简述热力学能、焓、熵的概念

合集下载

3-2 理想气体的热容,热力学能,焓和殇

3-2 理想气体的热容,热力学能,焓和殇

t2
)](t2
t1 )
平均比热容:
c
|
t2 t1
a
b 2
(
t1
t
2
)
c
c a0 a1t a2t 2 a3t 3
c a bt
δq
c
|
t2 t1
0
t1 dt t2 t
4. 定值比热容 不考虑温度对比热容的影响,而将比热容看作定值。
原则: 气体分子运动论和能量按自由度均分
(Kinetic theory of gases and principle of equipartition of energy)
同温度下cp > cv ,why?
(2)比热容比
cp
cv
cp
1
Rg
cv
1
1
Rg
思考 题
cp,cv,cp-cv,cp/cv 与物质的种类是否有关,与状态是否有关。
利用比热容,如何求解热量
c q q
dT dt
q cdT cdt
q T2 cdT t2 cdt
T1
t1
3-2-3 利用理想气体的比热容计算热量
kJ /(m3 K)
C mc nCm V0CV
3. 影响热容的因素: (1)气体的性质; (2)气体的加热过程; (3)气体的温度。
3-2-2 比定容热容和比定压热容
(The specific heat capacities at constant volume and at constant pressure)
t2 t1
热量:
几何意 义
c
c a0 a1T a2T 2 a3T 3
q
c

工程热力学-03理想气体热力学能、焓、比热容和熵的计算

工程热力学-03理想气体热力学能、焓、比热容和熵的计算

2020年8月4日
第三章 理想气体热力学能、焓、比热容和熵的计算
2
2.理想气体的比焓
理想气体
h u pv u RgT h(T )
理想气体的比焓仅是温度的单值函数,与p、v无关。
则 对于同一种理想气体,只要具有相同的初态温度 和终态温度, 任何过程中其比焓的变化都相同。
则任意过程 h h2(T2) h1(T1)
可逆定压过程 (dh)p (δq)p cpdT
则任意过程
dh cp0dT
h h2 h1 12 cp0dT
通常规定: T 0K 时理想气体 u0 0 kJ kg
则 h0 u0 p0v0 u0 RgT0 0 kJ kg
2020年8月4日
第三章 理想气体热力学能、焓、比热容和熵的计算
cV ,m
t 0C
1 t
0t C
cV
0dt

c p,m
t2 t1
tt12 c p0dt t2 t1
t2
1
t1
(t2
c p,m
t2
0℃
t1
c p,m
t01℃)
cV ,m
t2 t1
tt12 cV 0dt t2 t1
t2
1
t1
(t2
cV
,m
t2
0℃
t1
cV
,m
t01℃)
2020年8月4日
第三章 理想气体热力学能、焓、比热容和熵的计算
u u(T )
对于同一种理想气体,只要具有相同的初态温度和终态温度, 任何过程中其比热力学能的变化都相同。
故对温度变化相同的不同过程的热力学能的变化,可采用相同的计算手段。
则任意过程 u u2(T2) u1(T1)

关于焓和熵的概念

关于焓和熵的概念

关于焓和熵的概念熵和焓的概念(2008-11-22 15:23:21)转载标签:杂谈解释1、焓是物体的一个热力学能状态函数。

在介绍焓之前我们需要了解一下分子热运动、热力学能和热力学第一定律:1827年,英国植物学家布朗把非常细小的花粉放在水面上并用显微镜观察,发现花粉在水面上不停地运动,且运动轨迹极不规则。

起初人们以为是外界影响,如振动或液体对流等,后经实验证明这种运动的的原因不在外界,而在液体内部。

原来花粉在水面运动是受到各个方向水分子的撞击引起的。

于是这种运动叫做布朗运动,布朗运动表明液体分子在不停地做无规则运动。

从实验中可以观察到,布朗运动随着温度的升高而愈加剧烈。

这表示分子的无规则运动跟温度有关系,温度越高,分子的无规则运动就越激烈。

正因为分子的无规则运动与温度有关系,所以通常把分子的这种运动叫做分子的热运动。

在热学中,分子、原子、离子做热运动时遵从相同的规律,所以统称为分子。

既然组成物体的分子不停地做无规则运动,那么,像一切运动着的物体一样,做热运动的分子也具有动能。

个别分子的运动现象(速度大小和方向)是偶然的,但从大量分子整体来看,在一定条件下,他们遵循着一定的统计规律,与热运动有关的宏观量——温度,就是大量分子热运动的统计平均值。

