普通最小二乘估计表格的解释

合集下载

第三讲普通最小二乘法

第三讲普通最小二乘法

在满足基本假设条件下,对一元线性回归模型:
Yi 0 1 X i i
随机抽取n组样本观测值(Xi, Yi)(i=1,2,…n)。
假如模型的参数估计量已经求得,为 那么Yi服从如下的正态分布: 于是,Y的概率函数为
2 ˆ ˆ Yi ~ N ( 0 1 X i , )
② 用最小二乘法拟合的直线来代表 x 与 y 之间的 关系与实际数据的误差比其他任何直线都小
2. 正规方程和估计量
取偏导数并令其为0,可得正规方程 ( ei2 ) ˆ ˆ X )0 2 (Yi 1 2 i ˆ
( ei2 ) ˆ ˆ X )X 0 2 (Yi 1 2 i i ˆ
普通最小二乘法(OLS) (Ordinary Least Squares) 高斯被认为是历史上 最重要的数学家之一,并 享有“数学王子”之称。 高斯和阿基米德、牛顿并 列为世界三大数学家。一 生成就极为丰硕,以他名 字“高斯”命名的成果达 110个,属数学家中之最。
C.F.Gauss 1777-1855
解得模型的参数估计量为:
ˆ X i2 Yi X i Yi X i 0 nX i2 (X i ) 2 ˆ nYi X i Yi X i 1 2 2 n X ( X ) i i
可见,在满足一系列基本假设的情况下,模型 结构参数的 最大或然估计量 与 普通最小
6
在家庭可支配收入-消费支出例中,对于所抽出的一组样 本数,参数估计的计算可通过下面的表进行。
表 2.2.1 参数估计的计算表
Xi
Yi
xi
yi
xi y i
xi2
y i2
X i2
Yi 2

一句话概括计量经济学的普通最小二乘法的概念

一句话概括计量经济学的普通最小二乘法的概念

普通最小二乘法是计量经济学中用于估计线性回归模型参数的一种方法。

1. 概述计量经济学是经济学的一个重要分支,它主要研究如何运用数理统计和经济理论来对经济现象进行定量分析。

在计量经济学中,线性回归模型是一个常见的分析工具,而普通最小二乘法(Ordinary Least Squares, OLS)则是估计线性回归模型参数的一种常用方法。

2. 普通最小二乘法的基本概念普通最小二乘法是一种通过最小化观测值与线性模型预测值的残差平方和来估计回归参数的方法。

在一个简单的线性回归模型中,我们假设因变量Y和自变量X之间存在着线性关系:Y = β0 + β1X + ε其中β0和β1分别代表截距项和斜率项,ε是误差项。

普通最小二乘法的目标就是找到最优的β0和β1,使得观测值Y和模型预测值之间的残差平方和最小。

3. 普通最小二乘法的求解过程在使用普通最小二乘法进行线性回归参数估计时,我们首先需要收集样本数据,然后通过数据计算出样本的均值、方差等统计量,接着计算回归系数的估计值。

具体的求解过程可以概括为以下几个步骤: 1) 计算样本数据的均值和方差,用于构建回归模型的X变量和Y变量。

2) 计算回归系数的估计值,即β0和β1的估计量。

3) 通过计算残差平方和最小化的方法得到最优的回归系数估计值。

4. OLS估计的性质普通最小二乘法估计的性质一般包括无偏性、一致性、有效性等。

其中,无偏性指的是OLS估计量的期望值等于真实参数值;一致性则表示当样本容量趋于无穷时,OLS估计量收敛于真实参数值;有效性则表示在所有无偏估计量中,OLS估计量的方差最小。

5. OLS估计的假设在使用普通最小二乘法进行参数估计时,我们通常对模型的误差项做出一些假设,如无自相关性、同方差性、正态分布等。

这些假设在一定程度上影响着OLS估计的有效性和准确性。

6. OLS估计的应用领域普通最小二乘法广泛应用于经济学、金融学、社会学等领域的数据分析和定量研究中。

ols 普通最小二乘法

ols 普通最小二乘法

ols 普通最小二乘法
普通最小二乘法(OLS)是一种用于在线性回归模型中估计未知参数的线性最小二乘法。

OLS通过最小二乘法原则选择一组解释变量的线性函数的参数:最小化给定数据集中观察到的因变量(被预测变量的值)与预测变量之间残差的平方和。

最小二乘法(又称最小平方法)是一种数学优化技术。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合。

其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

根据样本数据,采用最小二乘估计式可以得到简单线性回归模型参数的估计量。

但是估计量参数与总体真实参数的接近程度如何,是否存在更好的其它估计式,这就涉及到最小二乘估计式或估计量的最小方差(或最佳)(Best)性、线性(Linear)及无偏(Unbiased)性,简称为BLU特性。

