线性代数复习提纲
最新整理《线性代数》复习提纲资料

《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A||B|;④|kA|=n k|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=E,称A 可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)1-=(B1-)*(A1-),(A T)1-=(A1-)T;(A B的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A等价于E;(4)逆的求解伴随矩阵法A1-=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:E)⇒(施行初等变换)(E:A1-)5.用逆矩阵求解矩阵方程:AX=B,则X=(A1-)B;XB=A,则X=B(A1-);AXB=C,则X=(A1-)C(B1-)二、行列式1.行列式的定义用n2个元素aij组成的记号称为n阶行列式。
线性代数复习提纲

线性代数复习提纲第一章 行列式1、行列式的定义:总项数、每一项构成、符号确定方法(附带:逆序、逆序数、奇排列)。
2、行列式性质:P9—P11六个性质两个推论,按某一行(列)的降阶展开(附带: 余子式、代数余子式)。
3、行列式计算: 一般方法 --化成三角形、降阶展开。
特殊计算:分块三角形--例10)、范德蒙—例12。
4、克拉默法则公式—P22第二章 矩阵及其运算1、概念:矩阵的型(阶)、相等、线性变换。
特殊矩阵:零矩阵、负矩阵、单位矩阵、纯量矩阵、对角矩阵、对称矩阵、逆矩阵、矩阵的行列式、伴随矩阵、奇异矩阵、分块对角矩阵。
2、运算:加法、数乘、转置、矩阵相乘、求伴随矩阵、解矩阵方程。
3、重要定理公式:⑴矩阵乘法:不满足交换律、两个非零矩阵乘积可能为零矩阵、两个对角矩阵的乘积等于以主对角线对应元素乘积为相应元素的对角矩阵。
⑵转置:T T T T T T T T T T A B AB A A B A B A A A ==+=+=)(,)(,)(,)(λλ,O A A O A T =⇔= ⑶方阵的行列式:B A AB A A BA AB A An T ====,,,λλ,A A A A n 111*==--, ⑷伴随矩阵:E A A A AA ==**,*11*)()(--=A A⑸逆矩阵基本公式:*11 0A AA A A =≠⇔-此时有,可逆方阵 ⑹逆矩阵运算公式:T T A A AB AB A A A A )()()(,1)(,)(111111111---------====λλ ⑺二阶方阵逆矩阵公式:⎪⎪⎭⎫ ⎝⎛---=-a c b d bc ad d c ba 1)(1 ⑻分块对角矩阵的逆等于每一块分别取逆。
特别的,对角矩阵的逆等于主对角线每个元素取倒数。
⑼一元矩阵多项式)(A f 可以象字母多项式)(x f 那样分解为因式的乘积,并且各因式顺序可以交换。
第三章 矩阵的初等变换1、概念:三种初等行变换(列变换)的定义和相应记号、对应的三种初等矩阵。
线性代数复习提纲

线性代数复习提纲线性代数是数学中的一个基础课程,涵盖了向量空间、线性变换、矩阵理论等内容。
它在计算机科学、物理学、经济学和工程学等领域都有广泛的应用。
下面是线性代数的复习提纲,帮助你回顾相关的知识点。
一、向量空间1.向量的定义和性质2.向量空间的定义和性质3.子空间的定义和判断条件4.向量的线性相关性与线性无关性5.基和维数的概念二、线性变换1.线性变换的定义和性质2.线性变换的矩阵表示3.线性变换的核与像空间4.线性变换的维数公式5.线性变换的复合与逆变换三、矩阵理论1.矩阵的定义和性质2.矩阵的运算:加法、数乘、乘法3.矩阵的逆与转置运算4.矩阵的秩和行列式5.矩阵的特征值与特征向量四、特殊矩阵和特征值问题1.对称矩阵的性质和对角化2.可逆矩阵与相似矩阵3.正交矩阵与正交对角化4.特征值问题的求解方法五、解线性方程组1.线性方程组的矩阵表示2.