人教版八年级数学上册教案《平方差公式》
14.2.1平方差公式 教案 人教版八年级数学上册

代数方面:运用多项式与多项式乘法法则进行验证
几何方面:观察图形变化,运用等面积法进行验证。
运用公式特点进行计算,熟悉公式,并进行公式变通,顺序不同时的技巧变化
填表格,分清相同相反项,熟练运用公式。
总结本节内容
配套练习
一、选择题
三、合作交流:
1、猜想:两数和与这两数差的乘积等于这两数的平方差。
2、得出: 。
2、验证:从代数角度和几何角度出发,进行公式的验证。
四、公式运用
例题:运用平方差公式进行计算 :
(1)
强调公式的特点,使学生将Biblioteka 法牢记于心(2)(3)
学以致用
采用填表格的形式,再一次熟悉公式,进行计算
五、小结:
(1)平方差公式:
1、下列各式中可以运用平方差公式进行计算的是()
2、已知 ( )
A.4 B.-4 C.8 D.-8
二、计算
1、
2、
3、
三、思维拓展
14.2.1平方差公式 教案 人教版八年级数学上册
教学课题
平方差公式
教学目标
1
理解平方差公式的特点,记住平方差公式,并能运用公式进行简单的运算。
2
经历探索平方差公式的过程,让学生经历“提出问题—研究问题—解决问题”的过程,进一步培养学生分析、归纳和探索能力。
3
培养学生数形结合的思想;激发学生探索规律的兴趣。
①算式中每个因式都有2项。
②算式都是两个数的和与这两数差 的积。
即两个因式中,有一项相同,另一项相反。
计算结果后,你又发现了什么规律?
计算结果都是前项的平方减去后项的平方。
2024年人教版八年级数学上册教案及教学反思第14章14.2.1 平方差公式

第十四章整式的乘法与因式分解14.2 乘法公式14.2.1 平方差公式一、教学目标【知识与技能】会推导平方差公式,并且懂得运用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感、态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性.二、课型新授课三、课时1课时。
四、教学重难点【教学重点】(1)体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算.(2)平方差公式的几何意义.【教学难点】从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算.五、课前准备教师:课件、直尺、平方差公式结构图等。
学生:练习本、钢笔或圆珠笔、铅笔。
六、教学过程(一)导入新课某同学在计算97×103时将其变成(100–3)(100+3)并很快得出结果,你知道他运用了什么知识吗?(出示课件2)这节课,我们就来一起探讨上述计算的规律.(二)探索新知1.创设情境,探究平方差公式教师问1:对于下面的算式,你想怎样计算呢?(1)2001 ×1999;(2)998×1002;(3)403×397.学生回答:直接计算或者利用乘法分配律进行计算.教师问2:有没有其他巧妙地方法呢?观察这三个式子有什么共同特征?学生讨论后回答:都在某个整百整千的附近.教师讲解:今天我们将进行新的学习,通过学习你将能快速地计算出结果.教师问3:哪位同学说一下前面学的多项式与多项式是如何相乘的?学生回答:多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(出示课件4)教师问4:二项式乘以二项式结果一定是四项吗?学生回答:结果不一定是四项.教师问5:想一想(a+b)(m+n)该怎么计算?学生回答:(a+b)(m+n)=am+an+bm+bn教师问6:如何计算(x +3)( x+5)?学生回答:(x+3)( x+5)=x2+5x+3x+15=x2+8x+15.教师问7:观察图形,思考两个正方形的面积差变了吗?(出示课件5)学生讨论后回答:变化之前面积表示为:a2-52=a2-25;变化之后面积表示为(a+5)×(a-5)= a2 -5a+5a-52= a2-25.变化前后图形面积相等。
人教版八年级数学教案:14.2.2平方差公式

学生小组讨论时,我尝试作为一个引导者,提出开放性问题来启发学生思考。我发现这种方法能够激发学生的探究欲望,但同时也需要我更加细致地观察每个学生的学习状态,及时给予个别指导。
3.应用:给出几个典型例题,让学生运用平方差公式进行计算,并解释其步骤。
4.练习:布置一些练习题,让学生独立完成,巩固对平方差公式的理解和应用。
5.拓展:引导学生探索平方差公式在其他数学领域的应用,如二次方程的求解等。