这就是广泛应用普通最小二乘法估计经济计量模型的主要原因。

下面证明普通最小二乘估计量具有上述三特性。

1、线性特性
所谓线性特性,是指估计量分别是样本观测值的线性函数,亦即估计量和观测值的线性组合。

2、无偏性
无偏性,是指参数估计量的期望值分别等于总体真实参数。

3、最小方差性
所谓最小方差性,是指估计量与用其它方法求得的估计量比较,其方差最小,即最佳。

最小方差性又称有效性。

这一性质就是著名的高斯一马尔可夫(Gauss-Markov)定理。

这个定理阐明了普通最小二乘估计量与用其它方法求得的任何线性无偏估计量相比,它是最佳的。

最小二乘估计

最小二乘估计

你知道怎样 来推导这个 公式吗?
.下表是某小卖部6天卖出热茶的杯数(y)与当天气温(x)的对比表:
(1)试用最小二乘法求出线性回归方程; (2)如果某天的气温是-3℃,请预测这天可能会卖出热茶多少杯 解 (1)作散点图如图所示
由散点图知两个变量是线 性相关的,计算各种数据 如下表
于是: 则:
分步计算 减少出错
下面的数据给定了两个变量之间的关系
X1 2 3 4 5 6 7 8 Y 1 4 9 16 25 36 49 64
请利用最小二乘法求出这两个变量之间的线性回归方程
x12345678 Y 1 4 9 16 25 36 49 64
1.制作散点图就是描点,我们可 以做出散点图:
Y=9x-15
如何求得这个 方程?
从而我们利用最小二乘估计时,已经失去 了意义,你认为问题出在哪里呢?
最小二乘估计
前面我们学习了统计活动的最基本的知识。从确定调查对象 都收集数据再到数据呈现,以及最后作出统计结论。
从所有的过程中,分析数据是最难的,事物的发展趋势更 是我们所需要了解的,因为它是我们得出结论的依据。
对于线性相关的一组数据,关键是怎样求这条相关直 线的方程
有一个非常直接的想法,就是利用一条直线来刻画数据的趋 势,这条直线必须保证到所有点的距离最小,最小二乘法就 是基于这种想法。
点到直线的距 离公式如何表
示?
我们可以看到,利用距离公式在计算方面是比较麻烦,因此
我们想将它简化,你知道怎样简化吗?

有演示我们知道,我们可以这样来刻画“距离”

假设一条直线的方程为:y=a+bx,对于给定的一个样本点(xi,yi), 我们用
来刻画这个样本点与这条直线的距离,用它们表示二者之间的 接近程度

普通最小二乘法

普通最小二乘法
确定模型类型
选择合适的回归模型,如线性回归、多项式回归等。
设定模型假设
确保满足回归分析的基本假设,如误差项独立同分布、误差项无系统偏差等。
建立模型
利用最小二乘法计算回归参数的最优估计值。
分析估计量的性质,如无偏性、有效性等,确保估计结果可靠。
参数估计
检验估计量性质
计算最小二乘估计量
03
模型选择与优化
普通最小二乘法的历史与发展
02
普通最小二乘法的原理
01
02
03
线性回归模型是一种预测模型,通过找到最佳拟合直线来预测因变量的值。
在线性回归模型中,自变量和因变量之间存在线性关系,即因变量可以表示为自变量的线性组合。
线性回归模型的一般形式为:y = β0 + β1x1 + β2x2 + ... + βpxp + ε,其中y是因变量,x1, x2, ..., xp是自变量,β0, β1, β2, ..., βp是参数,ε是误差项。
详细描述
主成分回归是一种基于主成分分析的回归方法,通过提取解释变量中的主要成分,降低数据的维度,提高模型的解释性和稳定性。
总结词
主成分回归首先对解释变量进行主成分分析,提取出解释变量中的主要成分,然后将这些主成分作为新的解释变量进行回归分析。由于主成分能够反映原始变量中的大部分信息,因此这种方法能够减少数据的维度,降低多重共线性的影响,提高模型的稳定性和解释性。
无偏性
普通最小二乘法估计的参数具有无偏性,即估计的期望值等于真实值。
最佳线性无偏估计
普通最小二乘法能得到最佳线性无偏估计,即估计的方差最小。
优点
异方差性
普通最小二乘法对数据的异方差性敏感,可能导致估计结果失真。