高斯消元法与矩阵的初等变换3.初等矩阵的性质与应用4.齐次线性方程组和非齐次线性方程组的解的结构六、向量空间的基变换1.基变换的定义和性质2.过渡矩阵的求解3.变换矩阵的求解与应用4.基变换下的坐标表示和坐标变换公式七、内积空间和正交性1.内积的定义和性质2.内积空间的定义和性质3.正交基和正交投影4.标准正交基和正交矩阵的定义和性质八、二次型与正定性1.二次型的定义和性质2.二次型的矩阵表示和标准化3.正定二次型和半正定二次型的定义和性质4.二次型的规范形和合同变换以上是线性代数的复习提纲,可以通过对每个知识点的回顾、理解和练习来复习线性代数。
在复习过程中,可以结合教材、习题和课堂笔记,通过解题和思考来巩固知识点的掌握。
另外,可以参考相关的教学视频或在线课程来帮助理解和学习线性代数的概念和方法。
最重要的是多做习题,加深对知识点的理解和应用。
1线性代数复习提纲

1线性代数复习提纲《线性代数》复习提纲第一部分:基本要求(计算方面)四阶行列式的计算;N阶特殊行列式的计算(如有行和、列和相等);矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算);求矩阵的秩、逆(两种方法);解矩阵方程;含参数的线性方程组解的情况的讨论;齐次、非齐次线性方程组的求解(包括唯一、无穷多解);讨论一个向量能否用和向量组线性表示;讨论或证明向量组的相关性;求向量组的极大无关组,并将多余向量用极大无关组线性表示;将无关组正交化、单位化;求方阵的特征值和特征向量;讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵;通过正交相似变换(正交矩阵)将对称矩阵对角化;写出二次型的矩阵,并将二次型标准化,写出变换矩阵;判定二次型或对称矩阵的正定性。
第二部分:基本知识一.矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等);2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果;(2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵);②矩阵乘法一般不满足消去律、零因式不存在;③若A、B为同阶方阵,则|AB|=|A|*|B|;④|kA|=k^n|A|3.矩阵的秩(1)定义非零子式的最大阶数称为矩阵的秩;(2)秩的求法一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
4.逆矩阵(1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立);(2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B 的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:①|A|≠0;②r(A)=n; ③A->I;(4)逆的求解伴随矩阵法A^-1=(1/|A|)A*;(A* A的伴随矩阵~)②初等变换法(A:I)->(施行初等变换)(I:A^-1)5.用逆矩阵求解矩阵方程:AX=B,则X=(A^-1)B;XB=A,则X=B(A^-1);AXB=C,则X=(A^-1)C(B^-1)二、行列式1.行列式的定义用n^2个元素aij组成的记号称为n阶行列式。
线性代数复习提纲

线性代数复习提纲一、总论期末考试即将到来,经过一个学期的学习,同学们系统的学习了行列式、线性方程组、n维向量空间以及矩阵的应用等内容。
为了帮助同学们更好的进行期末复习,特给出复习提纲,供大家复习之用。
二、复习提纲1、第一章行列式在这一章里,我们主要需要掌握行列式的基本性质,简单行列式的求解以及行列式的展开方法。
本章的复习过程中,我们主要需要熟练掌握行列式的性质,并熟练掌握基本行列式的求解方法,包括利用拉普拉斯定理进行行列式的展开求解。
此外,对克莱默法则,我们也应加以一定关注。
