高考真题汇编——理科数学(解析版)1:集合与简易逻辑
2021年高考数学经典例题 专题一:集合与简易逻辑【含解析】

专题一 集合与简易逻辑一、单选题1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.2.设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.3.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 【答案】C 【解析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==故选:C4.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时, 若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件. 故选:C.5.已知集合P ={|14}<<x x ,{|23}Q x x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】根据集合交集定义求解. 【详解】(1,4)(2,3)(2,3)P Q ==故选:B6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D.9.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.10.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】b =0 时,f(x)=cosx +bsinx =cosx , f(x)为偶函数; f(x)为偶函数时,f(−x)=f(x)对任意的x 恒成立, f(−x)=cos(−x)+bsin(−x)=cosx −bsinxcosx +bsinx =cosx −bsinx ,得bsinx =0对任意的x 恒成立,从而b =0.从而“b =0”是“f(x)为偶函数”的充分必要条件,故选C.11.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.12.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.13.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.15.设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件. 【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径3r m =-若直线l 与圆C 有公共点, 则圆心()1,2到直线的距离332m d m -=≤-13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A. 17.已知集合{}0,1,2,4A =,{}2,nB x x n A ==∈,则AB =( )A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4【答案】D 【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可. 【详解】 因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4AB =,故选:D.18. “21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案.【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B19.已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题【答案】D 【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题;函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭,因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题 故选:D .20.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①②C .②③D .③④【答案】A 【解析】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.已知M 、N 为R 的子集,若RM N =∅,{}1,2,3N =,则满足题意的M 的个数为( )A .3B .4C .7D .8【答案】D【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解. 【详解】因为M 、N 为R 的子集,且RM N =∅,画出韦恩图如图,可知,M N ⊆, 因为{}1,2,3N =, 故N 的子集有32=8个. 故选:D23. “0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A 【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解 【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离222(1)(1)d a a =<++-,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2x B x y y ==,则集合A B 中元素的个数为( ) A .0 B .1 C .2 D .3【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可.【详解】依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C25.已知集合{}13A x x =≤<,{}B y y m =≤,且A B =∅,则实数m 应满足()A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,A B =∅∴1m <,故选:A .26.命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥【答案】D【解析】 根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题: ①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。
历年高考理科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

7.(2017 全国 I 卷理 3)设有下面四个命题
p1
:若复数
z
满足
1 z
R
,则
z
R
;
C. 3 i
D. 3 i
-4-
p2 :若复数 z 满足 z2 R ,则 z R ; p3 :若复数 z1, z2 满足 z1z2 R ,则 z1 z2 ; p4 :若复数 z R ,则 z R .
|
c
|2
4a
2
4
5a
b
5b 2
9
,∴ |
c
|
3