计量经济学习题及答案

计量经济学习题及答案

计量经济学习题一、名词解释1、普通最小二乘法:为使被解释变量的估计值及观测值在总体上最为接近使Q= 最小,从而求出参数估计量的方法,即之。

2、总平方和、回归平方和、残差平方和的定义:TSS度量Y自身的差异程度,称为总平方和。

TSS除以自由度n-1=因变量的方差,度量因变量自身的变化;RSS度量因变量Y的拟合值自身的差异程度,称为回归平方和,RSS除以自由度〔自变量个数-1〕=回归方差,度量由自变量的变化引起的因变量变化局部;ESS度量实际值及拟合值之间的差异程度,称为残差平方和。

RSS除以自由度〔n-自变量个数-1〕=残差〔误差〕方差,度量由非自变量的变化引起的因变量变化局部。

3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系及经济活动数量规律的研究,并以建立和应用经济计量模型为核心的一门经济学科。

而且必须指出,这些经济计量模型是具有随机性特征的。

4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目〔包扩常数项〕,即之。

5、序列相关性:模型的随机误差项违背了相互独立的根本假设的情况。

6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,那么称为多重共线性。

7、工具变量法:在模型估计过程中被作为工具使用,以替代模型中及随机误差项相关的随机解释变量。

这种估计方法称为工具变量法。

8、时间序列数据:按照时间先后排列的统计数据。

9、截面数据:发生在同一时间截面上的调查数据。

10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系。

11、异方差:对于线性回归模型提出了假设干根本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不一样,那么认为出现了异方差性。

12、外生变量:外生变量是模型以外决定的变量,作为自变量影响内生变量,外生变量决定内生变量,其参数不是模型系统的元素。

第三讲普通最小二乘法


普通最小二乘法(OLS) (Ordinary Least Squares)
eyyˆ 1. OLS的基本思想
ei yi yˆi
y ˆiˆ0ˆ1 x i (i 1 ,2 , ,n )
m in ei2m in (Yiˆ1ˆ2Xi)2
普通最小二乘法(OLS) (Ordinary Least Squares)
表 2.2.1 参数估计的计算表
X i Yi
xi
yi
xi yi
x
2 i
y
2 i
X
2 i
Yi 2
1 2 3 4 5 6 7 8 9 10 求和 平均
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 21500 2150
594 638 1122 1155 1408 1595 1969 2078 2585 2530 15674 1567
计性质。 ●模型中有随机扰动项,估计的参数是随机变量,显然参数
估计值的分布与扰动项的分布有关,只有对随机扰动的分 布作出假定,才能比较方便地确定所估计参数的分布性质, 也才可能进行假设检验和区间估计等统计推断。 假定分为:◆对模型和变量的假定◆对随机扰动项的假定
14
对模型和变量的假定
例如对于 Yi 12Xiui
假定2:同方差假定
Var(Yi Xi)2
假定3:无自相关假定 Cov(Yi,Yj)0
假定5:正态性假定
Yi ~N(12Xi,2)
19
OLS回归线的数学性质
●剩余项 e i 的均值为零 e ei 0
n
●OLS回归线通过样本均值
Y
(由OLS第一个正规方程直接得到)
●估计值 Y ˆ i 的均值等于实际观测 Y 值 Y i 的均值 Y ˆ1ˆ2X

计量经济学 普通最小二乘法估计量



[
1 N

x2 (xi x)2
x2f (xi
x)2

2xx f (xi
x)2
1]
2
1
[N
(x (xi
xf )2 x)2
1]
2
2、预测E(yf)
以 yˆ f ˆ0 ˆ1xf 作为对E(yf)的预测。预
测误差是:
e2 E( y f ) yˆ f (0 ˆ0) (1 ˆ1)xf
1、预测yf
以 yˆ f ˆ0 ˆ1xf 作为对yf的预测。此时预测 误差是: e1 y f yˆ f (0 ˆ0) (1 ˆ1)xf f 显然,E(e1)=0。
Var(e1) Var(ˆ0 ) x2fVar(ˆ1) 2x f Cov(ˆ0, ˆ1) Var( f )
普通最小二乘法估计量
例2:假设真实模型为 y 0 1x
0, 1为待估参数,最小二乘法的参数估计量为
ˆ1
(xi x ) yi (xi x )2
; ˆ0

