单板电源信号质量测试

单板电源信号质量测试
单板电源信号质量测试

单板电源信号质量测试

1.1.1简述

本文定义的是单板电源工作时输出信号参数的测试方法和要求,对于AC-DC电源测试方法参考《电源测试规范》,电源自身有相应参数,但电源都需与负载配合使用,在实际电源应用于系统时,往往与电源自身参数差异较大,所以必须关注电源在实际工作过程的每一个输出参数是否符合要求,从而保证产品(系统)的正常工作。

本章节测试范围包括电源芯片DC/DC、LDO及芯片的电源管脚。

电源测试涉及的基本概念:

电压任意两点之间的电位差称为这两点间的电压,单位伏特

电源纹波叠加在直流稳定量上的交流分量就称之为纹波,由于直流稳定电

源一般是由交流电源经整流稳压等环节而形成的,这就不可避免

地在直流稳定量中多少带有一些交流成份。

开关电源纹波主要是与输入频率和开关频率同步的成分,用峰-峰

表示;

但想完全消除纹波,似乎是很难办到的,我们只有将其控制在一

个允许的范围之内,不对环境和设备产生影响就算达到了我们的

目的。

电源噪声开关电源噪声主要是指在DC输出端除纹波以外的高频成分,用峰-峰值表示

噪声的产生一般可分为两大类:一是开关电源内部元件形成的干

扰;二是由于外界因素影响而使开关电源产生的干扰,这涉及到

人为因素和自然界的因素。

电源纹波噪由“纹波”、“噪声”二者叠加在一起,用峰-峰值表示。

缓启动电路为实现单板热插拔功能,对电源系统进行的保护性设计的电路。

冲击电流冲击电流一般是指设备在上电一瞬间在其内部产生的非周期性瞬

态大电流,主要体现在感性和容性负载中。

由于电容器在瞬态时可以看成是短路的,当开关电源上电时,会

产生非常大的冲击电流,冲击电流的幅度要比稳态工作电流大很

多,如对冲击电流不加以限制,不但会烧坏保险丝,烧毁接插件,

还会由于共同输入阻抗而干扰附近的电器设备。

电源均流不同的输入电源同时承担同一负载时平均分配其输出电流。

电源纹波、噪声图示

图中A: Ripple(波纹)+ Noise(噪声)

B: Ripple

C: Switch(开关)Ripple+Noise

D: Switch Ripple

E: AC Ripple

F: AC Cycle Time(AC周期时间)

G: Switch Cycle Time

1.1.2测试项目

1) 电源电压精度

2) 电源纹波噪声

3) 电压上下电波形

4) 缓启动电路缓启时间

5) 电源电流和冲击电流

6) 冗余电源的均流参数

7) 电源告警信号

1.1.3测试方法

电源纹波噪声测试图例

2,当在测试结果与规格书产生差异时,可在量测点输出端,并联一个10uF 的钽电容和一个0.1uF 的陶瓷电容再次确认测量,连接方法如下图示。

3,纹波噪声应在单板满载、空载时都进行测试。

判定标准

1, 合格标准参考芯片规书的要求(优先判定依据);

2, 依据经过项目组评审后的《电源设计方案与规格》判定;

3, 以上两点都不满足的情况下,参考目前公司定义的《电源纹波与噪声规格定义

_20091104》,见“附件1”。

结果分析

注意事项

1,探头地线接离测试电源最近的地,且地环线尽量短;

2,纹波测量时尽量展开波形,并纪录其频率,便于分析。

测试项目3 电压上下电波形

测试点芯片电源管脚处测试仪器示波器+无源探头

测试方法1,使用示波器一探头点触至被测信号宿端的芯片管脚处,将示波器中显现波形垂直方向调至满屏,时基刻度一般调整到100ms左右,采用下降沿(或上升沿)“正常”触发,然后开关电源,通过示波器观察电源上下电波形。测试时的原则就是选取适当的时间宽度能够在示波器上显示一个完整的上(下)电波形,又要能够将波形问题显示出来,如下图所示:

电源上电波形测试图例电源下电波形测试图例

2,测量系统各组电源上下电波形与电源上升时间(10%~90%),分析其对单板/系统的影响。

判定标准1,在电源输出端测试,电压上下电过冲一般要求不超过被测电压幅度的10%,电压合格标准参考芯片规书的要求(优先判定依据);

2,电源上电时电压不得有很大的跌落,下电时不能有很大的反冲和回勾。(跌落和反冲不能跨越芯片启动工作电压);

电源上电跌落波形图例电源下电反冲波形图例3,如果某路电源上电前或下电后存在负电压就需要根据芯片规格书要求进行讨论;

4,上升时间:对于Trise,一般为ms级。要求其范围越小越好,但同时要求冲击电流满

足合格标准,参考芯片规格书评估测试结果是否合格;

5,多路电源供电芯片,须测试各路电压之间的上下电顺序要求,参考芯片规格书评估

测试结果是否合格。

结果分析

注意事项

1,如出现台阶现象,需讨论分析其对实际单板或系统的影响;

测试项目4 缓启动电路缓启时间

测试点

如图中“测试点1”“测试点2”,缓启动电路的输入、输出端

常用缓启动电路测试示意图

测试仪器示波器+无源探头(示波器通道数≧2)

测试方法1,采用多通道数字示波器,一探头点触至缓启动电路输入端,另一探头点触在缓启动电路输出端,然后对单板上电,从示波器观察两个测试点的上电延迟时间,即是输入电源有效到缓启动电路输出有效的时间差;

缓启动电路缓启时间测试图例2,测量参数时一般取电压上升到90%正常电压。

判定标准1,缓启时间一般要求其范围 20 ~ 200ms(依据经过项目组评审后的《电源设计方案与规格》判定);

2,上电波形没有多次上、下电(振荡上下电)现象;