2、第二章线性方程组在这一章里,我们需要掌握消元法和分离系数法求解线性方程组以及线性方程组的相关知识。
在复习过程中,我们要熟练掌握分离系数消元法求解线性方程组,尤其要对矩阵的秩的概念加以重点学习;我们需要熟练掌握齐次线性方程组有非零解的条件,并通过大量练习充分掌握齐次线性方程组的非零解判断以及全部解的求解过程。
3、第三章n维向量空间在这一章里,我们需要掌握n维向量空间的基本概念、n维向量空间的线性运算、向量的线性关系以及线性方程组解结构。
在复习过程中,我们一定要熟练掌握n维向量空间的基本概念,这是复习好本章的关键;数量掌握向量由向量组线性表出的判断方法并通过习题充分掌握;熟练掌握向量组线性无关的判别方法和证明方法;此外,对于一般线性方程组解的结构、特解全部解的概念我们要加以重点关注,并通过习题充分掌握。
4、第四章矩阵在这一章里,我们需要掌握矩阵的概念和运算法则、矩阵的转置、分块矩阵的运算以及可逆矩阵及其逆矩阵的概念,并掌握矩阵的等价判别方法。
在复习过程中,我们应熟练掌握矩阵的基本概念和基本运算方法;掌握利用可逆矩阵的基础知识求解矩阵方程;掌握利用分块法进行矩阵计算的方法;此外,对于矩阵的可逆和等价我们也要予以充分关注。
线性代数期末复习提纲

n
n
(A)
a ij Aij 0
(B)
aij Aij 0
i1
j1
n
(C)
aij Aij D
(D)
j1
n
ai1 Ai 2 D
i1
7、设 A, B 均为 n阶可逆矩阵,则下列各式成立的是
( A) ( AB)T BT AT
(B)
(C) AB BA
(D)
(AB) 1 A 1B 1 AB A B
8、设 A 为 3 阶方阵,且行列式 A 1 ,则 2A
【主要内容】 1、向量的内积、长度、夹角等概念及其计算方法。 2、向量的正交关系及正交向量组的含义。 3、施密特正交化方法。 4、方阵的特征值与特征向量的概念及其计算方法。
( 1)特征值求法:解特征方程 A E 0 ;
( 2)特征向量的求法:求方程组 A E X 0 的基础解系。
5、相似矩阵的定义 ( P 1 AP B )、性质 ( A, B 相似
第四部分 线性方程组 【主要内容】
1、齐次线性方程组 Ax 0 只有零解 系数矩阵 A 的秩 未知量个数 n; 2、齐次线性方程组 Ax 0 有非零解 系数矩阵 A 的秩 未知量个数 n. 3、非齐次线性方程组 Ax b 无解 增广矩阵 B ( A, b) 秩 系数矩阵 A 的秩;
4、非齐次线性方程组 Ax b 有解 增广矩阵 B ( A, b) 秩 系数矩阵 A 的秩
即得二次型的标准形 f
1 y1 2
2 y2 2
n yn2
8、正定二次型的定义及其判定方法 常用判定二次型正定的方法: ( 1)定义法 ( 2)特征值全大于零 ( 3)顺序主子式全大于零
【要求】 1 、掌握向量的内积、长度、夹角,正交向量组的性质,会利用施密特正交化方法化线 性无关向量组为正交向量组。 2、掌握方阵特征值、特征向量的概念、求法, 3、了解相似矩阵的概念、掌握化对称矩阵为对角矩阵的方法。 4、掌握二次型的概念、会用正交变换化二次型为标准形。 5、了解二次型的分类,知道正定二次型等概念及其判定方法。
线性代数总复习提纲

1、第一章:
(1)行列式性质;
(2)克拉默法则定理内容(会用,如选择、判断、填空);
(3)会计算一个四阶行列式的值。
2、第二章:
(1)矩阵的乘法;
(2)转置矩阵的性质、可逆矩阵的性质(注意两者的区别);
(3)方阵的行列式的性质(同逆矩阵行列式性质结合);
(4)矩阵的秩的定义(充分理解,会选择和判断正确内容);
(5)会求二阶方阵的逆;
(6)会利用定义证明方阵可逆,如本校教材第二章习题A组15题;
(7)会解矩阵方程,如本校教材第二章习题A组14题。
3、第三章:
(1)线性相关(无关)的性质定理(选择、判断、填空);
(2)会判断具体向量组的线性相关性,如本校教材第三章习题A组第2、3题;
(3)会求向量组的秩及一个最大无关组,如本校教材第三章习题A组第7题;
(4)线性方程组的解的判定定理、解的结构和性质(选择、填空、判断);