y

ˆ1x
既然估计量是随机的,那么我们需要分析随机
变量的统计性质,了解它的分布。另外0, 1 真

cov ki yi , (wi ki )yi


ki (wi ki ) 2
0



var wi yi var ki yi (wi ki )yi




var ki yi var (wi ki )yi var ki yi
假定2:在重复抽样中,(x1, x2,..., xN )被预先 固定下来,即(x1, x2,..., xN )是非随机的,显 然,如果解释变量含有随机的测量误差, 那么该假定被违背。还存其他的违背该 假定的情况。

最小二乘估计法

一,什么是最小二乘估计least-square estimation例:y = ax + (其中:y,x 可测;( —不可测的干扰项;a —未知参数.通过N 次实验,得到测量数据yk 和xk k = 1,2,3 …,确定未知参数a 称"参数估计".使准则J 为最小:令:( J ( ( a = 0 ,导出a =称为"最小二乘估计",即残差平方总和为最小的估计,Gauss于1792晏岢? 二,多元线性回归线性模型y = a0+ a1x1+(+ anx n + ( 式(2 - 1- 1)引入参数向量:( = [ a0,a1,(a n ]T (n+1)(1进行N 次试验,得出N 个方程:yk = (kT ( + (k ; k=1,2…,N 式(2 -1- 2)其中:(k = [ 1,x1,x2,(,x N ] T (n+1) (1方程组可用矩阵表示为y = ( ( + ( 式(2 -1- 3)其中:y = [ y1,y2,...,y N ] T (N (1)( = [ (1,(2,...,( N ] T (N 1)N (n+1)估计准则:有:= (y —( ()T( y —( ()(1(N) ( N(1)J = yTy + (T (T ( ( -yT ( ( - (T (T y= yTy + (T (T ( ( - 2 (T (T y 式(2 -1- 4)假设:((T ()(n+1)(n+1) 满秩,由利用线性代数的以下两个矩阵对向量求偏导数的公式:和有:和所以:解出参数估计向量:( Ls =((T ()-1 (T y 式(2 -1- 5)令:P = ((T ()-1 则参数估计向量( Ls = P (T y参数估计向量( Ls 被视为以下"正则方程"的解:((T ()( = (T y 式(2 -1- 6)注:为了便于区别,我们用红体字符表示估计量或计算值,而用黑体表示为参数真值或实际测量值.三,关于参数最小二乘估计Ls 性质的讨论以上求解参数最小二乘估计( Ls 时并为对{ (k }的统计特性做任何规定,这是最小二乘估计的优点.当{ (k }为平稳零均值白噪声时,则( Ls 有如下良好的估计性质:参数最小二乘估计( Ls 是y 的线性估计( Ls = P (T y 是y 的线性表出;b) 参数最小二乘估计( Ls 是无偏估计,即E ( Ls= ( (参数真值)[ 证明]:E ( Ls= E[ P (T y ]= P (T E( y ) = P (T E ( (( + ( ) =P (T ( ( + E( ( ) = ( + 0 = (最小二乘估计( Ls 的估计误差协方差阵是(2P (n+1)(n+1)即:E [ ( ( Ls- ( ) ( ( Ls- ( )T ] = (2P[ 证明]:E [ ( ( Ls - ( ) ( ( Ls - ( )T ] = E [ P (T ( y -( () ( y- ( ()T (P ] = E [ P (T ( (T (P ] = P (T E ( ( (T) (P =P (T (2 IN(N (P = (2P若{ (k }为正态分布零均值白噪声时,则( Ls 是线性无偏最小方差估计(证明从略).如若{ (k }是有色噪声,则( Ls 不具有上述性质,即为有偏估计.四,最小二乘估计( Ls 的的几何意义和计算问题1.最小二乘估计的几何意义最小二乘估计的模型输出值为yk = ( kT ( Ls k = 1,2,…N输出实际测量值与模型输出值之差叫残差:(k = yk –yk模型输出向量为y = ( ( Ls ,而残差向量为:( = y –y = y –( ( Ls(T ( k = (T y –(T (((T ()-1 (T y = (T y –(T y = 0即残差向量( 与由测量数据矩阵( 的各个向量:( 1,( 2 ,…,( N 张成的超平面(估计空间)正交,而最小二乘模型输出向量y 为实际输出向量y 在估计空间上的正交投影,这就是最小二乘估计的几何意义.---------------------------------------------最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配. 最小二乘法是用最简的方法求得一些绝对不可知的真值,而令误差平方之和为最小.最小二乘法通常用于曲线拟合.很多其他的优化问题也可通过最小化能量或最大化熵用最小二乘形式表达.比如从最简单的一次函数y=kx+b讲起已知坐标轴上有些点(1.1,2.0),(2.1,3.2),(3,4.0),(4,6),(5.1,6.0),求经过这些点的图象的一次函数关系式.当然这条直线不可能经过每一个点,我们只要做到5个点到这条直线的距离的平方和最小即可,这就需要用到最小二乘法的思想.然后就用线性拟合来求.。