.
∵ a c 2a2
5a
b=2
,∴
cos
a , c
|aa||cc|
=
2 3
.
2
【答案】
3
4.(2018 全国 I 卷理 6)在△ ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB
A.
3 4
AB
1 4
AC
B.
1 4
3)2 3 ,
22
∴当 x=0,y=
3
时,
PA
(PB
PC )
取得最小值
3
.
2
2
【答案】B
9.(2017 全国 III 卷理 12)在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为圆心且与 BD 相切的圆
9. (2017 全国 III 卷理 1)已知集合 A= (x, y│) x2 y2 1 ,B= (x, y│) y x ,则 A B 中元素的个数
为 A.3
B.2
C.1
D.0
【解析】方法一:联立方程组
2019年高考真题理科数学解析分类汇编1集合与简易逻辑

2019年高考真题理科数学解析分类汇编1 集合与简易逻辑1.【2019高考浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4)【答案】B【解析】 B ={x|2x -2x-3≤0}=}31|{≤≤-x x ,A ∩(C R B )={x|1<x <4}I }3,1|{>-<x x x 或=}43|{<<x x 。
故选B.2.【2019高考新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D.3.【2019高考陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =I ( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2]【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M Θ, ]2,1(=∴N M I ,故选C.4.【2019高考山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B U 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U Y ,选C. 5.【2019高考辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U I 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【答案】B【命题意图】本题主要考查集合的补集、交集运算,是容易题.【解析】1.因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U I 为{7,9}。
2011—2019年高考真题全国卷1理科数学分类汇编——1.集合与常用逻辑用语

2011—2019年高考真题全国卷1理科数学分类汇编——1.集合与常用逻辑用语一、选择题【2019,1】已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M I ( )A.}34|{<<-x xB.}24|{-<<-x xC. }22|{<<-x xD. }32|{<<x x【2018,2】已知集合{}02|2>--=x x x A ,则=A C R ( )A.{}21|<<-x xB.{}21|≤≤-x xC.{}{}2|1|>-<x x x x YD.{}{}2|1|≥-≤x x x x Y【2017,1】已知集合{}1A x x =<,{}31x B x =<,则( )A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23( 【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n =【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)【2013,1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .101.集合与常用逻辑用语(解析版)一、选择题【2019,1】已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M I ( )A.}34|{<<-x xB.}24|{-<<-x xC. }22|{<<-x xD. }32|{<<x x【解析】由题知,}32|{<<-=x x N ,又}24|{<<-=x x M ,则}22|{<<-=x x N M I ,故选C .【2018,2】已知集合{}02|2>--=x x x A ,则=A C R ( )A.{}21|<<-x xB.{}21|≤≤-x xC.{}{}2|1|>-<x x x x YD.{}{}2|1|≥-≤x x x x Y 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x ð{|12}=-≤≤x x ,故选B . 【2017,1】已知集合{}1A x x =<,{}31x B x =<,则( )A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I【解析】{}1A x x =<,{}{}310x B x x x =<=<,∴{}0A B x x =<I ,{}1A B x x =<U ,故选A 【2016,1】设集合}034{2<+-=x x x A ,}032{>-=x x B ,则A B =I ( )A .)23,3(-- B .)23,3(- C .)23,1( D .)3,23( 【解析】{}13A x x =<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭I .故选D . 【2015,3】设命题p :n ∃∈N ,22n n >,则p ⌝为( )A .n ∀∈N ,22n n >B .n ∃∈N ,22n n ≤C .n ∀∈N ,22n n ≤D .n ∃∈N ,22n n = 解析:命题p 含有存在性量词(特称命题),是真命题(如3n =时),则其否定(p ⌝)含有全称量词(全称命题),是假命题,故选C ..【2014,1】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=( ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)【解析】∵{|13}A x x x =≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.【2013,1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( )A .A ∩B = B .A ∪B =RC .B ⊆AD .A ⊆B解析:∵x (x -2)>0,∴x <0或x >2,∴集合A 与B 可用图象表示为:由图象可以看出A ∪B =R ,故选B. 【2012,1】已知集合A={1,2,3,4,5},B={(x ,y )|x A ∈,y A ∈,x y A -∈},则B 中包含元素的个数为( )A .3B .6C .8D .10【解析】由集合B 可知,x y >,因此B={(2,1),(3,2),(4,3),(5,4),(3,1),(4,2),(5,3),(4,1),(5,2),(5,1)},B 的元素10个,所以选择D .。