(5)会解带未知参数的非齐次线性方程组,如本校教材第三章习题A组第10题(或网上作业相应题)。
4、第四章:
(1)正交矩阵的定义、性质;
(2)方阵的特征值、特征向量的定义及性质;
(6)会求一个具体的三阶方阵的特征值和特征向量,如本校教材第三章例4.7(或网上作业相应题);
部分题选自网上每章作业(包括选择、填空、判断和计算大题),好好看哦!。
线性代数复习提纲

一、逆序数:在一个n级排列中,如果有较大的数排在较小的数前面(<),则称与构成一个逆序,一个n级排列中逆序的总数,称为它的逆序数,记为N(*奇排序:逆序数是奇数;偶排序:逆序数是偶数(一)任意一个排序经过一个对换后奇偶性改变(二)n个数码(n>1)共有n!个排列,其中奇偶排列各占一半二、n阶行列式=(按行顺序取)n级行列式的一般项:(当)为偶数时取正号,奇数取负号)D的一般项:三、转置行列式:将行列式D的行与列互换后得到的行列式,记为或(一)将行列式转置,行列式的值不变,即(二)交换行列式的两行(列),行列式的值变号,即(三)如果行列式中有两行(列)对应的元素相同,此行列式的值为零四、用数k乘行列式的某一行(列),等于以数k乘此行列式,即:(一)如果行列式某行(列)的所有元素有公因子,则公因子可以提到行列式外面(二)如果行列式有两行(列)元素成比例,则行列式的值等于零五、如果将行列式中的某一行(列)的每一个元素都写成两个数的和,则此行列式可以写成两个行列式的和,这两个行列式分别以这两个数为所在行(列)对应位置的元素,其他位置的元素与原行列式相同,即:六、将行列式某一行(列)的所有元素同乘以数k后加于另一行(列)对应位置的元素上,行列式的值不变七、余子式:在n阶行列式D=中去掉元素所在的第i行和第j列后,余下的n-1阶行列式被称为D中元素的余子式,记为,即:代数余子式:(一)n阶行列式D=等于它的任意一行(列)的各元素与其对应代数余子式乘积的和,即:或(二)n阶行列式D=的某一行(列)的元素与另一行(列)对应元素的代数余子式乘积的和等于零,即:或(i≠s;j≠t)八、范德蒙行列式:九、克莱姆法则:线性方程组当其系数行列式D≠0时,有且仅有唯一解其中是将系数行列式中第j列元素对应地换为方程组的常数项后得到的行列式(一)如果齐次线性方程组的系数行列式D≠0,则它仅有零解(二)如果齐次线性方程组的系数行列式D=0,则方程组有非零解十、零矩阵:所有元素均为0的矩阵(行数与列数不都相同的两个零矩阵是不同的零矩阵)非负矩阵:所有元素均为非负数的矩阵十一、以数k乘矩阵A的每一个元素所得到的矩阵,称为数k与矩阵A的积,记作k A,如果A=,那么k A=十二、负矩阵:-A=十三、矩阵运算律:(一)(二)(三)(四)(五)(六)(七)(八)十四、矩阵的乘法:如果矩阵A的列数等于矩阵B的行数,则A与B的乘积C中第i行第j列的元素,等于矩阵A的第i行元素与矩阵B的第j对应元素乘积的和,并且矩阵C的行数等于矩阵A的行数,矩阵C的列数等于矩阵B的列数,即:(一)矩阵乘法一般不满足交换律(二)两个非零矩阵相乘,结果可能是零矩阵(三)矩阵乘法不满足消去律(四)矩阵乘法性质:1、2、3、4、十五、矩阵可交换:如果两矩阵A和B相乘,有AB=BA,则称矩阵A与矩阵B可交换十六、有线性方程组,系数矩阵元未知量矩阵系数矩阵十七、转置矩阵:将m*n矩阵A的行与列互换,得到的m*n矩阵,称为矩阵A的转置矩阵,记为或(一)(二)(三)(四)十八、n阶矩阵/n阶方阵:矩阵的m=n十九、方阵的幂:个(一)(二)(三)当AB可交换时,二十、方阵的行列式:由n阶矩阵(方阵)A的所有元素按原来次序构成的n阶行列式称为方阵A的行列式,记作,或(det