结果分析

注意事项

缓起时间较长时,保证功能正常的情况下,一般对系统没有影响。

测试项目5 电源输出电流和冲击电流

测试点一般在单板上采用粗短导线代替保险丝,在粗短导线上测试电流测试仪器示波器+电流探头

测试方法1,电源电流测试,将电流探头卡在被测试中电流通路上(更换后的导线上),通过示波器观察电源上电电流波形和上电后电流的平稳波形,测试时注意电流探头的方向;

输入电源

芯片的

电源管脚

粗短导线替代

电感或保险丝去除

电流测试方法示意图

如何正确评价电源产品的质量

如何正确评价电源产品的质量 电源设备的高质量是通信电源系统不间断、优质供电的基础和保障。虽然我们在不断完善检测标准和检测方法,实施通信电源设备的入网和选型制度,但是我们在使用和操作过程中难免会产生一些误解或被一些误导所困惑。为此,我们在综合分析、科学判定的基础上,总结了一些经验,在此与从事电源设备研究、生产、使用的同行商榷。 输出能力和效率是评价电源产品质量最重要的技术指标 所谓常规指标是指诸如精度、失真度、平衡度、转换时间、动态反应等,目前,很多电源产品都已经达到了该产品标准的较高指标,但过高指标未必就是实际使用所需要的。某一项性能指标的高低,不能成为判定产品品质优劣的标准。判定产品优劣最重要的指标是可靠性,提高可靠性是电源产品永恒的主题,离开可靠性谈先进性和可使用性都是毫无意义的。而可靠性指标一般都是根据可靠性设计和大量的统计数据进行综合评估的,短时间内难以检测校对,但是我们可以通过检测输出能力和效率来评定其可靠性。在同一规格的产品中,其输出能力强就意味着在正常使用的情况下不是满负荷运行,还有储备的能量,故障比较少;效率高则意味着温升低。符合这样要求的产品一般来说可以认为可靠性高。下面就结合具体设备予以评述。

(1)集中监控管理系统 当前的通信电源、机房空调的集中监控管理系统应进一步完善并投入运行,在建设该系统时应将重点放在直流系统,特别是在主蓄电池(基础电源系统的-48V)、发电机组的启动电池、UPS后备电池的智能化管理方面,对于可设可不设的三遥点,就一定不要设置,不要重复设置遥信点,但要加强告警点的设置,要把实用性放在第一位。 在设计和实施监控系统时,如果重复设置三遥点,势必造成工程造价高,系统复杂化,从而降低系统的可靠性。 (2)防雷问题 雷电易引起火灾、爆炸,特别是对电力、通信领域危害更严重。全面防雷应采取综合治理、整体防御、多重保护、层层设防的原则,特别是要严格控制雷击点,安全引导雷电流入地、完善低电阻地网、消除地面回路、电流浪涌保护、信号及数据线瞬变保护等是行之有效的防雷措施。

电源测试之可靠性测试(全)

电源测试之可靠性测试(全) 反复短路测试 测试说明:在各种输入和输出状态下将模块输出短路,模块应能实现保护或回缩,反复多次短路,故障排除后,模块应该能自动恢复正常运行。 测试方法 a、空载到短路:在输入电压全范围内,将模块从空载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块反复从空载到短路不断的工作,短路时间为1s,放开时间为1s,持续时间为2小时。这以后,短路放开,判断模块是否能够正常工作。 b、满载到短路:在输入电压全范围内,将模块从满载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块从满载到短路然后保持短路状态2小时。然后短路放开,判断模块是否能够正常工作。 c、短路开机:将模块的输出先短路,再上市电,再模块的输入电压范围内上电,模块应能实现正常的限流或回缩,短路故障排除后,模块应能恢复正常工作,重复上述试验10次后,让短路放开,判断模块是否能够正常工作。判定标准上述试验后,电源模块开机能正常工作;开机壳检查,电路板及其他部分无异常现象(如输入继电器在短路的过程中触电是否粘住了等),合格;否则不合格。 反复开关机测试 测试说明电源模块输出带最大负载情况下,输入电压分别为220v,(输入过压点-5v)和(输入欠压点+5v)条件下,输入反复开关,测试电源模块反复开关机的性能。 测试方法a、输入电压为220v,电源模块快带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作;b、输入电压为过压点-5v,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作;c、输入电压为欠压点-5v,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用ac source进行模拟),连续运行2小时,电源模块应能正常工作。

时钟信号质量测试用例5.6

1.目的 测量手机各时钟信号是否符合设计规范,以确保手机各项性能稳定可靠。 2.适用范围 适用于新开发手机产品在试产阶段的评测。 3.测试准备和说明: 3.1程控电源、数字示波器、频率计、原理图及PCB丝印图、原配耳机、SIM卡、TF卡、 烙铁、细导线若干、蓝牙耳机; 3.2测试结果如有必要需附测试波形图。 4.测试过程: 4.1 实时钟32.768KHz时钟测试(测试用例编号: 5. 6.1) 4.1.1测试条件: 被测机开壳,装SIM卡、TF卡开机。 4.1.2 测试步骤: 1)从原理图上找到32.768KHz晶体位置,频率计探头负极接地,正极接晶体XOUT 端,频率计(10M档位)读数即为晶体频率; 2)示波器采集模式设为取样,余辉时间设置为5秒; 3)通道耦合选取直流模式,档位设定为100mV,时间标度设置为10.0us; 4)按测量键选取测量频率,上升时间,下降时间,峰值电压,占空比等; 5)按测试说明要求,在摄像状态选取一个半周期的完整波形,按运行/停止键抓取波形,测量读取数据并按Save键保存波形。 4.1.3 预期结果: 测试项目参考值 电压峰值690-750mV 毛刺0 频偏±20ppm 抖动幅度0 占空比50% 4.2 主时钟26MHz时钟测试(测试用例编号: 5. 6.2) 4.2.1测试条件: 被测机开壳,被测机开壳,装SIM卡、TF卡开机。 4.2.2 测试步骤: 1)从原理图上找到26M晶体位置,频率计探头负极接地,正极接晶体XOUT端,频 率计(120M档位)读数为即晶体频率; 2)示波器采集模式设为取样,余辉时间设置为5秒; 3)通道耦合选取直流模式,档位设定为500mV,时间标度设置为400ns;