历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编(附答案)

历年(2019-2023)全国高考数学真题分项(集合与常用逻辑用语)汇编考点一 元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M = ) A .{1}B .{2}C .{3}D .{1,2,3}考点二 集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a = ) A .2B .1C .23D .1-3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈,则下列关系中,正确的是( ) A .A B ⊆B .R RA B ⊆痧C .A B =∅D .A B R=考点三 并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}5.(2020•山东)设集合{|13}A x x =剟,{|24}B x x =<<,则(A B = ) A .{|23}x x <…B .{|23}x x 剟C .{|14}x x <…D .{|14}x x <<考点四 交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--…,则(M N = ) A .{2-,1-,0,1} B .{0,1,2}C .{2}-D .{2}7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = ) A .{2-,1-,0,1} B .{1-,0,1}C .{1-,0}D .{1}-8.(2022•新高考Ⅰ)若集合{4}M x =<,{|31}N x x =…,则(M N = ) A .{|02}x x <…B .1{|2}3x x <…C .{|316}x x <…D .1{|16}3x x <…9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =-…,则(A B = ) A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}11.(2021•浙江)设集合{|1}A x x =…,{|12}B x x =-<<,则(A B = ) A .{|1}x x >-B .{|1}x x …C .{|11}x x -<<D .{|12}x x <…12.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = ) A .{|12}x x <…B .{|23}x x <<C .{|34}x x <…D .{|14}x x <<13.(2021•上海)已知{|21}A x x =…,{1B =-,0,1},则A B = .14.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 15.(2019•上海)已知集合(,3)A =-∞,(2,)B =+∞,则A B = .考点五 交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则 (U A B = ð )A .{3}B .{1,6}C .{5,6}D .{1,3}17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð )A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}考点六 命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素考点七 充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件21.(2019•浙江)若0a >,0b >,则“4a b +…”是“4ab …”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件参考答案考点一 元素与集合关系的判断1.(2023•上海)已知{1P =,2},{2Q =,3},若{|M x x P =∈,}x Q ∉,则(M = ) A .{1}B .{2}C .{3}D .{1,2,3}【详细解析】{1P = ,2},{2Q =,3},{|M x x P =∈,}x Q ∉, {1}M ∴=. 故选:A .考点二 集合的包含关系判断及应用2.(2023•新高考Ⅱ)设集合{0A =,}a -,{1B =,2a -,22}a -,若A B ⊆,则(a = ) A .2B .1C .23D .1-【详细解析】依题意,20a -=或220a -=,当20a -=时,解得2a =,此时{0A =,2}-,{1B =,0,2},不符合题意; 当220a -=时,解得1a =,此时{0A =,1}-,{1B =,1-,0},符合题意. 故选:B .3.(2021•上海)已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈,则下列关系中,正确的是( ) A .A B ⊆B .R RA B ⊆痧C .A B =∅D .A B R =【详细解析】已知集合{|1A x x =>-,}x R ∈,2{|20B x x x =--…,}x R ∈, 解得{|2B x x =…或1x -…,}x R ∈,{|1R A x x =-…ð,}x R ∈,{|12}R B x x =-<<ð;则A B R = ,{|2}A B x x = …, 故选:D .考点三 并集及其运算4.(2022•浙江)设集合{1A =,2},{2B =,4,6},则(A B = ) A .{2}B .{1,2}C .{2,4,6}D .{1,2,4,6}【详细解析】{1A = ,2},{2B =,4,6}, {1A B ∴= ,2,4,6},故选:D .5.(2020•山东)设集合{|13}A x x =剟,{|24}B x x =<<,则(A B = ) A .{|23}x x <…B .{|23}x x 剟C .{|14}x x <…D .{|14}x x <<【详细解析】 集合{|13}A x x =剟,{|24}B x x =<<, {|14}A B x x ∴=< ….故选:C .考点四 交集及其运算6.(2023•新高考Ⅰ)已知集合{2M =-,1-,0,1,2},2{|60}N x x x =--…,则(M N = ) A .{2-,1-,0,1} B .{0,1,2}C .{2}-D .{2}【详细解析】260x x -- …,(3)(2)0x x ∴-+…,3x ∴…或2x -…, (N =-∞,2][3- ,)+∞,则{2}M N =- . 故选:C .7.(2022•上海)若集合[1A =-,2),B Z =,则(A B = ) A .{2-,1-,0,1} B .{1-,0,1} C .{1-,0} D .{1}-【详细解析】[1A =- ,2),B Z =, {1A B ∴=- ,0,1},故选:B .8.