6.评价:通过课堂问答、练习题批改和小组讨论等方式,评估学生对平方差公式的掌握程度。
总的来说,今天的课程让我认识到,教学不仅要注重知识的传授,还要关注学生的学习过程和方法。我需要在教学中不断调整策略,针对不同学生的学习特点,提供更加个性化的指导。同时,我也将继续探索如何更好地将数学知识与学生的实际生活相结合,提高他们的学习兴趣和实际应用能力。
-两个数的平方差是这两个数的和与差的乘积。
三、核心素养目标”作为标题标识,再开篇直接输出。
二、核心素养目标
1.让学生掌握平方差公式的推导过程和应用方法,培养他们的逻辑推理和数学抽象能力。
2.培养学生解决实际问题的能力,通过运用平方差公式简化计算过程,解决生活中的实际问题。
3.培养学生的创新思维和探究精神,鼓励他们在学习过程中提出新的问题和思考。
本节课的教学重点是平方差公式的推导和应用,教学难点是平方差公式的灵活运用。在教学中,教师应注重引导学生通过实际例题和练习,掌握平方差公式的运用技巧,并能够将其应用于解决实际问题。
《平方差公式》教案(精选15篇)

《平方差公式》教案(精选15篇)《平方差公式》教案1教学目的进一步使学生理解把握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
教学重点和难点:公式的应用及推广。
教学过程:一、复习提问1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规章的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.讲评要点:沿HD、GD裁开均可,但肯定要让学生在裁开之前知道HD=BC=GD=FE=a-b,这样裁开后才能重新拼成一个矩形.期望推出公式:a2-b2=(a+b)(a-b)2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比较公式的两种表达式在应用上的差异.说明:平方差公式的数学表达式在使用上有三个优点。
(1)公式详细,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁。
但数学表达式中的a与b有概括性及抽象性,这样也就造成对详细问题存在一个判定a、b的问题,否则简单对公式产生各种主观上的误会。
依照公式的文字表达式可写出下面两个正确的式子:经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,敏捷运用公式的'两种表达式,比如用文字公式推断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又敏捷.3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)二、新课例1运用平方差公式计算:(1)102×98;(2)(y+2)(y-2)(y2+4).解:(1)102×98(2)(y+2)(y-2)(y2+4)=(100+2)(100-2)=(y2-4)(y2+4)=1002-22=10000-4=(y2)2-42=y4-16.=9996;2.运用平方差公式计算:(1)103×97;(2)(x+3)(x-3)(x2+9);(3)59.8×60.2;(4)(x-)(x2+)(x+).3.请每位同学自编两道能运用平方差公式计算的题目.例2填空:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?(某两数平方差的二项式可逆用平方差公式写成两数和与这两数的差的积)练习填空:1.x2-25=()();2.4m2-49=(2m-7)();3.a4-m4=(a2+m2)()=(a2+m2)()();例3计算:(1)(a+b-3)(a+b+3);(2)(m2+n-7)(m2-n-7).解:(1)(a+b-3)(a+b+3)(2)(m2+n-7)(m2-n-7)=[(a+b)-3][(a+b)+3]=[(m2-7)+n][(m2-7)-n]=(a+b)2-9=a2+2ab+b2-9.=(m2-7)2-n2=m4-14m2+49-n2.三、小结1.什么是平方差公式?一般两个二项式相乘的积应是几项式?2.平方差公式中字母a、b可以是那些形式?3.怎样推断一个多项式的乘法问题是否可以用平方差公式?四、布置作业1.运用平方差公式计算:(1)(a2+b)(a2-b);(2)(-4m2+5n)(4m2+5n);(3)(x2-y2)(x2+y2);(4)(9a2+7b2)(7b2-9a2).2.