电源测试大全(二):可靠性测试

电源测试大全(二):可靠性测试- 全文 来源:互联网作者:秩名2014年03月04日 14:06 1 分享 [导读]以下将详解电源测试中的可靠性测试。 关键词:电源测试 1 反复短路测试 测试说明 在各种输入和输出状态下将模块输出短路,模块应能实现保护或回缩,反复多次短路,故障排除后,模块应该能自动恢复正常运行。 测试方法: A、空载到短路:在输入电压全范围内,将模块从空载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块反复从空载到短路不断的工作,短路时间为1s,放开时间为1s,持续时间为2小时。这以后,短路放开,判断模块是否能够正常工作。 B、满载到短路:在输入电压全范围内,将模块从满载到短路,模块应能正常实现输出限流或回缩,短路排除后,模块应能恢复正常工作。让模块从满载到短路然后保持短路状态2小时。然后短路放开,判断模块是否能够正常工作。 C、短路开机:将模块的输出先短路,再上市电,再模块的输入电压范围内上电,模块应能实现正常的限流或回缩,短路故障排除后,模块应能恢复正常工作,重复上述试验10次后,让短路放开,判断模块是否能够正常工作。 判定标准: 上述试验后,电源模块开机能正常工作;开机壳检查,电路板及其他部分无异常现象(如输入继电器在短路的过程中触电是否粘住了等),合格;否则不合格。 2反复开关机测试 测试说明: 电源模块输出带最大负载情况下,输入电压分别为220V,(输入过压点-5V)和(输入欠压点+5V)条件下,输入反复开关,测试电源模块反复开关机的性能。 测试方法:

A、输入电压为220V,电源模块快带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用AC SOURCE进行模拟),连续运行2小时,电源模块应能正常工作; B、输入电压为过压点-5V,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用AC SOURCE进行模拟),连续运行2小时,电源模块应能正常工作; C、输入电压为欠压点-5V,电源模块带最大负载,用接触器控制电压输入,合15s,断开5s(或者可以用AC SOURCE进行模拟),连续运行2小时,电源模块应能正常工作。 判断标准: 以上试验中,电源模块工作正常,试验后电源模块能正常工作,性能无明显变化,合格;否则不合格。 3 输入低压点循环测试 测试说明: 一次电源模块的输入欠压点保护的设置回差,往往发生以下情况:输入电压较低,接近一次电源模块欠压点关断,带载时欠压,断后,由于电源内阻原因,负载卸掉后电压将上升,可能造成一次电源模块处于在低压时反复开发的状态。 测试方法: 电源模块带满载运行,输入电压从(输入欠压点-3V)到(输入欠压点+3V)缓慢变化,时间设置为5~8分钟,反复循环运行,电源模块应能正常稳定工作,连续运行最少0.5小时,电源模块性能无明显变化。 判定标准: 一次电源模块正常连续运行,最少0.5小时后性能无明显变化,合格;否则不合格。 4 输入瞬态高压测试 测试说明: PFC电路采用平均值电路进行过欠压保护,因此在输入瞬态高压时,PFC电路可能会很快实现保护,从而造成损坏,测试一次电源模块在瞬态情况下的稳定运行能力以评估可靠性。 测试方法: A、额定电压输入,用双踪示波器测试输入电压波形合过压保护信号,输入电压从限功率点加5V跳变为300V,从示波器上读出过压保护前300V的周期数n,作为以下试验的依据。

电源质量及标准一致性测试方案

电源效率及标准一致性测试方案高精度功率分析仪 测试方案说明

系统背景 在全球节能环保的大环境下,电源产品如果仅仅实现功能的设计已经不能满足新形势市场的需求。高效率,高节能,智能化,微型化是电源行业未来的发展趋势。一个电源产品研发完成需要对该产品进行整体的评价是必要的。当产品要销售到不同国家或者地区,都有相关的行业或者区域的标准必须遵守,所以对于电源设计及测试的工程师来说必须要面对这个标准。 电源行业标准测试介绍: 泰克公司最新推出的高精度的功率分析仪PA3000完整了对电源产品测试的方案,为您提供了行业内通用的测试仪器来准确评价您的电源产品不管是单相的还是三相的电源装置。 PA3000/ PA1000功率分析仪高达0.04%的测试精度,1MHz带宽能准确评价包括高次谐波的信号成分。相比较其他品牌产品,泰克以其优秀的仪器性能及稳定性,高级的功率分析软件功能,为您在电源设计调试过程中,为提高电源效率的环节提供准确测试评价,真实了解您电源产品的效率状况并且能为您在实验室里进行电源标准的(预)一致性测试,保证一次性通过行业或者区域标准,节省您的时间与费用。 行业标准测试挑战: ? IEC62301 V2.0 待机功耗标准 ? IEC61000-3-2电流谐波标准 ? Energy Star 能源之星标准 ? 能效等级标准 ? SPECpower 服务器电源标准 ? MIL-1399航空电源标准 电源质量基础知识 1,电源测试 电源是把电能从一个电压和频率转换成另一个电压和频率的供电电子系统。一般来说,它们把交流线路(110/ 220V 50/60Hz) 转换成低压(12, 5, 3V) 直流,并提供安全隔离和控制功能。电源设计人员努力改善设计效率,同时在一个输入范围和负载条件上保持规定的性能,以满足国际安全和EMC 法规。 功率分析仪是用来进行下述测量的工具: 功率和效率 - 输出功率占输入功率的百分比 功率因数 - 确认功率因数校正电路的操作 待机功率 - 包括满足能源之星和IEC62310 Ed.2

