确定有限自动机的化简

合集下载

编译原理(2)词法_2(NFA、DFA的确定化和化简)

编译原理(2)词法_2(NFA、DFA的确定化和化简)
西北农林科技大学本科教程
第 3 讲
主讲教师:赵建邦
本讲目标

第二章《词法分析》2.3-2.5节

2.3 2.4 2.5
正规表达式与有限自动机简介 正规表达式到优先自动机的构造 词法分析器的自动生成

重点掌握

有限自动机理论 有限自动机的构造、确定化和化简
第二章 词法分析
2.1 2.2
• DFA是一个五元组,Md= (S, ∑, f, s0 , Z) ,其中: (1) S是一个有限状态集合,它的每个元素称为一个状态 (2) ∑是一个有穷字母表,它的每个元素称为一个输入字符 (3) f是一个从S×∑至S的单值映射,也叫状态转移函数 (4) s0∈S 是唯一的初态 (5) Z S 是一个终态集
J中的每一个状态经过任意条 ε通路得到ε_CLOSURE(J) =
4
Ia= {5,6,2,3,8,4,7}
2.4

正规表达式到有限自动机的构造
2.4.2:NFA的确定化(子集法)
(1) 构造一张转换表,第一列记为状态子集I,对于不同的符号
(a∈Σ),在表中单设一列Ia ; (2) 表的首行首列置为ε_CLOSURE(s0),其中s0为初始状态; (3) 根据首行首列的I,为每个a求其Ia 并记入对应的Ia 列中, 如果此Ia 不同于第一列中已存在的所有状态子集I,则将其
si
r1 r2 r1 *
sj sj
si
si
sj
si
2.4
正规表达式到有限自动机的构造
例2.6 对给定正规表达式 b*(d|ad)(b|ab)+ 构造其NFA M [解答] 先用R+=RR*改造正规表达式 b*(d|ad)(b|ab)+ = b*(d|ad)(b|ab)(b|ab)* 按照正规式从左到右构造NFA: b X ε 1 ε 2 a 3

有限自动机的一种化简方法

有限自动机的一种化简方法

技改援i 习

1 2 也 不宜合并 们这时 可 以看 到 , 和 , 非终态组 的
情 况 正 好 与 终 态 组 的 睛 对 应 且 相 反 ,因 此 可 以 让
表 3
状 态 1 2合并 , 态 6和 7合并 , 和 状 并重新 分别命 名 为状 态 1 6 由此得 出新 的转 换矩阵表 ( 5 . 和 , 表 ) 其

2 . 观察 表 2 出发状 志 3 4的到达状 态均 同样 )再 . 和
为 3 4 因 此 这 两 个 状 态 可 以 台 掉 . 重 命 名 为状 和 , 并 态 3 重 新 填写 转 换 矩 阵 表 ( 3 如 下 从 表 3n 表 ) r 知 . 到达状态均不 相 同 . 各 因 此 这 就 是 最 后 化简 的 结 果 根 据 表 3可 以 面 出 简
有 限 自动 机 在 构 造 时 往 往 运 用 转 换 矩 阵 来 消 除 标 记 为 e 夺 字 的 弧 ( 然 未 化 简 的 有 限 自动 机 也 能 的 当
例 如 : 简 化 的 有 限 自动 机 【 I 和 其 柑 斑 的 未 图 ) 转换矩 阵 ( 1i 表 } 在 转 换 矩 阵 表 中 s 为 出 发 状 态 ,a栏 为 经 a 栏 弧 后 到 达 的状 态 , 为 经 b弧 后 到达 的 状 态 b栏 化 简 过 程 如 F:首先 把 出 发 状 态 分 为 两 组 终 态组 { 4 5 6 , 终 态组 f, ,} 3 , , }非 0 I2 . 后 再 观 察 表 .然 1 出 发 状 态 3的两 个 到 达 状 态 为 3和 4 而 发 状 态 6的两 个 到 达 状 态 也 同 样 为 3和 4 因 此 状 忐 3 . 和 6可 以合 并 , 新 命 名 为 状 态 3 再看 出发 状 态 4和 重 一 5的 两 个 到 达 状 态 均 为 6和 5 因 此 状 态 4 5 可 , 和 也 以台 并 . 命名 为状 态 4 重新 填 重 q转 换 矩 阵 丧 { 表