运用平方差公式计算:(1)69×71;(2)53×47;(3)503×497;(4)40×39.《平方差公式》教案2平方差公式一、学习目标:1.经历探究平方差公式的过程.2.会推导平方差公式,并能运用公式进行简洁的运算.二、重点难点重点:平方差公式的推导和应用难点:理解平方差公式的结构特征,敏捷应用平方差公式.三、合作学习你能用简便方法计算下列各题吗?12001×19992998×1002导入新课:计算下列多项式的积.1x+1x-12m+2m-232x+12x-14x+5yx-5y结论:两个数的和与这两个数的差的`积,等于这两个数的平方差.即:a+ba-b=a2-b2四、精讲精练例1:运用平方差公式计算:13x+23x-22b+2a2a-b3-x+2y-x-2y例2:计算:1102×982y+2y-2-y-1y+5随堂练习计算:1a+b-b+a2-a-ba-b33a+2b3a-2b4a5-b2a5+b25a+2b+2ca+2b-2c6a-ba+ba2+b2五、小结:a+ba-b=a2-b2《平方差公式》教案3学习目标:1、经历探究完全平方公式的过程,发展学生观察、交流、归纳、猜想、验证等能力。
八年级上册数学教案《平方差公式》

八年级上册数学教案《平方差公式》学情分析《平方差公式》是在已经学习了有理数运算、列简单的代数式、一次方程及不等式、整式的加减及整式乘法等知识的基础上,在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容打下了基础,同时也为完全平方公式的学习提供了方法。
教学目的1、通过观察、计算,猜想,得到平方差公式。
2、掌握平方差公式,能用几何拼图的方式验证,能灵活运用公式计算。
3、经历运用几何拼图验证平方差公式的过程,体会数形结合的思想。
教学重点平方差公式的探究及应用。
教学难点灵活运用平方差公式进行计算。
教学方法讲授法、讨论法、练习法教学过程一、复习导入计算下列多项式的积。
(1)(x+1)(x-1)= x2 -1(2)(m+2)(m-2)= m2 - 4(3)(2x + 1)(2x - 1) = 4x2 -1二、学习新知1、通过上述计算,你发现了什么规律?文字语言:两个数的和与这两个数差的积,等于这两个数的平方差。
符号语言:(a+b)(a-b)= a2 - b22、通过推导验证规律的正确性(1)代数方法:多项式乘以多项式的法则(a+b)(a-b)= a2 -ab + ab - b2 = a2 - b2(2)几何方法:根据图形的面积说明平方差公式3、运用平方差公式计算:(1)(3x+2)(3x-2);分析:可以把3x看成a,2看成b,即(3x+2)(3x-2)=(3x)2 - 22( a + b)( a - b)= a2 - b2(3x+2)(3x-2)=(3x)2 - 22= 9x2 - 4(2)(- x +2y)(-x-2y)分析:可以把-x看成a,2y看成b,即(- x +2y)(-x-2y)=(-x)2 -(2y)2= x2 - 4y2注意:只有符合公式条件的乘法,才能运用公式简化运算,其余的运算仍按乘法法则进行。
14.2.1 平方差公式 人教版数学八年级上册教案

14.2 乘法公式14.2.1 平方差公式一、教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.二、教学重难点1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解.2.难点:平方差公式的应用.三、教学过程(一)创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充.【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式.【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识.【问题牵引】计算:(1)(x+2)(x-2);(2)(1+3a)(1-3a);(3)(x+5y)(x-5y);(4)(y+3z)(y-3z).做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x-2)=x2-4;(2)(1+3a)(1-3a)=1-9a2;(3)(x+5y)(x-5y)=x2-25y2;(4)(y+3z)(y-3z)=y2-9z2.【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律.