硬件信号质量SI测试规范

目录 1引言 (4) 2适用范围 (4) 3信号质量测试概述 (4) 3.1信号完整性 (4) 3.2信号质量 (5) 4信号质量测试条件 (10) 4.1单板/系统工作条件: (10) 4.2信号质量测试人员要求: (10) 4.3示波器选择与使用要求: (10) 4.4探头选择与使用要求 (11) 4.5测试点的选择 (12) 5信号质量测试通用标准 (12) 5.1信号电平简述: (12) 5.2合格标准 (13) 5.3信号质量测试结果分析注意事项 (15) 6信号质量测试方法 (17) 6.1电源信号质量测试 (17) 6.1.1简述 (17) 6.1.2测试项目 (17) 6.1.3测试方法 (17) 6.2时钟信号质量测试 (24) 6.2.1简述 (24) 6.2.2测试方法 (24) 6.2.3测试指标与合格标准 (24) 6.2.4注意事项 (26) 6.3复位信号质量测试 (27) 6.3.1简述 (27) 6.3.2测试方法 (27) 6.3.3测试项目与合格标准 (27) 6.3.4注意事项 (29) 6.3.5测试示例 (29) 6.4数据、地址信号质量测试 (31) 6.4.1简述 (31)

6.4.2测试方法 (31) 6.4.3测试项目 (32) 6.4.4测试示例: (32) 6.5差分信号质量测试 (34) 6.5.1简述 (34) 6.5.2测试项目 (34) 6.5.3测试方法 (34) 6.5.4合格标准 (36) 6.5.5注意事项 (40) 6.5.6测试示例 (40) 6.6串行信号质量测试 (41) 6.6.1概述 (41) 6.6.2测试项目 (42) 6.6.3测试方法 (43) 6.6.4合格标准 (44) 7信号质量测试CHECKLIST (47) 8测试系统接地说明 (49) 9引用标准和参考资料................................. 错误!未定义书签。

航空机载设备电源质量测试方法

航空机载设备电源质量测试方法MIL-STD-704标准用于考察航空电子设备与军用飞机供电设备之间的兼容性。它定义了军用飞机上电子设备电源输入端口上的特性要求。军用飞机上的供电系统必须按照MIL-STD-704标准的要求为电子设备供电,同时军用飞机上的电子设备在规定的电源质量条件下必须能够正常工作。 美军标704测试指南分为8个部分,第一部分是关于兼容性测试,电源分类,军用飞机电气工作条件及电子设备规格的一般性指导。第2-8部分为对应各类供电类型的电子设备所进行的兼容性测试指南。机载电子设备电源主要分为以下几类: 单相/三相交流,400Hz,115V 单相/三相变频交流,115V 单相交流,60Hz,115V 直流,28V/270V MIL-STD-704详细说明了六种电气工作状态: 1、正常工作状态 2、电源中断(转换)状态 3、非正常供电状态 4、应急供电状态 5、启动状态 6、电源故障状态 以下详细介绍这六种状态: 正常工作状态:在正常负载条件下,军用飞机电气系统中各项功能均可正常实现。军用飞机电气负载可以为电阻性,电感性,轻微容性,非线性,开关性质的以及脉冲性质的。发动机的冲击电流和电源的冲击电流都是在正常的负载条件下的。在正常工作状态下,所有电子设备必须能在性能和功能两个方面满足要求。 电源中断(转换)状态:当电气负载在供电电源之间转换时,就会发生电源中断。对于交流系统,转

换可以发生在外接地面电源、外接辅助电源,接入多功能军用飞机交流发电机或变换器;对于直流系统,转换可以发生在外接地面电源,外接辅助电源,外接多功能军用飞机直流发电机,直流变换器或变压整流器之间,在上述状态下军用飞机电气系统应当能正常运行。 非正常供电状态:当军用飞机电气系统中发生故障时,即进入非正常供电状态。非正常供电状态可能在保护装置动作消除故障之前的短暂时间内持续存在,也可能持续一段更长时间。非正常供电状态会有过压,欠压,过频及欠频状态。 能够导致非正常供电状态的故障有: ●发电机控制单元故障 ●发电机故障,绕组损坏,失磁等 ●线路以及电流接触器故障 ●电气过载 ●短路 应急供电状态:应急供电状态是指主供电电源失效并且军用飞机电气系统在有限容量的备用电源供电时的一种工作状态。备用电源可以是电池,低压空气驱动的发电机,也可能是燃料电池。 启动状态:是指当电池启动辅助电源时,或当推进发动机的电气系统启动时的状态。对于大部分军用飞机而言,启动状态只发生在采用直流供电的系统中。 电源故障状态:当电子设备电源中断大于50ms而小于7s时的工作状态。 以下列举section2和section8的测试规范:

电源适配器重要参数性能指标和测试方法

电源适配器重要参数性能指标和测试方法 现实生活中,被烧坏的电器,电子设备不在少数。那么电子设备是在什么情况下才会被烧毁呢?电源适配器是电子设备烧毁的主要问题部件之一。电源适配器质量的好坏,直接影响到电子产品的使用寿命。而所有电子设备中,最容易被忽略的部件,也 往往是电源适配器。所以,深圳森树强呼吁大家引起对电源适配器的重视。 下面我们就来谈谈电源适配器中几个重要参数的性能指标及测试方法: 直流电源的技术指标分为两种: 一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等。 一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(周围与随机漂移)及温度系数。 稳压电源性能指标测试电路 (1) 纹波电压:叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫 伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差,一般直流电源的纹波电压VP-P&le10mV。 (2 电源适配器稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即: (3) 电源适配器电压调整率:输入电压相对变化为±10%时的输出电压相对变化量, 稳压系数和电压调整率均说明输入电压变化对输出电压的影响,因此只需测试其中之 一即可。 (4)电源适配器输出电阻及电流调整率 电源适配器输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压 变化量与输出电流变化量之比的绝对值.电流调整率:输出电流从0变到最大值时所产生的输出电压相对变化值。输出电阻和电流调整率均说明负载电流变化对输出电压的 影响。