分子动能与温度有关,温度越高,分子的平均动能就越大,反之越小。

所以从分子动理论的角度看,温度是物体分子热运动的平均动能的标志(即微观含义,宏观:表示物体的冷热程度)。

分子间存在相互作用力,即化学上所说的分子间作用力(范德华力)。

分子间作用力是分子引力与分子斥力的合力,存在一距离r0使引力等于斥力,在这个位置上分子间作用力为零。

分子引力与分子斥力都随分子间距减小而增大,但是斥力的变化幅度相对较大,所以分子间距大于r0时表现为引力,小于r0时表现为斥力。

因为分子间存在相互作用力,所以分子间具有由它们相对位置决定的势能,叫做分子势能。

分子势能与弹簧弹性势能的变化相似。

《热力学》理想气体热力学能、焓、比热容和熵的计算

《热力学》理想气体热力学能、焓、比热容和熵的计算
• 混合物的热力学能、总焓等于组成气体热力学能、焓之和。
U U1 U2 Un
H H1 H2 Hn
• 混合物的u、h按组成气体参数的质量分数加权平均
u w1u1 w2u2 wnun iui h w1h1 w2h2 wnhn ihi
2020年10月25日
第三章 理想气体热力学能、焓、比热容和熵的计算
可逆定压过程 (dh)p (δq)p cpdT
则任意过程
dh cp0dT
h h2 h1 12 cp0dT
通常规定: T 0K 时理想气体 u0 0 kJ kg
则 h0 u0 p0v0 u0 RgT0 0 kJ kg
2020年10月25日
第三章 理想气体热力学能、焓、比热容和熵的计算
cp0
dh dT
d dT
u
pv
du d dT dT
RgT
cV 0 Rg

c p0 cV 0 Rg 梅耶公式
C p0,m CV 0,m R
令 比热容比 cp0
cV 0

cV 0
1
1
Rg
cp0
1
Rg
1 Rg
cV 0
2020年10月25日
第三章 理想气体热力学能、焓、比热容和熵的计算
1 mi 1 m Mi
1
i
Mi
第三章 理想气体热力学能、焓、比热容和熵的计算
24
3. 混合物的折合气体常数
Rg
R M
R i
Mi
i
R Mi
i Rgi
R yiM i
1
1 R
yi
M
i
1
yi
Mi R
1 yi

什么是晗,熵,吉布斯自由能

什么是晗,熵,吉布斯自由能

什么是晗,熵,吉布斯⾃由能
这是的内容,简单介绍⼀下。

焓的符号是H,数学定义为H=U+pV,其中U是体系的内能,p是压强,V是体积,反应前后焓的差值称为焓变,△H。

体系在恒压条件下发⽣化学反应,只做体积功,那么,焓变就等于这个反应的反应热。

焓是⼀个状态函数,只与体系反应的始态和终态有关,与反应过程⽆关。

熵的符号是S,是体系混乱度的表征。

这是⼀种定性的解释,例如在⼀个⾷盐与⽔共存的体系中,⾷盐刚放⼊⽔中尚未完全溶解时,与⾷盐完全溶解后,就体系粒⼦的混乱程度来说严格的解释就是,体系的微观状态数⽬⽤Ω表⽰,S是Ω的函数,⽤⽅法证明S和Ω的函数关系满⾜S=klnΩ,k是常数。

熵也是⼀个状态函数,反应前后的熵的差值称为熵变,△S。

可以⽤来判断化学反应进⾏的⽅向。

符号G,G=H-TS,T是热⼒学温度。

变化△G=△H-T△S,可以根据△G的⼤⼩判断化学反应能否⾃发进⾏。

△G>0,反应不能⾃发进⾏;△G=0,。

熵焓自由能

熵焓自由能

熵.熵:热量与温度之商乘坐熵,记作S。

S=Q/T.熵变;熵的变化量称为熵变,记作ΔSΔS=ΔQ/T.Q为系统吸收的热量,T为系统的温度。

熵变等于系统从热源吸收的热量与系统的热力学温度之比,可用于度量热量转变为功的程度。

熵表示热量转化为功的程度,也表示系统中的无序程度,1、熵越大,其做功能力下降,无序程度增加。

2、熵是表示物质系统状态的一个物理量,它表示该状态可能出现的程度。

、3、孤立体系(即绝热体系)中实际发生的过程必然要使它的熵增加。

4、对于纯物质的晶体,在热力学零度时,熵为零.热力学第三定律:有两种表述形式。

表述1:不可能用有限个手段和程序使一个物体冷却到绝对温度零度。

表述2:一切纯物质的晶体,在热力学零度时,熵为零。

标准熵:1mol物质在标准状态下所计算出的熵值,称标准摩尔熵,简称标准熵。

用STq表示,单位:J·mol-1·K-1熵的规律:(1)同一物质,气态熵大于液态熵,液态熵大于固态熵;STq(g)>STq(l)>STq(s)SqH2O(g)>H2O(l)>H2O(s)(2)相同原子组成的分子中,分子中原子数目越多,熵值越大;SqO2(g)<SqO3(g)SqNO(g)<SqNO2(g)<SqN2O4(g)SqCH2=CH2(g)<SqCH3-CH3(g)(3)相同元素的原子组成的分子中,分子量越大,熵值越大;SqCH3Cl(g)<SqCH2Cl2(g)<SqCHCl3(g)(4)同一类物质,摩尔质量越大,结构越复杂,熵值越大;SqCuSO4(s)<SqCuSO4·H2O(s)<SqCuSO4·3H2O(s)<SqCuSO4·5H2O(s)SqF2(g)<SqCl2(g)<SqBr2(g)<SqI2(g)(5)固体或液体溶于水时,熵值增大,气体溶于水时,熵值减少。