【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表现刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a-b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义.(二)范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.【例1】运用平方差公式计算:(1)(2x+3)(2x-3);(2)(b+3a)(3a-b);(3)(-m+n)(-m-n).填表:(a+b)(a-b)a b a2-b2结果(2x+3)(2x-3)2x(2x) 2-32(b+3a)(3a-b)(-m+n)(-m-n)【例2】计算:(1)103×97(2)(3x-y)(3y-x)-(x-y)(x+y)通过做题,应该总结出:在两个因式中,符号相同的一项作a,符号不同的一项作b.(三)随堂练习,巩固新知课本练习(四)课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a,第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.(五)布置作业,专题突破课本习题.四、板书设计14.2.1平方差公式1、平方差公式例:(a+b)(a-b)=a2-b2练习:五、教学反思学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成.。
人教版数学八年级上册《14.2.1平方差公式》教案1

人教版数学八年级上册《14.2.1平方差公式》教案1一. 教材分析《14.2.1平方差公式》是人教版数学八年级上册中的一章,主要介绍了平方差公式的概念、推导过程以及应用。
本节课的内容是学生进一步学习代数知识的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
平方差公式的推导过程涉及到了完全平方公式,需要学生熟练掌握。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方、完全平方公式等基础知识,具备了一定的代数运算能力。
但部分学生对于代数式的理解和运算仍存在困难,对于公式的推导过程可能感到抽象难懂。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导。
三. 教学目标1.让学生理解平方差公式的概念,掌握公式的推导过程。
2.培养学生运用平方差公式解决实际问题的能力。
3.提高学生的代数运算能力,培养学生的逻辑思维能力。
四. 教学重难点1.平方差公式的推导过程。
2.平方差公式的应用。
五. 教学方法1.采用问题驱动法,引导学生思考和探索。
2.使用多媒体辅助教学,直观展示公式的推导过程。
3.运用例题讲解法,让学生在实际问题中运用公式。
4.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,展示平方差公式的推导过程和应用实例。
2.准备练习题,用于巩固所学知识。
3.准备小组合作学习的任务,引导学生进行讨论和交流。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平方差问题,如面积计算、距离计算等,引导学生思考和讨论。
通过这些问题,激发学生的学习兴趣,引出本节课的主题——平方差公式。
2.呈现(15分钟)教师通过PPT展示平方差公式的推导过程,引导学生理解和记忆公式。
在这个过程中,教师可以适时提出问题,引导学生思考和探索。
3.操练(15分钟)教师给出一些例题,让学生运用平方差公式进行解答。
在解答过程中,教师要注意引导学生理解和掌握公式的应用。
对于学生的解答,教师要及时给予反馈和指导。
人教版八年级数学上册优秀教学案例:14.2.1平方差公式

问题导向的教学策略有助于培养学生的独立思考能力,激发学生的创新思维,使学生在解决问题的过程中真正理解并掌握平方差公式。
(三)小组合作
1.教师可以将学生分成若干小组,鼓励学生通过讨论、交流的方式共同探究平方差公式的推导过程及其应用。
五、案例亮点
1.情境创设:本案例中,教师通过生活情境、故事情境和问题情境等多种方式创设教学情境,使学生在真实、有趣的环境中自然接触到平方差公式,感受数学与生活的紧密联系。这种情境创设的方式不仅激发了学生的学习兴趣,还提高了学生的学习积极性。