HD-SDI信号质量标准与测试诊断方法

1. SDI信号质量标准与测试诊断方法 2014-10-16 15:12:18编辑:烦高来源:数字音视工程网 在高速SDI信号的传输和转换过程中,由于硬件设备的性能及安装水平的不同,导致SDI信号质量下降,造成高清视频信号接收错误。通常需要对SDI信号进行测试,并根... 在高速SDI信号的传输和转换过程中,由于硬件设备的性能及安装水平的不同,导致SDI信号质量下降,造成高清视频信号接收错误。通常需要对SDI信号进行测试,并根据测试结果判断可能出现问题的原因,从而保证高清系统中每条链路的性能。 在SDI信号出现之前,高清视频信号采用模拟信号进行传输。模拟信号在传输和转换过程中非常容易出现质量下降,通常采用高速示波器进行波形采样测试。通常需要测试的指标有色条幅度、同步振幅和时间、噪声、频率响应、多波群、非线性度、通道延时、瞬时特性等。 图1 模拟视频信号测试波形 而SDI信号采用模数转换和高速串行编码技术,使用一根同轴电缆即可传输所有数字视频及音频信息。

图2 SDI信号生成原理简图 由于SDI为数字信号,信号的生成原理和特性不同于模拟视频信号,因此SDI信号测试内容的关注点和模拟视频信号测试基本不同。如下所示为SDI信号的几个关键特性:电平幅度、抖动、上升/下降时间、单元间隔(周期)。 图3 SDI数字信号特性 按照SMPTE 259M、SMPTE 292M、SMPTE424M的规定,SD-SDI、HD-SDI、3G-SDI 信号质量标准(包含幅度、过冲、上升/下降时间、抖动时间、抖动排列等)各不相同。而且,HD-SDI和3G-SDI高速信号对上升/下降时间的要求达到了几十到几百ps量级。

开关电源测试规范

开关电源测试规范 By ZGQ 一、概述 本文主要阐述了开关电源必须通过一系列的测试,使其符合所有功能规格、保护特性、安规(如UL、CSA、VDE、DEMKO、SEMKO,长城等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他特定要求等。 测试开关电源是否通过设计指标,需要各种精密的电子设备去模拟电源在各种环境下实际工作中的性能。下面是开关电源一些测试项目: 1.功能(Functions)测试: ·电压调整率测试(Line Regulation Test) ·负载调整率测试(Load Regulation Test) ·输出纹波及噪声测试(Output Ripple & Noise Test) ·功率因数和效率测试(Power Faction & Efficiency Test) ·能效测试(Energy Efficiency Test) ·上升时间测试(Rise Time Test) ·下降时间测试(Fall Time Test) ·开机延迟时间测试(Turn On Delay Time Test) ·关机保持时间测试(Hold Up Time Test) ·输出过冲幅度测试(Output Overshoot Test) ·输出暂态响应测试(Output Transient Response Test) 2.保护动作(Protections)测试: ·过电压保护(OVP, Over Voltage Protection) ·短路保护(Short Circuit Protection) ·过电流保护(OCP, Over Current Protection) 3.安全(Safety)规格测试: ·输入电流、漏电电流等 ·耐压绝缘: 电源输入对地,电源输出对地;电路板线路须有安全间距。 ·温度抗燃:零组件需具备抗燃之安全规格,工作温度须於安全规格内。 ·机壳接地:需於0.1欧姆以下,以避免漏电触电之危险。 ·变压输出特性:开路、短路及最大伏安(VA)输出 ·异常测试:散热风扇停转、电压选择开关设定错误 4.电磁兼容(Electromagnetic Compliance)测试: 5.可靠性(Reliability)测试: 6.其他测试: 二、电气特性(Electrical Specifications)测试

电源测试和老化规范

NO. LED电源测试和老化规范 ( 共 13页 ) 编制: 校对: 审核: 标审: 批准: 目录

1.目的 (3) 2.适用范围 (3) 3.产线测试规范 (3) 3.1测试设备 (3) 3.2测试项目 (3) 3.3测试方法 (4) 3.4测试合格标准 (5) 3.5高温测试使用范围 (5) 4研发测试规范 (6) 4.1测试设备 (6) 4.2测试项目 (7) 4.3测试方法 (8) 4.4测试合格标准 (8) 4.5安全和电磁兼容 (9) 5电源老化规范 (10) 5.1测试设备 (10) 5.2常温老化 (10) 5.3高温老化 (11) 5.4高温老化使用范围 (12) 5.5老化合格标准 (12) 6电气检测常规注意事项 (12) 7电气检测流程示意图及说明 (13) LED电源测试和老化规范 1.目的

为LED灯具及相关产品配套的开关电源,驱动部分在产品开发与生产过程中,为产品质量得到保障而制定此文件 2适用范围 本文件适用于LED灯具及灯具相关产品配套的开关电源驱动部分,包括内置电源和外置电源以及相对可独立的成品电源板子或模块.本电源驱动仅作为一般民用或一般商用,并特指AC-DC类型。DC-DC和其他特殊用途如军用、航天等除外。 3. 产线测试规范 3.1测试设备 交流隔离电源(AC power) 、功率计、数字万用表、夹具、负载。其中负载可以是实际负载也可以是相同能力的假负载,假负载必需包含可见的LED部分(为防止灯光频闪)。 3. 2 测试项目 3. 2. 1输入数据 单电压电源输入的在AC 220V 或110V 时,检测带载和空载的输入PFC、有功功率。全电压的需同时测AC 220V 和110V输入时的PFC、有功功率。 3. 2. 2输出数据 稳压型测试满负载DC电压值或空载电压DC,恒流型测试满负载DC电流值。(适当调节输入电压,输出电流应在标准内浮动)。 3. 2. 3 常温下客观评价项目 3. 2. 3.1 主要测温点手感温升(注1) 主要测温点:芯片、mos管、变压器、输出二极管、滤波电容等。