A)(一)(二)(三)(四)二十一、特殊矩阵(一)对角矩阵:若AB为同阶对角矩阵,则kA,A+B,AB仍为同阶对角矩阵;(二)数量矩阵:数量矩阵左乘或右乘一个矩阵B,其乘积等于以数a乘矩阵B(三)单位矩阵:(四)三角形矩阵(五)对称矩阵:n阶矩阵满足1、2、数乘对称矩阵及同阶对称矩阵之和仍为对称矩阵3、当且仅当A与B可交换时,AB是对称的二十二、分块矩阵(一),(二)二十三、逆矩阵:对于n阶矩阵A,如果存在n阶矩阵B,使得AB=BA=I,那么矩阵A称为可逆矩阵,简称A可逆,并称B为A的逆矩阵,逆矩阵是唯一的,把唯一的逆矩阵记作(一)n阶矩阵可逆的充分必要条件是A非奇异,且当A可逆时,有(二)证明A可逆或证明B是A的逆矩阵,只要验证AB=I(三)逆矩阵的性质:1、若矩阵A可逆,则也可逆,且2、若矩阵A可逆,数k≠0,则kA也可逆,且3、两个同阶可逆矩阵A,B的乘积是可逆矩阵,且4、若矩阵A可逆,则A的转置矩阵5、若矩阵A可逆,则(四)(五)若AB=C,且A为非奇异,则B= C二十四、非奇异:若n阶矩阵A的行列式,则称A为非奇异的二十五、伴随矩阵:由行列式的元素的代数余子式所构成的矩阵二十六、矩阵的初等变换:(一)1、交换矩阵的两行(列)2、以一个非零的数k乘矩阵的某一行(列)3、把矩阵的某一行(列)的l倍加于另一行(列)上(二)初等矩阵:对单位矩阵I施以一次初等变换得到的矩阵(三)设,对A的行施以一次某种初等变换得到的矩阵,等于用同种的m 阶初等矩阵左乘A,对A的列施以一次某种初等变换得到的矩阵,等于用同种的n阶初等矩阵右乘A(四)任意一个矩阵经过若干次初等变换后均可以化为下面形式的矩阵:矩阵D称为矩阵A的等价标准形(五)如果矩阵A经过有限次初等变换可化为矩阵B,则称矩阵A与矩阵B等价(六)如果A为n阶可逆矩阵,则(七)n阶矩阵A为可逆的充分必要条件是它可以表示为一些初等矩阵的乘积二十七、k阶子式:从A中任取k行k列,位于这些行和列的相交处的元素,保持它们原来的相对位置所构成的k阶行列式二十八、矩阵的秩:如果A中不为零的子式的最高阶数为r,即存在r阶子式不为零,而任何r+1阶子式皆为零,则称r为矩阵A的秩,记作r(A)=r(一)满秩矩阵:r(A)=n(二)矩阵经初等变换后,其秩不变(三)二十九、增广矩阵:系数矩阵A和常数项矩阵构成的矩阵线性方程组有解的充分必要条件是齐次线性方程组有非零解的充分必要条件是→当m<n,齐次线性方程组有非零解三十、向量(一)(二)(三)(四)(五)(六)k((七)(八)三十一、向量组的线性组合线性方程组可以表示为,即常数列向量与系数列向量的线性关系,被称为方程组的向量表示,其中,于是,线性方程组是否有解,就相当于是否成立(一)如果成立,则称向量是向量组的线性组合,或称向量可以由向量组线性表示(二)向量可由向量组线性表示的充分必要条件是:以为列向量的矩阵与以为列向量的矩阵有相同的秩(三)如果组A:中每一向量都可由组B:线性表示,则称向量组A可由向量组B线性表示1、向量组A可由向量组B线性表示,向量组B又可由向量组C线性表示,则向量组A可由向量组C线性表示2、如果向量组A和向量组B可以相互线性表示,则称向量组A和向量组B等价(四)如果线性相关,而线性无关,则向量可由向量组线性表示且表示法唯一三十二、线性相关性:齐次线性方程组可以写成零向量与系数列向量的如下线性关系式:,被称为齐次线性方程组的向量形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1二阶、三阶行列式
了解二阶、三阶行列式的概念;熟练掌握其计算方法..
1.2排列
了解排列、正逆序数、奇偶排列、对换的概念;熟练掌握逆序数的计算方法、3个定理
1.3n阶行列式
了解n阶行列式的定义和由二阶、三阶行列式展开式的特点导出的一般规律;;掌握用定义计算特殊n阶行列式的方法;熟记三角形行列式的计算结果..
1.4行列式的性质
熟练掌握行列式的运算性质;并应用它们进行行列式的运算..转置行列式的概念;行列式的5个性质和两个推论
1.5行列式按行列展开
掌握余子式和代数余子式的概念;熟练掌握行列式按行列展开的方法..三阶行列式按行列展开式;余子式和代数余子式的概念;行列式按行列展开定理;范德蒙行列式
1.6克拉默法则
掌握线性方程组解的克拉默运算法则;掌握用克拉默法则判断齐次线性方程组仅有零解和有非零解的方法..
1.7数域
掌握数域的定义..
2.1消元法
了解线性方程组的消元解法;熟练掌握矩阵的初等变换方法;熟练掌握用矩阵的初等变换法解线性方程组以及判断方程组无解、有解唯一解、无穷多解的方法..