第二章确定有限自动机

第二章确定有限自动机

a
{x,5,1} 1 {5,1,3} 2 {5,1,4} 3 {5,1,3,2,6,y} 4* {5,1,4,2,6,y} 5 * {5,1,4, 6,y} 6 * {5,1,3, 6,y} 7 *
{5,1,3} 2 {5,1,3,2,6,y}4 *
{5,1,3}2 {5,1,3,2,6,y}4
{5,1,3, 6,y} 7 * {5,1,3, 6,y} 7 * {5,1,3,2,6,y} 4 *
1
a
2b
3
c
4
d
b
c
5
6
7
a 1
2b
3c
4
d
b
c
5
6
7
a 1
2b
3c
4
d
b
c
5
6
7
a 1
2b
3c
4
d
b
c
5
6
7
a 1
2b
3c
4
d
b
c
5
6
7
1
a
2
b 3
c
4
b
c
d
5
6
7
1
a
2
b 3
c
4
d
❖ 等价状态
定义1 设DFA M 的两个状态q1和q2 , 如果对任意输 入的符号串x,从q1和q2出发,总是同时到达接 受状态或拒绝状态中,则称q1和q2是等价的.如 果q1和q2不等价,则称q1和q2是可区分的.
ε
5
6
a
ε
b
ε
1
2
b
ε
a
3
8

有穷自动机的化简与确定化

有穷自动机的化简与确定化

1.2课题意义
编译程序的这些过程的执行先后就构成了编译程序的逻辑结构。有 穷自动机(也称有限自动机)作为一种识别装置,它能准确地识别正规 集,即识别正规文法所定义的语言和正规式所表示的集合,引入有穷自 动机这个理论,正是为词法分析程序的自动构造寻找特殊的方法和工 具。正规表达式与自动机理论在词法构造乃至整个编译器构造过程中起 着至关重要的作用,同时它们被广泛应用于计算机科学的各个领域,它 们与计算机其它学科之间也有着很大的联系。

1课题综述
1.1课题来源 1.2课题意义 1.3预期的目标 1.4面对的问题 1.5需解决的关键技术

2 系统分析
2.1涉及的知识基础 2.2总体方案 2.3解决问题的基本思路 2.4功能模块图
3 系统设计
3.1实现原理 3.2实现方法 3.3详细流程图
4代码编写
4.1 NFA到DFA的转化
5 程序调试
2.2总体方案
(1)如果读入正规式,则先将其转换为NFA,再将此NFA转换为DFA 并最小化,输入测试字符串,输出测试结果。 (2)如果读入NFA,则将其转化为DFA并最小化,输入测试字符串, 输出测试结果。 (3如果读入DFA,则直接将其最小化,输入测试字符串,输出测试结 果。
2.3解决问题的基本思路
11课题来12课题意13预期的目14面对的问15需解决的关键技21涉及的知识基22总体方23解决问题的基本思24功能模块31实现原32实现方33详细流程41nfa到dfa51调试步52发现的问53解决的方13参考文14编译原理课程设计报告课题综述11课题来源由于很多计算机系统都配有多个高级语言的编译程序对有些高级语言甚至配置了几个不同性能的编译程序
(1)按照设计的要求和内容先画出流程图,通过使用switch语句来完 成,对于头文件通过上网找了相应的资料正确地添加了程序中所需的头 文件: 用 .h 的头文件,就不用 using namespace std; 用 没有 .h 的头文件,就 必须 用 using namespace std。 conio.h是字符屏幕操作头文件。 (2)通过type(char re)函数实现:如果遇到操作符:|和*,则return OP;遇到操作数则return OP_D;其他则return -1。 (3)NFA构造算法

有限状态自动机的确定化

有限状态自动机的确定化

有限状态自动机的确定化姓名:翟彦清学号:E10914127一、实验目的设计并实现将 NFA确定化为DFA的子集构造算法,从而更好地理解有限自动机之间的等价性,掌握词法分析器自动产生器的构造技术。

该算法也是构造LR分析器的基础。

输入:非确定有限(穷)状态自动机。

输出:确定化的有限(穷)状态自动机二、实验原理一个确定的有限自动机(DFA M可以定义为一个五元组,M k( K,E, F, S, Z),其中:(1)K是一个有穷非空集,集合中的每个元素称为一个状态;(2)刀是一个有穷字母表,刀中的每个元素称为一个输入符号;(3)F是一个从K XE^ K的单值转换函数,即 F (R, a)= Q ( R, Q€ K)表示当前状态为R,如果输入字符 a,则转到状态 Q,状态Q称为状态R的后继状态;(4)S€ K,是惟一的初态;(5)Z K,是一个终态集。