开关电源的测试步骤

开关电源的测试步骤 良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。 开关电源包括下列之型式: AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) · DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) · DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源· AC-AC:如交流电源变压器、变频器、UPS不间断电源开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: 一、功能(Functions)测试: 输出电压调整(Hold-on Voltage Adjust) 电源调整率(Line Regulation) 负载调整率(Load Regulation) 综合调整率(Conmine Regulation) 输出涟波及杂讯(Output Ripple & Noise, RARD) 输入功率及效率(Input Power, Efficiency) 动态负载或暂态负载(Dynamic or Transient Response) 电源良好/失效(Power Good/Fail)时间 起动(Set-Up)及保持(Hold-Up)时间

UPS电源的测试方法

不间断电源测试的方法 测试UPS的主要目的是鉴定UPS的实际技术指标能否满足使用要求。 UPS的测试一般包括动态测试和稳态测试两类。 稳态测试是在空载、50%额定负载以及100%额定负载条件下,测试输入、输出端的各相电压、线电压、空载损耗、功率因数、效率、输出电压波形、失真度及输出电压的频率等。动态测试一般是在负载突变(一般选择负载由0%—100%和由100%-0%)时,测试UPS输出电压波形的变化,以检验UPS的动态特性和能量反馈通路。 工具/原料电源扰动分析仪、存储示波器、调压器、失真度测量仪、负载、万用表步骤/方法 (一)动态测试; 突加或突减负载的测试先用“电源扰动分析仪”测量空载、稳态时的相电压与频率,然后突加负载由0%至100%或突减负载由100%至0%,若UPS输出瞬变电压在-8%-+10%之间(可依具体机型的该项指标而定),且在20ms内恢复到稳态,则此UPS该项指标合格;若UPS 输出瞬变电压超出此范围时,就会产生较大的浪涌电流,无论对负载还是对UPS本身都是极为不利的,则该种UPS就不宜选用。;转换特性测试此项主要测试由逆变器供电转换到 市电供电或由市电供电转换到逆变器供电时的转换特性。测试时需有存储示波器和能模拟市电变化的调压器。转换试验要在100%负载下进行,特别是由市电转换到UPS上时,相当 于UPS的逆变器突然加载,输出波形可能在1~2周期内有±10%的变化。切换时间就是负载的断电时间。此项测试是检测转换时供电有无断点,如有断点,且断点超过20ms就会造成信号丢失。在线式UPS一般不会有断点,但其波形幅值会有瞬时变化,要求在半周期内消失。另外,因为UPS在市电正常时,逆变器工作频率是跟踪市电频率的,一旦市电中断,

电机控制器可靠性测试流程

电机控制器可靠性测试 文件编号______________________________________ 版次______________________________________ 受控编号______________________________________ 编制________________ _____年____月____日审核________________ _____年____月____日审定________________ _____年____月____日批准________________ _____年____月____日 年月日发布年月日实施

目录 目录 (1) 1 简介 (2) 2 系统组成 (2) 2.1 试验电源 (2) 2.2电力测功机系统 (2) 2.3机械台架系统 (2) 2.4电机参数测量采集系统 (2) 3 实验准备 (2) 3.1 仪器准确度 (2) 3.2 测量要求 (2) 3.3 试验电源 (3) 3.4 布线 (3) 3.5 冷却装置 (3) 4 试验项目 (3) 5 盐雾试验 (3) 5.1 试验目的 (3) 5.2 适用范围 (3) 5.3 操作设备 (3) 5.4 操作程序 (4) 5.4.1准备工作 (4) 5.4.2操作步骤 (4) 5.4.3注意事项 (4) 5.5结果记录 (4) 5.6试验报告 (5) 6 温升试验 (5) 6.1 试验目的 (5) 6.2 适用范围 (5) 6.3 试验设备 (5) 6.4 操作程序 (5) 6.5 注意事项 (6) 6.6 试验报告 (6) 7 振动试验 (6) 7.1试验目的 (6) 7.2适用范围 (6) 7.3试验设备 (6) 7.4试验程序 (6) 7.5 试验报告 (6) 8 老化试验 (7) 8.1试验目的 (7) 8.2适用范围 (7) 8.3试验设备 (7) 8.4试验程序 (7) 8.5试验报告 (7)

开关电源测试规范

开关电源测试规范 (2007-12-22 17:15) 分类:电源技术类文章 开关电源测试规范 一、安全标准检查工作指导 5 1、高压测试 5 2、低输入电压产品使用1800VAC作高压测试 5 3、绝缘测试 5 4、漏电流测试 5 5、接地测试 5 6、输入电流测试 5 7、输入端的剩余电压 5 8、各输出端的最大VA 5 9、异常操作测试 6 9.2、特低输入电压测试 6 9.3、特高电压测试 6 9.4、过载测试 6 9.5、长时间的过压保护测试 6 9.6、适配器内可熔断电阻的安全测试 7 10、异常处理测试 7 10.1、严格的跌落测试(对于AC适配器) 7 10.2、严格的震动测试(对于AC适配器) 7 11、可见的潜在安全问题检查 7 11.1、输贴片电容的检查 7 11.2、AC输入线的检查 7 11.3、DC输出线的检查 7 11.4、热组件 8 12、可燃性检查 8 13、各种检查 8 13.1、组件检查 8 13.2、标贴检查 8 13.3、空间及爬电距离 8 二、环境条件测试 8 1、高温测试 8 2、低温操作测试 8 3、高湿操作测试 8 4、高低温储存循环测试 8 5、高湿储存测试 8 6、振动测试 9 6.1、非工作状态测试 9 6.2 工作状态振动测试 9 7、跌落测试 9 三、静态工作特性测试 9 1、输出电压与电流调整范围 (需在高、低、常温下进行测试) 9 2、效率测试 (高、低、常温三种条件下进行) 10