2.2n维向量空间
了解向量的定义;掌握向量的运算;熟悉线性方程组的向量表达形式..向量的有关概念;向量的运算法则;n维向量空间的概念;线性方程组的向量表达形式
2.3向量间的线性关系
掌握向量的线性组合概念;熟练掌握一个向量可由其它向量线性表示的方法;熟练掌握向量组线性相关和线性无关的概念、理论和方法..向量的线性组合概念;判断一个向量可由其它向量线性表示的方法;向量组线性相关和线性无关的概念;判断向量组线性相关和线性无关的方法;判断向量组线性相关和线性无关的一些结论;5个定理
2.4向量组的秩
了解向量组极大无关组的概念;掌握等价向量组的概念和性质;掌握向量组秩的概念与相关结论..
2.5矩阵的秩
了解矩阵的秩的概念;熟练掌握求向量组极大无关组的方法;熟练掌握求向量组秩和矩阵秩的方法..矩阵的行秩与列秩的概念;矩阵子式的概念;矩阵秩的概念;求向量组极大无关组、向量组秩、矩阵秩的方法;
2.6线性方程组解的判定
掌握非齐次线性方程组有无解、有唯一解、无穷多解的判定方法;熟练掌握齐次线性方程组有非零解解、只有零解判定方法..非齐次线性方程组有无解判定方法定理1;非齐次线性方程组有唯一解、无穷多解的判定方法定理2;齐次线性方程组有非零解解、只有零解判定方法推论1、2
2.7线性方程组解的结构
熟练掌握基础解系的概念;熟练掌握用基础解系表示方程组解的方法..齐次线性方程组解的
两个性质;齐次线性方程组基础解系的概念;特别强调基础解系中含解向量个数与未知量个数和系数矩阵秩间的关系;齐次线性方程组解的基础解系表示法;非齐次线性方程组与齐次线性方程组解间的关系;非齐次线性方程组解的基础解系表示法;
3.1-3.2矩阵的概念与运算
了解矩阵的概念;熟练掌握矩阵的加法、数与矩阵的乘法、乘法、转置、行列式的运算法则和相应的性质..矩阵的定义以及几种特殊矩阵;矩阵的加法法则和对应的性质;数与矩阵的乘法法则和对应的性质;矩阵的乘法法则和对应的性质;矩阵的转置概念和对应的性质;矩阵行列式概念和对应的性质
3.3可逆矩阵
理解可逆矩阵的概念;了解伴随矩阵的概念;熟练掌握用伴随矩阵求可逆矩阵的逆矩阵的方法..
3.4矩阵的分块
了解分块矩阵的概念以及矩阵分块的原则;熟练掌握分块矩阵的运算法则..
3.5初等矩阵
理解三种初等矩阵的概念;掌握初等矩阵在矩阵乘法运算中的作用;熟练掌握利用初等变换求可逆矩阵的方法..三种初等矩阵的概念和它们在矩阵乘法运算中的作用;任意矩阵经过有限次初等变换化成的标准型;可逆矩阵与初等矩阵间的关系定理;利用初等变换求可逆矩阵的方法
3.6常见的特殊矩阵
了解对角矩阵、准对角矩阵、三角形矩阵、对称矩阵、反对称矩阵的概念和运算性质..
4.1向量空间
了解向量空间的概念和性质;了解向量空间基以及向量在基下坐标的概念..
4.2向量的内积
了解内积的概念;掌握内积的性质;熟练掌握n维向量空间两向量内积的坐标表示法;会求向量长度和向量单位化;了解正交向量组的概念;理解标准正交基的概念;熟练掌握向量组的施密特正交化过程..向量内积的概念和性质;n维向量空间两向量内积的坐标表示法;单位向量的概念和向量单位化;正交向量组的概念;正交基、标准正交基的概念;向量组的施密特正交化过程
4.3正交矩阵
了解正交矩阵的概念;熟练掌握其性质..
5.1矩阵的特征值与特征向量
了解矩阵特征值与特征向量的概念;熟练掌握求矩阵特征值与特征向量的方法;熟练掌握特征值与特征向量的性质;了解矩阵迹的概念与性质..矩阵特征值与特征向量的概念;求矩阵特征值与特征向量的方法;矩阵特征值与特征向量的性质;矩阵迹的概念与性质;
5.2相似矩阵和矩阵对角化的条件
了解相似矩阵的概念;掌握相似矩阵的性质;熟练掌握矩阵对角化的条件和对角化的方法.. 5.3实对称矩阵的对角化
了解实对称矩阵特征值与特征向量的性质;熟练掌握实对称矩阵对角化的方法..。