普通最小二乘法(OLS)

普通最小二乘法(OLS )普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。

在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下(见图2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为^0β和^1β,并且是最合理的参数估计量,那么直线方程(见图2.2.1中的直线) i i x y ^1^0^ββ+= i=1,2,…,n (2.2.2)应该能够最好地拟合样本数据。

其中^i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。

那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。

),()(1022101ββββQ u x y Q i i n i i ==--=∑∑= ()()),(min ˆˆˆˆ102110212ˆ,ˆ1100ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== (2.2.3)为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。

这就是最小二乘原则。

那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。

由于21^1^012^))(()(∑∑+--=n i i n i i x y y y Q ββ= 是^0β、^1β的二次函数并且非负,所以其极小值总是存在的。

根据罗彼塔法则,当Q 对^0β、^1β的一阶偏导数为0时,Q 达到最小。

即0011001100ˆ,ˆ1ˆ,ˆ0=∂∂=∂∂====ββββββββββQQ(2.2.4)容易推得特征方程: ()0)ˆˆ(0ˆ)ˆˆ(101110==--==-=--∑∑∑∑∑==i i i i ni ii i i i n i i e x x yx e y y x yββββ 解得: ∑∑∑∑∑+=+=2^1^0^1^0i i i i i i x x x y xn y ββββ (2.2.5) 所以有:⎪⎪⎪⎩⎪⎪⎪⎨⎧-=---=--=∑∑∑∑∑∑∑=======x y x x y y x x x x n y x y x n n i i n i i i n i i n i i n i i n i i n i i i 1012121121111ˆˆ)())(()()()(ˆβββ (2.2.6) 于是得到了符合最小二乘原则的参数估计量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名称含义:
Dependent Variable: 被解释变量
R-squared :可决系数,Adjusted R-squared :调整的可决系数。

Coefficient :变量前面系数的估计。

如上表中0.386180是指模型中GDPP 系数的估计。

Std. Error :参数估计的样本标准差
t-Statistic :变量假设检验的T 统计量的值 F-statistic :方程显著性检验统计量的值
S.E. of regression :随机扰动项方差的估计开根号后的值:1
^
2--=p n RSS σ
Sum squared resid :RSS ,残差平方和 Durbin-Watson stat :DW 统计量的值
Mean dependent var :被解释变量的样本均值 S.D. dependent var :被解释变量的样本标准差
二、变量、方程显著性检验的认定:
给定显著性水平,如果Prob 小于显著性水平,那么,拒绝原假设,说明解释变量对被解释有显著性影响。

否则,没有显著性影响。

方程显著性检验的认定:如果Prob(F-statistic)小于显著性水平,那么,拒绝原假设,说
Dependent Variable: CONSP Method: Least Squares Date: 06/03/10 Time: 23:16 Sample: 1978 2000 Included observations: 23 Variable Coefficient Std. Error t-Statistic Prob. GDPP 0.386180 0.007222 53.47471 0.0000 C 201.1189 14.88402 13.51241 0.0000 R-squared 0.992710 Mean dependent var
905.3304 Adjusted R-squared 0.992363 S.D. dependent var 380.6334 S.E. of regression 33.26450 Akaike info criterion 9.929800 Sum squared resid 23237.06 Schwarz criterion 10.02854 Log likelihood -112.1927 F-statistic 2859.544 Durbin-Watson 0.550636 0.000000
明方程显著。

否则,方程不显著。

当进行的一元线性回归模型时,F-statistic= t-Statistic平方,如果不是一元回归,则无此关系。

未列出的几项,课上没有讲过,没有列出。

相关文档
最新文档