3、起机输入电压测试 (高、低、常温三种条件下进行) 10 4、输入电压临界电测试(高、低、常温三种条件下进行) 10 5、输出电压电流特性曲线测试 (高,低,常温三种条件下进行) 10 6、输出共模噪音电压测试 (在规格中有要求才做) 10 7、可听噪音测试 10 四、动态性能测试 10 1、浪涌电流测试 10 1.1、室温冷起机 10 1.2、室温热起机 11 2、开关机时输出电压过冲与欠冲测试 11 3、开机延时及输及电压间跟从测试 11 4、开机维持时间 12 5、阶跃负载响应测试 (此测试项须进行低温、常温、高温三种条件的测试) 12 6、POWER GOOD /FAIL TEST 12 五、开短路测试 12 1、测试范围 12 2、测试标准 13 3、测试方法(TEST METHOD) 13 3.1、开短路测试(Open short method) 14 3.2、在测试过程中和测试后要观察的项目(Utems to observe doing or after open short) 14 六、可靠性测试 15 1、电解电容寿命的检测 15 2、RUBYCON公司的电容寿命计算公式 16 3、温升测试 16 3.1、外壳温升 16 3.2、零件温升 16 3.3、火牛温升 17 3.4、电容温升测试 17 3.5、高温开关机测试 17 3.6、MTBF(平均无故障时间计算) 17 3.7、组件失效率的计算 17 七、组件使用率测试工作指导 18 1、测试范围 18 2、测试条件 18 3、用率要求 18 4、测试方法 18 4.1、电阻 19 4.2、电解电容使用率测试 19 4.3、电容 20 4.4、陶瓷电容 20 4.5、晶体三极管和场效应管 20 4.6、二极管 20 4.7、稳压二极管 20

充电器可靠性测试标准

文件名称充电器可靠性抽样计划 页码共4页/第1页生效日期2010-06-27 1.0目的 规范充电器可靠性测试方法和抽样计划,确保充电器可靠性测试的准确性与规范化。 2.0适用范围 适用于公司所有生产充电器的可靠性测试检验。 3.0定义 无。 4.0测试内容 4.1可靠性测试时机 4.1.1 试制的新产品(包括老产品的转厂)。 4.1.2 产品的结构、工艺材料等变更足以影响主要性能时。 4.1.3 批量生产的产品当间隔时间超过一年,又重新投入生产时。 4.1.4 出厂前检验结果与上一次试验有较大差异时。 4.1.5 批量生产的产品每半年进行一次。 4.1.6 连续生产中每半年不少于一次。 4.1.7 国家质量监督抽查机构对产品质量进行抽查时。 4.2具体检测内容如下表 序号检验 项目 标准要求 抽样 方案 检验方法 使用设备 仪器 1 额定输出 电压 标称输出电压值±0.3V 每次 20pcs 用仪器测试。 电子负载 仪 2 额定输出 电流 标称输出电流值±50mA 每次 20pcs 用仪器测试。 电子负载 仪 3 短路电流 值 ≤150mA 每次 20pcs 用仪器测试。 电子负载 仪 4 无负载能 量消耗 开路状态下功率消耗< 30mW 每次 20pcs 用仪器测试。功率计 5 插入力及 拔出力 插拔速率<12.5mm/min, 完全插入<35N,完全拔 出。 每次 20pcs 把充电器安装在插拔仪上测 试。 插拔测试 仪 6 对地泄露 电流 ≤0.25mA 每次 20pcs 用仪器测试。 泄露测试 仪

文件名称充电器可靠性抽样计划 页码共4页/第2页生效日期2010-06-27 序号检验 项目 标准要求 抽样 方案 检验方法 使用设备 仪器 7 对地泄露电 压 ≤50V 每次 20pcs 用仪器测试。 泄露测试 仪 8 工作温度试 验 没有出现异常 每次 5pcs 充电器分别在0℃及+45℃运行, (充电工作状态下)2 h后,在保持 该温度下,测量其输出电压值及电 流值。 高低温测 试仪 9 高温试验没有出现异常每次 3pcs 充电器在(65±2)℃的环境下贮存 8h。试验完毕,在常温下恢复2h 后,按照1~7项目进行检验。 高低温测 试仪 10 低温试验没有出现异常每次 3pcs 充电器在(-20±2)℃的环境下贮 存8h。试验完毕,在常温下恢复2h 后,按照1~7项目进行检查。 高低温测 试仪 11 恒定湿热 试验 没有出现异常 每次 3pcs 充电器在(40±2)℃,湿度为95% 的环境下贮存48h。试验完毕在常 温下恢复2h后,按照1~7项目进行 检查。 高低温测 试仪 12 温度冲击 试验 没有出现异常 每次 3pcs 将充电器放进温度冲击箱进行试 验,试验条件为: 高温点:+70℃,低温点:-30℃, 每个温度点保持30min,温度转换 在5min 内完成,共循环6次。试 验后按照1~7项目进行检查。 高低温测 试仪 13 振动试验没有出现异常每次 3pcs 振动的频率范围为:10Hz~55Hz,振 幅为0.35MM,每个方向上扫频循 环次数为10次。试验完毕按照1~7 项目进行检查。 摇摆测试 仪 14 自由跌落 试验 没有出现异常 每次 3pcs 试验高度为1m(座充为0.5m) ,试 验台面厚度为20mm 的硬木板。6 个方向各跌落一次,试验完毕按照 1~7项目进行检查。 跌落试验 机 15 工作表面 温度 外壳表面温度应<40℃。 每次 5pcs 在25±2℃的温度下,充电器额定 工作2h 后,测量其外壳表面温度。 温度计 16 输出短路 试验 没有出现异常 每次 3pcs 充电器A C 端合上电源后,对输出 端V+与V-短路30min。试验后检查 外观结构、充电功能、短路电流。 试验完毕按照1~7项目进行检查。 电子负载 仪