(2022•新高考Ⅰ)若集合{4}M x =<,{|31}N x x =…,则(M N = ) A .{|02}x x <…B .1{|2}3x x <…C .{|316}x x <…D .1{|16}3x x <…4<,得016x <…,{4}{|016}M x x x ∴=<=<…, 由31x …,得13x …,1{|31}{|}3N x x x x ∴==厖,11{|016}{|}{|16}33M N x x x xx x ∴=<=< 剠?. 故选:D .9.(2022•新高考Ⅱ)已知集合{1A =-,1,2,4},{||1|1}B x x =-…,则(A B = ) A .{1-,2}B .{1,2}C .{1,4}D .{1-,4}【详细解析】|1|1x -…,解得:02x 剟, ∴集合{|02}B x x =剟{1A B ∴= ,2}.故选:B .10.(2021•新高考Ⅰ)设集合{|24}A x x =-<<,{2B =,3,4,5},则(A B = ) A .{2,3,4}B .{3,4}C .{2,3}D .{2}【详细解析】 集合{|24}A x x =-<<,{2B =,3,4,5}, {2A B ∴= ,3}.故选:C .11.(2021•浙江)设集合{|1}A x x =…,{|12}B x x =-<<,则(A B = ) A .{|1}x x >-B .{|1}x x …C .{|11}x x -<<D .{|12}x x <…【详细解析】因为集合{|1}A x x =…,{|12}B x x =-<<,所以{|12}A B x x =< …. 故选:D .12.(2020•浙江)已知集合{|14}P x x =<<,{|23}Q x x =<<,则(P Q = ) A .{|12}x x <…B .{|23}x x <<C .{|34}x x <…D .{|14}x x <<【详细解析】集合{|14}P x x =<<,{|23}Q x x =<<, 则{|23}P Q x x =<< . 故选:B .13.(2021•上海)已知{|21}A x x =…,{1B =-,0,1},则A B = . 【详细解析】因为1{|21}{|}2A x x x x ==剟,{1B =-,0,1}, 所以{1A B =- ,0}. 故答案为:{1-,0}.14.(2020•上海)已知集合{1A =,2,4},集合{2B =,4,5},则A B = . 【详细解析】因为{1A =,2,4},{2B =,4,5}, 则{2A B = ,4}. 故答案为:{2,4}.15.(2019•上海)已知集合(,3)A =-∞,(2,)B =+∞,则A B = . 【详细解析】根据交集的概念可得(2,3)A B = . 故答案为:(2,3).考点五 交、并、补集的混合运算16.(2021•新高考Ⅱ)若全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4},则(U A B = ð ) A .{3}B .{1,6}C .{5,6}D .{1,3}【详细解析】因为全集{1U =,2,3,4,5,6},集合{1A =,3,6},{2B =,3,4}, 所以{1U B =ð,5,6}, 故{1U A B = ð,6}. 故选:B .17.(2019•浙江)已知全集{1U =-,0,1,2,3},集合{0A =,1,2},{1B =-,0,1},则()(U A B = ð)A .{1}-B .{0,1}C .{1-,2,3}D .{1-,0,1,3}【详细解析】{1U A =- ð,3},()U A B ∴ ð{1=-,3}{1-⋂,0,1}{1}=- 故选:A .考点六 命题的真假判断与应用18.(2020•浙江)设集合S ,T ,*S N ⊆,*T N ⊆,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y S ∈,若x y ≠,则xy T ∈; ②对于任意的x ,y T ∈,若x y <,则yS x∈.下列命题正确的是( ) A .若S 有4个元素,则S T 有7个元素 B .若S 有4个元素,则S T 有6个元素 C .若S 有3个元素,则S T 有5个元素D .若S 有3个元素,则S T 有4个元素【详细解析】取:{1S =,2,4},则{2T =,4,8},{1S T = ,2,4,8},4个元素,排除C . {2S =,4,8},则{8T =,16,32},{2S T = ,4,8,16,32},5个元素,排除D ;{2S =,4,8,16}则{8T =,16,32,64,128},{2S T = ,4,8,16,32,64,128},7个元素,排除B ; 故选:A .考点七 充分条件与必要条件19.(2020•上海)命题p :存在a R ∈且0a ≠,对于任意的x R ∈,使得()()f x a f x f +<+(a ); 命题1:()q f x 单调递减且()0f x >恒成立;命题2:()q f x 单调递增,存在00x <使得0()0f x =, 则下列说法正确的是( ) A .只有1q 是p 的充分条件 B .只有2q 是p 的充分条件C .1q ,2q 都是p 的充分条件D .1q ,2q 都不是p 的充分条件【详细解析】对于命题1q :当()f x 单调递减且()0f x >恒成立时, 当0a >时,此时x a x +>, 又因为()f x 单调递减,所以()()f x a f x +< 又因为()0f x >恒成立时, 所以()()f x f x f <+(a ), 所以()()f x a f x f +<+(a ), 所以命题1q ⇒命题p ,对于命题2q :当()f x 单调递增,存在00x <使得0()0f x =, 当00a x =<时,此时x a x +<,f (a )0()0f x ==, 又因为()f x 单调递增, 所以()()f x a f x +<, 所以()()f x a f x f +<+(a ), 所以命题2p ⇒命题p , 所以1q ,2q 都是p 的充分条件, 故选:C .20.(2020•浙江)已知空间中不过同一点的三条直线l ,m ,n .则“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【详细解析】空间中不过同一点的三条直线m ,n ,l ,若m ,n ,l 在同一平面,则m ,n ,l 相交或m ,n ,l 有两个平行,另一直线与之相交,或三条直线两两平行.而若“m ,n ,l 两两相交”,则“m ,n ,l 在同一平面”成立. 故m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的必要不充分条件, 故选:B .21.(2019•浙江)若0a >,0b >,则“4a b +…”是“4ab …”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【详细解析】0a > ,0b >,4a b ∴+厖,2∴4ab ∴…,即44a b ab +⇒剟,若4a =,14b =,则14ab =…, 但1444a b +=+>, 即4ab …推不出4a b +…,4a b ∴+…是4ab …的充分不必要条件故选:A .22.(2019•上海)已知a 、b R ∈,则“22a b >”是“||||a b >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 【详细解析】22a b > 等价,22||||a b >,得“||||a b >”, ∴ “22a b >”是“||||a b >”的充要条件,故选:C .。
