(X,Y)是二维离散型随机变量,其分布律为
P{X=xi,Y=yj}=pij,i,j=1,2,…
(X,Y)关于X和关于Y的边缘分布律为
P{X=xi}=pi•= ,i=1,2,…,P{Y=yj}=p•j= ,j=1,2,…
条件分布律定义:设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi|Y=yj}=P{X=xi,Y=yj}/P{Y=yj}=pij/p•j,i=1,2,…为在Y=yj条件下,随机变量X的条件分布律。
同样的,对于固定的i,若P{X=xi}>0,则称P{Y=yj|X=xi}=P{X=xi,Y=yj}/P{X=xi}=pij/pi•,j=1,2,…为在X=xi条件下,随机变量Y的条件分布律。
《概率论与数理统计》课程教案
主讲教师__________所在单位______________
授课班级____________专业_____________________撰写时间_________________
教案编号
09-0302
教案内容
3.3条件分布3.4相互独立的随机变量
学时
2
教学目标
基本要求
考虑在事件{Y=yj}发生的条件下,事件{X=xi}发生的概率,即求事件
{X=xi|Y=yj},i=1,2,…
发生的概率
由条件概率公式:
P{X=xi|Y=yj}=P{X=xi,Y=yj}/P{Y=yj}=pij/p•j,i=1,2,…
其中P{Y=yj}>0
该条件概率具有分布律的性质:
1.非负性
2.归一性: = = = =1
定义:设F(x,y)及FX(x)和FY(y)分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y有
P{X≤x,Y≤y}=P{X≤x}P{Y≤y},
即F(x,y)=FX(x)FY(y)
则称随机变量X和Y是相互独立的。
对于连续型随机变量(X,Y),f(x,y)及fX(x)和fY(y)分别为其概率密度和边缘概率密度:X和Y相互独立的条件等价于f(x,y)=fX(x)fY(y)几乎处处成立
P{X≤x|y-ε<Y≤y+ε}
FX|Y(x|y)=limP{X≤x|y-ε<Y≤y+ε}|ε→0=
= = =
= = =
类似的有FY|X(y|x)= =
与概率密度的定义比较,给出条件概率密度的定义
条件概率密度定义:设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y的边缘概率密度为fY(y),若对于固定的y,fY(y)>0,则称 为Y=y的条件下X的条件概率密度,记为fX|Y(x|y)= ,
称FX|Y(x|y)=P{X≤x|Y=y}= = 为Y=y的条件下X的条件分布函数
类似的有fY|X(y|x)= ,FY|X(y|x)=
※在求解条件概率密度fX|Y(x|y)时,前面要给出条件fY(y)>0的y的区间,在后面给出X的取值范围。在(-,)区间上都有定义。
例3有界区域内的均匀分布
定义:设G是平面上的有界区域,其面积为A。若二维随机变量(X,Y)具有概率密度f(x,y)= ,则称(X,Y)在G上服从均匀分布。
②概率密度
若存在非负函数f(x1,x2,…,xn),对于任意实数x1,x2,…xn,有
F(x1,x2,…xn)=
称f(x1,x2,…,xn)为n元随机变量(X1,X2,…,Xn)的概率密度函数。
③边缘分布函数
n元随机变量(X1,X2,…,Xn)的分布函数为F(x1,x2,…xn)已知,则(X1,X2,…,Xn)的k维边缘分布函数就随之确定。如:
=1/8×(ΔABC的面积-ΔAB′C′的面积)