开关电源测试标准

开关电源的测试 良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。 开关电源包括下列之型式: ·AC-DC:如个人用、家用、办公室用、工业用(电脑、周边、传真机、充电器) ·DC-DC:如可携带式产品(移动电话、笔计本电脑、摄影机,通信交换机二次电源) ·DC-AC:如车用转换器(12V~115/230V) 、通信交换机振铃信号电源 ·AC-AC:如交流电源变压器、变频器、UPS不间断电源 开关电源的设计、制造及品质管理等测试需要精密的电子仪器设备来模拟电源供应器实际工作时之各项特性(亦即为各项规格),并验证能否通过。开关电源有许多不同的组成结构(单输出、多输出、及正负极性等)和输出电压、电流、功率之组合,因此需要具弹性多样化的测试仪器才能符合众多不同规格之需求。 电气性能(Electrical Specifications)测试 当验证电源供应器的品质时,下列为一般的功能性测试项目,详细说明如下: 一、功能(Functions)测试: ·输出电压调整(Hold-on Voltage Adjust) ·电源调整率(Line Regulation) ·负载调整率(Load Regulation) ·综合调整率(Conmine Regulation) ·输出涟波及杂讯(Output Ripple & Noise, RARD) ·输入功率及效率(Input Power, Efficiency) ·动态负载或暂态负载(Dynamic or Transient Response) ·电源良好/失效(Power Good/Fail)时间 ·起动(Set-Up)及保持(Hold-Up)时间 常规功能(Functions)测试 A. 输出电压调整: 当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac), 并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。 B. 电源调整率: 电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验

最新LED灯可靠性测试

L E D灯可靠性测试

1,高温高压及其冲击测试: 针对对象:LED灯具(含LED Driver的成品灯具) 参照标准:行业经验 测试方法:1,将5款LED灯具放置在一个室温为60℃的房间; 2,通过调压器将LED灯具的输入电压调为最大额定输入电压的1.1倍; 3,接通电源,点灯24H,并观察灯具是否有损坏、材料受热变形等异常现象; 4,点灯测试后,通过继电器控制灯具在此环境下进行冲击测试,测试设置为:点灯20s、熄灯20s,循环100次。 测试要求:A,灯具在经过高温高压测试后,不能发生表面脱漆、变色、开裂、材料变形等异常现象; B,灯具在经过冲击测试后,不能发生漏电、点灯不亮等电气异常现象。 2,低温低压及其冲击测试: 针对对象:LED灯具(含LED Driver的成品灯具) 参照标准:行业经验 测试方法:1,将5款LED灯具放置在一个-15℃的环境下; 2,通过调压器将LED灯具的输入电压调为最小额定输入电压的0.9倍; 3,接通电源,点灯24H,并观察灯具是否有损坏、材料受热变形等异常现象; 4,点灯测试后,通过继电器控制灯具在此环境下进行冲击测试,测试设置为:点灯20s、熄灯20s,循环100次。 测试要求:A,灯具在经过低温低压测试后,不能发生表面脱漆、变色、开裂、材料变形等异常现象; B,灯具在经过冲击测试后,不能发生漏电、点灯不亮等电气异常现象。 3,常温常压冲击测试: 针对对象:LED灯具(含LED Driver的成品灯具) 参照标准:行业经验

测试方法:1,将5款LED灯具放置在一个室温为25℃的环境下; 2,按LED灯具的额定输入电压接通电源点灯; 3,通过继电器控制灯具在常温常压下进行冲击测试,测试设置为:点灯30s、熄灯30s,循环10000次。 测试要求:灯具在经过常温常压冲击测试后,不能发生漏电、点灯不亮等电气异常现象。 4,温度循环测试: 针对对象:LED灯具(含LED Driver的成品灯具) 参照标准:行业经验 测试方法:1,将5款LED灯具放置在一个测试箱,测试箱的温度可以调节温度变化速率; 2,按LED灯具的额定输入电压接通电源点灯; 3,测试箱的温度变化范围设置为从-10℃到50℃,温变速率为:大于1℃/min,但小于5℃/min; 4,测试箱在高温和低温各保持0.5H,循环8次。 测试要求:灯具在经过温度循环测试后,不能发生漏电、点灯不亮等电气异常现象。 5,恒定湿热测试: 针对对象:LED灯具(含LED Driver的成品灯具) 参照标准:行业经验 测试方法:1,将5款LED灯具放置在一个恒温恒湿箱,恒温恒湿箱的设置为相对湿度95%,温度为45℃; 2,按LED灯具的额定输入电压接通电源点灯48H; 3,将样品取出后擦干表面水珠,放在正常大气压和常温下恢复2H后进行检查。 测试要求:1,外观无锈蚀、裂痕或其它机械损伤; 2,灯具不能发生漏电、点灯不亮等电气异常现象。 6,振动测试:

开关电源芯片通用测试要求和步骤-antonychen

开关电源芯片通用测试要求和步骤 By Antony Chen 开关电源必须通过一系列的测试,使其符合所有功能规格、保护特性、安规(如UL、CSA、VDE、DEMKO、SEMKO,长城等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容(如FCC、CE等之传导与幅射干扰)、可靠性(如老化寿命测试)、及其他特定要求等。 测试开关电源是否通过设计指标,需要各种精密的电子设备去模拟电源在各种环境下实际工作中的性能。 一、理论上的DCDC测试指标清单 1.描述输入电压影响输出电压的几个指标形式(line) 1.1绝对稳压系数:K=△Uo/△Ui 1.2相对稳压系数:S=△Uo/Uo / △Ui/Ui 1.3电网调整率(也称线性调整率): 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有 时也以绝对值表示。 line reg=△Uo/Uo*100%@ -10%

相关文档
最新文档