简述热力学能、焓、熵的概念。

简述热力学能、焓、熵的概念。

简述热力学能、焓、熵的概念。

热力学是研究物质的能量转化和宏观物理性质的学科,其中热力学能、焓、熵是热力学中的三个重要概念。

热力学能是指系统在温度为T时所具有的能量,它是系统的
内能U与温度T的乘积。

内能是指系统中分子的运动、振动、转动等各种形式的能量总和。

热力学能是一个状态函数,只与系统的初始状态和最终状态有关,与系统的具体过程无关。

焓是指系统在恒压过程中所具有的能量,它等于系统内能U
加上系统所对外界做的功pV。

其中p为压强,V为体积。


是一个状态函数,只与系统的初始状态和最终状态有关,与系统的具体过程无关。

焓可以用于描述化学反应中放热或吸热的过程。

熵是指系统的无序程度,它是热力学中最基本的概念之一。

熵增加代表着系统越来越无序,而熵减少则代表着系统越来越有序。

熵是一个状态函数,只与系统的初始状态和最终状态有关,与系统的具体过程无关。

熵增定律是指在孤立系统中,熵不断增加,直到达到最大值。

总之,热力学能、焓、熵是热力学中非常重要的概念,它们可以用于描述物质在不同条件下的能量转化和物理性质变化。


解这些概念可以帮助我们更好地理解自然界中许多现象,并且在工程领域中也有着广泛的应用。

熵和焓的理解

熵和焓的理解

熵entropy描述的重要态函数之一。

熵的大小反映系统所处状态的稳定情况,熵的变化指明热力学过程进行的方向,熵为提供了定量表述。

为了定量表述热力学第二定律,应该寻找一个在可逆过程中保持不变,在不可逆过程中单调变化的态函数。

克劳修斯在研究卡诺热机时,根据卡诺定理得出,对任意循环过程都有,式中 Q是系统从温度为T的热源吸收的微小热量,等号和不等号分别对应可逆和不可逆过程。

可逆循环的表明存在着一个态函数熵,定义为对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。

这就是熵增加原理。

由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。

它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。

熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。

能量是物质运动的一种量度,形式多样,可以相互转换。

某种形式的能量如内能越多表明可供转换的潜力越大。

熵原文的字意是转变,描述内能与其他形式能量自发转换的方向和转换完成的程度。

随着转换的进行,系统趋于平衡态,熵值越来越大,这表明虽然在此过程中能量总值不变,但可供利用或转换的能量却越来越少了。

内能、熵和热力学第一、第二定律使人们对与热运动相联系的能量转换过程的基本特征有了全面完整的认识。

从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。

热力学过程不可逆性的微观本质和统计意义就是系统从有序趋于无序,从概率较小的状态趋于概率较大的状态。

在信息论中,熵可用作某事件不确定度的量度。

信息量越大,体系结构越规则,功能越完善,熵就越小。

利用熵的概念,可以从理论上研究信息的计量、传递、变换、存储。

此外,熵在控制论、概率论、数论、天体物理、生命科学等领域也都有一定的应用。

注:熵的增加系统从几率小的状态向几率大的状态演变,也就是从有规则、有秩序的状态向更无,更无秩序的演变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简述热力学能、焓、熵的概念
热力学能是物质所具有的能量形式,它包括内能(系统内分子间相互作用引起的能量),势能(由于物体位置相对于参考点的改变而具有的能量),以及动能(由物体的运动所具有的能量)。

热力学能是系统的一种宏观能量,是系统稳定状态下的能量总和。

焓是热力学中的一个重要概念,定义为焓等于系统的内能加上对外界做的功。

在恒压条件下,焓的变化等于热量的变化,因此焓常常用于描述恒压条件下的热过程,例如化学反应。

熵是描述系统无序程度的物理量,在热力学中具有重要的意义。

熵的增加表示系统的无序性增加,熵的减少表示系统的无序性减少。

熵是一个状态函数,它可以根据系统的初态和末态来计算。

根据热力学第二定律,孤立系统的熵总是增加,而非孤立系统的熵可以增加或减少,但总是趋向于最大值。

相关文档
最新文档