2021年高考真题汇编——理科数学(解析版)1:集合与简易逻辑

2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】分析: (1 )证法一:做出辅助线 ,在直线上构造对应的方向向量 ,要证两条直线垂直 ,只要证明两条直线对应的向量的数量积等于0 ,根据向量的运算法那么得到结果.证法二:做出辅助线 ,根据线面垂直的性质 ,得到线线垂直 ,根据线面垂直的判定定理 ,得到线面垂直 ,再根据性质得到结论.(2 )把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.。
十年高考分类解析:第1章 集合与简易逻辑

十年高考分类解析 第一章 集合与简易逻辑一、选择题1.(2003京春理,11)若不等式|ax +2|<6的解集为(-1,2),则实数a 等于( ) A.8 B.2 C.-4 D.-82.(2002京皖春,1)不等式组⎩⎨⎧<-<-030122x x x 的解集是( )A.{x |-1<x <1}B.{x |0<x <3}C.{x |0<x <1}D.{x |-1<x <3}3.(2002北京,1)满足条件M ∪{1}={1,2,3}的集合M 的个数是( ) A.4 B.3 C.2 D.14.(2002全国文6,理5)设集合M ={x |x =412+k ,k ∈Z },N ={x |x =214+k ,k ∈Z },则( )A.M =NB.M NC.M ND.M ∩N =∅ 5.(2002河南、广西、广东7)函数f (x )=x |x +a |+b 是奇函数的充要条件是( ) A.ab =0 B.a +b =0 C.a =b D.a 2+b 2=06.(2001上海,3)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件7.(2000北京春,2)设全集I ={a ,b ,c ,d ,e },集合M ={a ,b ,c },N ={b ,d ,e },那么I M ∩I N是( )A.∅B.{d }C.{a ,c }D.{b ,e } 8.(2000全国文,1)设集合A ={x |x ∈Z 且-10≤x ≤-1},B ={x |x ∈B 且|x |≤5},则A ∪B 中元素的个数是( )A.11B.10C.16D.15 9.(2000上海春,15)“a =1”是“函数y =cos 2ax -sin 2ax 的最小正周期为π”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分条件也非必要条件10.(2000广东,1)已知集合A ={1,2,3,4},那么A 的真子集的个数是( ) A.15 B.16 C.3 D.4 11.(1999全国,1)如图1—1,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A.(M ∩P )∩SB.(M ∩P )∪SC.(M ∩P )∩I SD.(M ∩P )∪I S12.(1998上海,15)设全集为R,A={x|x2-5x-6>0},B={x||x-5|<a}(a 为常数),且11∈B,则()A.R A∪B=RB.A∪R B=RC.R A∪R B=RD.A∪B=R13.(1997全国,1)设集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M ∩N等于()A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}14.(1997上海,1)设全集是实数集R,M={x|x≤1+2,x∈R},N={1,2,3,4},则R M∩N等于()A.{4}B.{3,4}C.{2,3,4}D.{1,2,3,4}15.(1996上海,1)已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A.x=3,y=-1B.(3,-1)C.{3,-1}D.{(3,-1)}16.(1996全国文,1)设全集I={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5},则()A.I=A∪BB.I=I A∪BC.I=A∪I BD.I=I A∪I B17.(1996全国理,1)已知全集I=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N},则()A.I=A∪BB.I=I A∪BC.I=A∪I BD.I=I A∪I B18.(1996上海文,6)若y=f(x)是定义在R上的函数,则y=f(x)为奇函数的一个充要条件为()A.f(x)=0B.对任意x∈R,f(x)=0都成立C.存在某x0∈R,使得f(x0)+f(-x0)=0D.对任意的x∈R,f(x)+f(-x)=0都成立19.(1995上海,2)如果P={x|(x-1)(2x-5)<0},Q={x|0<x<10},那么()A.P∩Q=B.P QC.P QD.P∪Q=R20.(1995全国文,1)已知全集I ={0,-1,-2,-3,-4},集合M ={0,-1,-2},N ={0,-3,-4},则I M ∩N等于( )A.{0}B.{-3,-4}C.{-1,-2}D.∅21.(1995全国理,1)已知I 为全集,集合M 、N I ,若M ∩N =N ,则( ) A.I M⊇I N B.M I NC.IM I ND.M⊇I N22.(1995上海,9)“ab <0”是“方程ax 2+by 2=c 表示双曲线”的( ) A.必要条件但不是充分条件 B.充分条件但不是必要条件 C.充分必要条件 D.既不是充分条件又不是必要条件 23.(1994全国,1)设全集I ={0,1,2,3,4},集合A ={0,1,2,3},集合B ={2,3,4},则I A ∪I B等于( )A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4} 24.(1994上海,15)设I 是全集,集合P 、Q 满足P Q ,则下面的结论中错误的是( ) A.P ∪I Q =∅ B.I P ∪Q =IC.P ∩I Q =∅D.I P ∩I Q =I P二、填空题25.(2003上海春,5)已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≥a },且A B ,则实数a 的取值范围是_____.26.(2002上海春,3)若全集I =R ,f (x )、g (x )均为x 的二次函数,P ={x |f (x )<0},Q ={x |g (x )≥0},则不等式组⎩⎨⎧<<0)(0)(x g x f 的解集可用P 、Q 表示为_____.27.(2001天津理,15)在空间中①若四点不共面,则这四点中任何三点都不共线; ②若两条直线没有公共点,则这两条直线是异面直线. 以上两个命题中,逆命题为真命题的是_____. 28.(2000上海春,12)设I 是全集,非空集合P 、Q 满足P Q I .若含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是 (只要写出一个表达式).29.