由定义可见,确定有限自动机只有惟一的一个初态,但可以有多个终态,每个状态对字母表中的任一输入符号,最多只有一个后继状态。

对于DFAM,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记符连接形成的字符串可为DFAM所接受。

若M的初态结点同时又是终态结点,则称&可为 M所接受(或识别),DFA M所能接受的全部字符串(字)组成的集合记作 L(M)。

一个不确定有限自动机(NFA M可以定义为一个五元组,M=(K, E, F, S, Z), 其中:( 1) k 是一个有穷非空集,集合中的每个元素称为一个状态;(2)E是一个有穷字母表,E中的每个元素称为一个输入符号;(3)F是一个从K xE^ K的子集的转换函数;(4)S K,是一个非空的初态集;(5)Z K,是一个终态集。

由定义可见,不确定有限自动机 NFA与确定有限自动机DFA的主要区别是:(1)NFA的初始状态S为一个状态集,即允许有多个初始状态;(2)NFA中允许状态在某输出边上有相同的符号,即对同一个输入符号可以有多个后继状态。

编译原理词法NFADFA的确定化和化简

编译原理词法NFADFA的确定化和化简

编译原理词法NFADFA的确定化和化简编译原理中的词法分析主要包括以下步骤:词法分析器将输入的源程序文本转化为一个个单词(token),即词法单元。

在词法分析过程中,使用的主要工具是有限自动机(NFA)和确定的有限自动机(DFA)。

NFA(DFA)的确定化是指将一个非确定的有限自动机转化为一个确定的有限自动机。

非确定有限自动机具有多个可能的转换路径,而确定有限自动机每个状态只能有一个转换路径。

确定化的目的是简化自动机的状态图,减少转换的复杂性,便于理解和实现。

确定化的过程一般包括以下步骤:1)初始化:将NFA的起始状态作为DFA的起始状态,并为其创建一个新的DFA状态。

2)闭包运算:对于DFA中的每个状态,根据NFA的ε-转换,计算其ε-闭包(即能够通过ε-转换到达的状态集合)。

3)转换运算:对于DFA中的每个状态和每个输入符号,根据NFA的转换函数,计算DFA中该输入下的状态转移集合。

4)如果新生成的DFA状态集合不在已有的DFA状态集合中,则将其加入到DFA状态集合中,并进行闭包和转换运算;如果已存在,则继续下一个输入符号的转换运算。

5)重复步骤4,直到不再生成新的DFA状态集合。

化简是指对于一个确定的有限自动机(DFA),将其中无用的状态进行合并,得到一个更加简洁的自动机。

化简的目的是减少状态数目,提高运行效率和存储效率。

化简的过程一般包括以下步骤:1)初始化:将DFA状态分为两个集合,一个是终止状态集合,一个是非终止状态集合。

2)将所有的等价状态划分到同一个等价类中。

3)不断迭代以下步骤,直到不能再划分等价类为止:a)对于每对不同的状态p和q,若存在一个输入符号a,通过转移函数计算得到的状态分别位于不同的等价类中,则将该状态划分到不同的等价类中。

b)对于每个等价类中的状态集合,将其进一步划分为更小的等价类。

最终,得到的化简DFA状态图比原始DFA状态图要小,且功能等价。

编译原理第6讲 词法分析3--有限自动机等价性

编译原理第6讲 词法分析3--有限自动机等价性

{1,6,4,2,Y} {1,5,4,2,Y} {1,3,6,2,4,Y}
{1,5,4,2,Y} {1,3,5,2,4,Y} {1,6,4,2,Y}
DFA与NFA的等价性证明
把表看成状态转换矩阵,子 集视为状态
转换表唯一刻划了一个确定 的有限自动机M
初态是-closure({X})
M’ X
a
两个状态不等价,则称它们是可区别的
测试:状态的可区分性
两个状态s和t是可区分的,是指( )
A. 对于任意字,要么s读出停止于终态而t读出
停止于非终态,要么t读出停止于终态而s读
出停止于非终态
视频区域
B. 存在一个字,要么s读出停止于终态而t读出 停止于非终态,要么t读出停止于终态而s读 出停止于非终态
重复上述过程,直到所有第2, 3列子集全部出现在第一列为止
I
视I频a 区域 Ib
-Closure({X}) {...} {...}
{...}
{...} {...}
{...}
{...} {...}
DFA与NFA的等价性证明
M’
a
a5a
a
X 1 2
3 4 Y
b
b6 b
b
I -closure({X})={X,1,2}
DFA与NFA的等价性证明
确定化:不失一般性,设字母表只 包含两个 a 和b,我们构造一张计 算状态集的转换表:
首先,置第1行第1列为closure({X})求出这一列的Ia,Ib;
然后,检查这两个Ia,Ib,看它 们是否已在表中的第一列中出 现,把未曾出现的填入后面的 空行的第1列上,求出每行第2, 3列上的集合...
达的状态集合。