(1999全国,18)α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题:_____. 三、解答题30.(2003上海春,17)解不等式组⎪⎩⎪⎨⎧>-+>+-2130862x x x x .31.(2000上海春,17)已知R 为全集,A ={x |lo g 21(3-x )≥-2},B ={x |25+x ≥1},求R A ∩B .32.(1999上海,17)设集合A ={x ||x -a |<2},B ={x |212+-x x <1},若A ⊆B ,求实数a 的取值范围.●答案详析 1.答案:C解析:∵|ax +2|<6,∴-6<ax +2<6,-8<ax <4当a >0时,有ax a 48<<-,而已知原不等式的解集为(-1,2),所以有: ⎪⎪⎩⎪⎪⎨⎧-=-=1824aa.此方程无解(舍去). 当a <0时,有a x a 48<<-,所以有⎪⎪⎩⎪⎪⎨⎧-==-1428aa解得a =-4,当a =0时,原不等式的解集为R ,与题设不符(舍去),故a =-4.评述:本题主要考查绝对值不等式的解法,方程的根与不等式解集的关系,考查了分类讨论的数学思想方法及逻辑思维能力,此题也可以利用选项的值代入原不等式,去寻找满足题设条件的a 的值.2.答案:C解析:依题意可得⎩⎨⎧<<<<-3011x x ,可得0<x <1.3.答案:C解析:M ={2,3}或M ={1,2,3}评述:因为M ⊆{1,2,3},因此M 必为集合{1,2,3}的子集,同时含元素2,3. 4.答案:B解析:方法一:可利用特殊值法,令k =-2,-1,0,1,2可得}1,43,21,41,0{},45,43,41,41,43{=--=N M∴M N方法二:集合M 的元素为:412412+=+=k k x(k ∈Z ),集合N 的元素为:x =42214+=+k k (k ∈Z ),而2k +1为奇数,k +2为整数,因此M N .∴M N 5.答案:D解析:若a 2+b 2=0,即a =b =0时,f (-x )=(-x )|x +0|+0=-x |x |=-f (x ) ∴a 2+b 2=0是f (x )为奇函数的充分条件.又若f (x )为奇函数即f (-x )=-x |(-x )+a |+b =-(x |x +a |+b ),则 必有a =b =0,即a 2+b 2=0,∴a 2+b 2=0是f (x )为奇函数的必要条件. 6.答案:C解析:当a =3时,直线l 1:3x +2y +9=0,直线l 2:3x +2y +4=0 显然a =3⇔l 1∥l 2. 7.答案:A 解析:∵I M ={b ,e },I N ={a ,c },∴I M ∩I N =∅.8.答案:C解析:∵A ={-10,-9,-8,-7,-6,-5,-4,-3,-2,-1} B ={-5,-4,-3,-2,-1,0,1,2,3,4,5}∴A ∪B ={-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5}共有16个元素.9.答案:A解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π,故a =1是充分条件.而由y =cos 2ax -sin 2ax =cos2ax ,此时y 的周期为|2|2a π=π, ∴a =±1,故a =1不是必要条件.评述:本题考查充要条件的基本知识,难点在于周期概念的准确把握. 10.答案:A解析:根据子集的计算应有24-1=15(个).评述:求真子集时千万不要忘记空集∅是任何非空集合的真子集.同时,A 不是A 的真子集.11.答案:C解析:由图知阴影部分表示的集合是M ∩P 的子集且是I S的子集,故答案为C.评述:本题源于课本,属送分题,是前几年高考题的回归. 12.答案:D解析:由已知A ={x |x >6或x <-1},B ={x |5-a <x <5+a },而11∈B ,∴⇒⎩⎨⎧>+<-115115a a a >6. 此时:5-a <-1,5+a >6,∴A ∪B =R .评述:本题考查集合基本知识,一元二次不等式、绝对值不等式的解法及分析问题解决问题的能力.13.答案:B解析:方法一:N ={x |x 2-2x -3<0}={x |-1<x <3},所以M ∩N ={x |0≤x <2},故选B.方法二:由(23)2-2²(23)-3<0,知1.5∈N ,又1.5∈M ,因此1.5∈M ∩N ,从而排除A 、C;由交集定义与M 的表达式,可排除D ,得B.评述:本题考查对交集的理解和掌握,所设定的集合实质是不等式的解集,兼考处理不等式解集的基本技能.14.答案:B解析:R M ={x |x >1+2,x ∈R },又1+2<3.故R M ∩N ={3,4}.故选B.15.答案:D 解析:方法一:解方程组⎩⎨⎧=-=+,4,2y x y x 得⎩⎨⎧-==.1,3y x 故M ∩N ={(3,-1)},所以选D.方法二:因所求M ∩N 为两个点集的交集,故结果仍为点集,显然只有D 正确. 评述:要特别理解集合中代表元素的意义,此题迎刃而解.16.答案:C 解析:方法一:显然I B ={1,2,4,6,7}, 于是A ∪I B =I ,故选C.方法二:利用文氏图1—3知I =A ∪I B ,应选C.17.答案:C解析:方法一:I A 中元素是非2的倍数的自然数,I B 中元素是非4的倍数的自然数,显然,只有C选项正确.方法二:因A ={2,4,6,8…},B ={4,8,12,16,…},所以I B ={1,2,3,5,6,7,9…},所以I =A ∪I B ,故答案为C.方法三:因B A ,所以I AI B ,I A ∩I B =I A ,故I =A ∪I A =A ∪IB .方法四:根据题意,我们画出文氏图1—4来解,易知B A ,如图:可以清楚看到I = A ∪I B是成立的.评述:本题考查对集合概念和关系的理解和掌握,注意数形结合的思想方法,用无限集考查,提高了对逻辑思维能力的要求.18.答案:D解析:由奇函数定义可知:若f (x )为奇函数,则对定义域内任意一个x ,都有f (-x )=-f (x ),即f (-x )+f (x )=0,反之,若有f (x )+f (-x )=0,即f (-x )=-f (x ),由奇函数的定义可知f (x )为奇函数.评述:对于判断奇偶性问题应注意:x 为定义域内任意值,因此定义域本身应关于原点对称,这是奇偶性问题的必要条件.19.答案:B解析:由集合P 得1<x <25,由集合Q 有0<x <10.利用数轴上的覆盖关系,易得P Q . 20.答案:B 解析:由已知I M ={-3,-4},∴I M ∩N ={-3,-4}.21.答案:C解析一:∵M ∩N =N ,∴N ⊆M ,∴I N⊇I M解析二:画出韦恩图1—5,显然:I M⊆I N .故选C.评述:本题主要考查集合的概念和集合的关系,题目中不给出具体集合,对分析问题解决问题能力提高了要求.22.答案:A解析:如果方程ax 2+by 2=c 表示双曲线,即122=+bc ya c x 表示双曲线,因此有0<⋅b c a c ,即ab <0.这就是说“ab <0”是必要条件;若ab <0,c 可以为0,此时,方程不表示双曲线,即ab <0不是充分条件.评述:本题考查充要条件的推理判断和双曲线的概念. 23.答案:C解析:∵I A ={4},I B ={0,1},∴I A ∪I B ={0,1,4}.24.