第3章-3-有限自动机.解析

第3章-3-有限自动机.解析

种性质的FA称为非确定的FA(NFA:
Nondeterministic FA)
二、非确定有穷状态自动机
a A aa
S ab Z a
bB b a
例如:文法G3.1 Z → Za|Aa|Bb A → Ba|Za|a B → Ab|Ba|b
二、非确定有穷状态自动机
一个非确定的有穷自动机(NFA)M是一 个五元组:N=(K,Σ,f,S0,Z)其中
DFA f的定义
2.为定义DFA所接受(或识别)的符号串集合,我们
先将其转换函数f 的定义域拓广到 f^: K* : (1)f^ (s,)=s, sK; (2)f^ (s,aw)=f^ ( f(s,a),w), sK,a,w*;
对于x* ,f^(s,x)=t 的含义是,当自动机M从 状态s出发,依次扫描完x的各个符号后将进入状 态t.
第三章 词法分析
3.1 词法分析概述 3.2 正规文法和状态转换图 3.3 有限自动机 3.4 正规表达式和正规集 3.5 词法分析器的实现
3.3 有限自动机
一、确定有穷状态自动机(DFA) 二、非确定有穷状态自动机(NFA) 三、NFA和DFA的转换
四、具有ε-动作的NFA 五、ε-动作的NFA的确定化
实质:用自底向上方法识别句子 状态转换的下一状态不唯一,如何解决?
三、NFA和DFA的转换(NFA的确定化)
NFA状态转换的下一状态不唯一,如何解决? 确定化的概念 1.确定化:对任给的NFA,都能对应地构造一
DFA,它们有相同的接受集 2.确定化原理:令构造出的“新”DFA的状态 与“旧”NFA的某一状态子集对应,并使 “新”DFA对“旧”NFA的状态转移保持跟 踪。
1.K’=2k.即,由M的全部状态子集构成,特别地, 令 S0’=[S0].
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、举例
将下面不确定有限自动确定化并化简成最简型
a a,b ε S 5 ε b 4 1 a 3 b2 εa, Nhomakorabea 6 ε H
确定化
化简 1、π: 1={0,1,2}, 2={3,4,5, 、 : , , , , , , 2、求每个状态接收a的后继状态,如下: 、求每个状态接收 的后继状态 如下: 的后继状态, 得如下分划π: 得如下分划 : 1={0,2}, 2={1}, 3={3, , , , , 4,5,6}。 , , 。 3、求每个状态接收 的后继状态,如下: 的后继状态, 、求每个状态接收b的后继状态 如下:
二、确定有限自动机的化简
1、令A1=F(终止状态集)、A·=S-A1。 则A1与A2之状态两两不等价。 2、设已构造出A1、A2、……、Ak,对任 意的i,j,Ai与Aj中状态两两不等价,对任意的符 号a,则δ-1(Ai,a)∩Aj,i,j=1,2,3,……,k中任两个 状态子集中状态是两两不等价。 3、重复2直到状态集数不增加止,则每一 个状态集中任两个状态等价。将等价状态合并 成一个状态,即为简化的DFA。
6}。 。
得如下分划π: 得如下分划 : 1={0}, , 4={3,4,5,6}。 , , , 。
2={1}, ,
3={2}, ,
简化后的确定有限自动机如下: 简化后的确定有限自动机如下:
a 0 b a 2
1 b
a
3 b
词法分析器自动生成
Lex语言定义: 辅助定义式 %% 识别规则 %% 用户子程序
确定有限自动机的化简
一、准备知识
引论一:s1、s2是S中的两个等价状态,a 是符号表Σ中的一个符号,如果δ(s1,a)存在, 则δ(s2,a)亦存在,且δ(s1,a)与δ(s2,a)等价。 引论二:s1、s2是S中的两个状态,对Σ中 任意符号a,如果δ(s1,a)存在,则δ(s2,a)必存在 且二者等价,则s1与s2等价。 引论三:如果A、B是S中的两个子集,且 A与B中状态两两不等价,则对Σ中的一个符号a, δ-1(A,a)与δ-1(B,a)中状态两两不等价。
识别规则的表示: 识别单词的正规表达式 {动作子程序} 例: while {return (1,null)} {val=int(id); return (17,val)}
digit(digit)*
程序设计语言的Lex描述
letter[A-Za-z] digit [0-9] %% 1 while {return (1,null)} 2 do {return (2,null)} 3 If {return (3,null)} …… 16 letter(letter|digit)* {if(keyword(id)==0) return (16,id) else return (keyword(id),null)}
相关文档
最新文档