答案:D解析:依题意画出文氏图:如图1—6,显然A 、B 、C 均正确,故应选D.25.答案:a ≤-2解析:∵A ={x |-2≤x ≤2},B ={x |x ≥a },又A ⊆B ,利用数轴上覆盖关系:如图1—7因此有a ≤-2.评述:本题主要考查集合的概念和集合的关系. 26.答案:P ∩I Q解析:∵g (x )≥0的解集为Q ,所以g (x )<0的解集为I Q ,因此⎩⎨⎧<<0)(0)(x g x f 的解集为P ∩I Q .评述:本题以不等式为载体,重点考查集合的补集、交集的概念及其运算,活而不难. 27.答案:②解析:①中的逆命题是:若四点中任何三点都不共线,则这四点不共面.我们用正方体AC 1做模型来观察:上底面A 1B 1C 1D 1中任何三点都不共线,但A 1B 1C 1D 1四点共面,所以①中逆命题不真.②中的逆命题是:若两条直线是异面直线,则两条直线没有公共点. 由异面直线的定义可知,成异面直线的两条直线不会有公共点. 所以②中逆命题是真命题.评述:本题考查点共线、点共面和异面直线的基本知识,考查命题的有关概念.28.答案:P ∩I Q解析:阴影部分为I Q (如图1—8)显然,所求表达式为I Q ∩P =∅,或I Q ∩(Q ∩P )或I Q ∩(Q ∪P )=∅.评述:本题考查集合的关系及运算.29.答案:m ⊥α,n ⊥β,α⊥β⇒m ⊥n ,或m ⊥n ,m ⊥α, n ⊥β⇒α⊥β.(二者任选一个即可)解析:假设①、③、④为条件,即m ⊥n ,n ⊥β,m ⊥α成立, 如图1—9,过m 上一点P 作PB ∥n ,则PB ⊥m ,PB ⊥β,设垂足为B .又设m ⊥α的垂足为A ,过P A 、PB 的平面与α、β的交线l 交于点C ,因为l ⊥P A ,l ⊥PB ,所以l ⊥平面P AB ,得l ⊥AC ,l ⊥BC ,∠ACB 是二面角α-l -β的平面角.显然∠APB +∠ACB =180°,因为P A ⊥PB ,所以∠ACB =90°,得α⊥β.由①、③、④推得②成立.反过来,如果②、③、④成立,与上面证法类似可得①成立.评述:本题主要考查线线、线面、面面之间关系的判定与性质,但题型较新颖,主要表现在:题目以立体几何知识为背景,给出了若干材料,要求学生能将其组装成具有一定逻辑关系的整体,解题的关键是将符号语言转化为图形语言.考查知识立足课本,对空间想象能力、分析问题的能力、操作能力和思维的灵活性等方面要求较高,体现了加强能力考查的方向.30.解:由x 2-6x +8>0,得(x -2)(x -4)>0,∴x <2或x >4. 由13-+x x >2,得15-+-x x >0,∴1<x <5.∴原不等式组的解是x ∈(1,2)∪(4,5)评述:本题主要考查二次不等式、分式不等式的解法.31.解:由已知lo g 21(3-x )≥lo g 214,因为y =lo g 21x 为减函数,所以3-x ≤4.由⎩⎨⎧>-≤-0343x x ,解得-1≤x <3.所以A ={x |-1≤x <3}.由25+x ≥1可化为22302)2(5≥+-⇒≥++-x xx x ⎩⎨⎧≠+≤+-020)2)(3(x x x 解得-2<x ≤3,所以B ={x |-2<x ≤3}. 于是R A ={x |x <-1或x ≥3}.故R A ∩B ={x |-2<x <1或x =3}评述:本题主要考查集合、对数性质、不等式等知识,以及综合运用知识能力和运算能力.32.解:由|x -a |<2,得a -2<x <a +2,所以A ={x |a -2<x <a +2}. 由212+-x x <1,得23+-x x <0,即-2<x <3,所以B ={x |-2<x <3}. 因为A ⊆B ,所以⎩⎨⎧≤+-≥-3222a a ,于是0≤a ≤1.评述:这是一道研究集合的包含关系与解不等式相结合的综合性题目.主要考查集合的概念及运算,解绝对值不等式、分式不等式和不等式组的基本方法.在解题过程中要注意利用不等式的解集在数轴上的表示方法.体现了数形结合的思想方法.。
2019年高考真题理科数学解析分类汇编1集合与简易逻辑

2019年高考真题理科数学解析分类汇编1 集合与简易逻辑1.【2019高考浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B【解析】B ={x|2x -2x-3≤0}=}31|{≤≤-x x ,A ∩(C R B )={x|1<x <4} }3,1|{>-<x x x 或=}43|{<<x x 。
故选B.2.【2019高考新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;则B 中所含元素的个数为( ) 【答案】D【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D.3.【2019高考陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( ) A. (1,2) B.[1,2) C. (1,2] D. [1,2]【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,故选C.4.【2019高考山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C AB 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 5.【2019高考辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【命题意图】本题主要考查集合的补集、交集运算,是容易题.【解析】1.因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012高考真题分类汇编:集合与简易逻辑1.【2012高考真题浙江理1】设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪(3,4) 【答案】B【解析】B ={x|2x -2x-3≤0}=}31|{≤≤-x x ,A ∩(C R B )={x|1<x <4} }3,1|{>-<x x x 或=}43|{<<x x 。
故选B.2.【2012高考真题新课标理1】已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素嘚个数为( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时,y 可是1,2,3,4.当4=x 时,y 可是1,2,3.当3=x 时,y 可是1,2.当2=x 时,y 可是1,综上共有10个,选D.3.【2012高考真题陕西理1】集合{|lg 0}M x x =>,2{|4}N x x =≤,则MN =( ) A.(1,2) B. [1,2) C. (1,2] D. [1,2]【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,故选C.4.【2012高考真题山东理2】已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 5.【2012高考真题辽宁理1】已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9}。
故选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中嘚元素,所剩嘚元素形成嘚集合,由此可快速得到答案,选B【点评】本题主要考查集合嘚交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
6.【2012高考真题辽宁理4】已知命题p :∀x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)≥0,则⌝p 是 (A) ∃x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)≤0 (B) ∀x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)≤0 (C) ∃x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)<0 (D) ∀x 1,x 2∈R ,(f(x 2)-f(x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题,所以其否定⌝p 应是特称命题,又(f(x 2)-f(x 1))(x 2-x 1)≥0否定为(f(x 2)-f(x 1))(x 2-x 1)<0,故选C【点评】本题主要考查含有量词嘚命题嘚否定,属于容易题。
7.【2012高考真题江西理1】若集合A={-1,1},B={0,2},则集合{z ︱z=x+y,x ∈A,y ∈B }中嘚元素嘚个数为A .5 B.4 C.3 D.2 【答案】C【命题立意】本题考查集合嘚概念和表示。
【解析】因为B y A x ∈∈,,所以当1-=x 时,2,0=y ,此时1,1-=+=y x z 。
当1=x 时,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素,选C. 8.【2012高考真题江西理5】下列命题中,假命题为 A .存在四边相等嘚四边形不.是正方形 B .1212,,z z C z z ∈+为实数嘚充分必要条件是12,z z 为共轭复数 C .若,x y ∈R ,且2,x y +>则,x y 至少有一个大于1D .对于任意01,n n n n n N C C C ∈+++都是偶数【答案】B【命题立意】本题考查命题嘚真假判断。
【解析】对于B,若21,z z 为共轭复数,不妨设bi a z bi a z -=+=21,,则a z z 221=+,为实数。
设di c z bi a z +=+=21,,则i d b c a z z )()(21+++=+,若21z z +为实数,则有0=+d b ,当ca ,没有关系,所以B 为假命题,选B.9.【2012高考真题湖南理1】设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0} 【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合嘚基本运算,较简单,易得分.先求出{}0,1N =,再利用交集定义得出M ∩N.10.【2012高考真题湖南理2】命题“若α=4π,则tan α=1”嘚逆否命题是 A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1 C. 若tan α≠1,则α≠4π D. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”嘚逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”嘚逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式嘚命题嘚逆命题、否命题与逆否命题,考查分析问题嘚能力.11.【2012高考真题湖北理2】命题“0x ∃∈R Q ,30x ∈Q ”嘚否定是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题嘚否定知,是把谓词取否定,然后把结论否定。
因此选D 12.【2012高考真题广东理2】设集合U={1,2,3,4,5,6}, M={1,2,4 },则CuM= A .U B . {1,3,5} C .{3,5,6} D . {2,4,6} 【答案】C【解析】}6,5,3{=M C U ,故选C.13.【2012高考真题福建理3】下列命题中,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀ C.a+b=0嘚充要条件是a b=-1 D.a>1,b>1是ab>1嘚充分条件 【答案】D.【解析】此类题目多选用筛选法,因为0>xe 对任意R x ∈恒成立,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义,所以选项C 错误;故选D.14.【2012高考真题北京理1】已知集合A={x ∈R|3x+2>0} B={x ∈R|(x+1)(x-3)>0} 则A ∩B=A (-∞,-1)B (-1,-23)C (-23,3)D (3,+∞) 【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D .15.【2012高考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b m ⊥,则“αβ⊥”是“a b ⊥”嘚( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】本题借助线面位置关系考查条件嘚判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥,②如果//a m ,则a b ⊥与b m ⊥条件相同. 16.【2012高考真题全国卷理2】已知集合A ={1.3.m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.若3=m ,则}3,1{},3,3,1{==B A ,满足A B A = .若m m =,解得0=m 或1=m .若0=m ,则}0,3,1{},0,3,1{==B A ,满足A B A = .若1=m ,}1,1{},1,3,1{==B A 显然不成立,综上0=m 或3=m ,选B..17【2012高考真题四川理13】设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则B C A C U U ___________。
【答案】{},,a c d【命题立意】本题考查集合嘚基本运算法则,难度较小. 【解析】},{d c A C U =,}{a B C U =,},,{d c a B C A C U U =∴18.【2012高考真题上海理2】若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。
【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(-。
19.【2012高考真题天津理11】已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 嘚根,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 嘚解为21<<-x ,所以)11(,-=B A ,即1=n 。