2.问题导向:教师在教学过程中通过提问的方式引导学生思考,激发了学生的求知欲。同时,教师关注学生的反馈,及时引导学生思考问题,让学生在解决问题的过程中掌握平方差公式的推导过程及其应用。问题导向的教学策略有助于培养学生的独立思考能力,激发学生的创新思维。
3.教师可以设计一些评价指标,如理解力、应用能力、创新能力等,对学生的学习情况进行全面评价,提高学生的自我认知。
(五)作业小结
1.教师可以布置一些与平方差公式相关的作业,让学生巩固所学知识,提高学生的应用能力。
2.教师应关注学生的作业完成情况,及时给予评价和反馈,帮助学生提高解题能力。
3.教师可以鼓思与评价
1.教师可以引导学生对自己的学习过程进行反思,例如:“在学习平方差公式过程中,我遇到了哪些问题?”“我是如何解决这些问题的?”等,培养学生的自我反思能力。
2.教师应关注学生的学习成果,及时给予评价和反馈,让学生了解自己的优点和不足,激发学生的学习动力。
3.教师可以设计一些评价指标,如理解力、应用能力、创新能力等,对学生的学习情况进行全面评价,提高学生的自我认知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平方差公式》
◆教材分析
《平方差公式》是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例。
对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且在设计的过程中尽量与生活中的实际问题相联系,设计一些活动增加知识的趣味性,这样可以培养学生对数学学习的兴趣,设计的习题也很有梯度,由浅入深,适应学生的需要。
为以后的因式分解、分式的化简等内容奠定了基础,在教学中具有很重要地位。
◆教学目标
【知识与能力目标】
1. 探索并理解平方差公式的本质,即结构的不变性,字母的可变性;
2. 会推导平方差公式,并能运用公式进行简单的运算。
【过程与方法目标】
1.使学生经历公式的猜想、证明过程,构建以数的眼光看式子的数学素养;
2. 培养学生的数学符号感和推理能力;
3. 培养学生的问题解决能力,为学生提供运用平方差公式来研究等周问题的探究空间。
【情感态度价值观目标】
在计算过程中发现规律,并能用符号表示,从而体会数学的简洁美。
◆教学重难点
◆
【教学重点】
1.平方差公式的推导;
2.平方差公式本质的理解与运用。
【教学难点】
平方差公式的本质,即结构的不变性,字母的可变性。
◆教学过程
一、引入新课
【师】同学们好。
上次课我们学习了多项式的乘法法则,多项式乘以多项式有什么规律呢?(课件展示过程)
【生】多项式乘以多项式要一一握手,逐项相乘之后求和。
【师】没错,可是,如果每一个多项式和多项式相乘都要这么做的话,哪怕只是给出的最简单的就要一一握手四次,有没有哪些特殊的多项式乘法,可以简化运算呢?这就是我们今天要学习的内容。
【板书】
第十四章整式的乘法和因式分解
14.2 乘法公式
14.2.1 平方差公式
二、新知介绍
[1]情景引入:阿凡提和巴依老爷换地
【师】正课开始之前,我们先来看这样一个故事。
大家听说过阿凡提吧?有一天,巴依老爷来找阿凡提(……投影上播放故事情节,老师伴随口述,这里略)。
那现在我们来看,巴依老爷一边加了五米,一边减了五米,看起来没有什么变化,为什么阿凡提不答应换地呢?大家如果把刚才的故事用数学语言抽象出来,会是什么样的问题呢?大家动脑想一想。
课件展示图片
【生】(思考交流,给出答案)。
假设原来阿凡提手里的土地是边长为a米的正方形,面积是a2平方米,现在一边加上五米,一边减去五米,变成了面积为(a+5)(a-5)的长方形土地。
【师】没错,那土地的面积到底变没变,阿凡提如果换地,会吃亏吗,这个问题你们学了这堂课的知识,就能解答了。
[2]观察思考与概念介绍:平方差公式的探索和引入
【师】下面请看投影,老师给大家下面三个多项式的乘法,大家按照上次课老师教给大家的多项式乘以多项式的法则,把结果算出来。
(x+1)(x−1)= 。
(m+2)(m−2)= 。
(2m+1)(2m−1)= 。
…
【生】(计算并给出答案)。
【师】那现在大家观察一下这三个等式,你们发现这三个等式有什么共同的特点吗?【生】(分组讨论和交流)。
这三个等式的左边都是两个多项式的成绩,右面是两个平方项的差。
【师】那这两个多项式又有什么特点呢?
【生】两个相同的项,相加的结果和相减的结果,之后乘积。
【师】非常好。
那这样的话,我们可以抽象出下面这个通式,它包括了刚才各位提出的式子的特点。
请大家算一算:(a+b)(a−b)等于多少。
【生】得出答案:(a+b)(a−b)= a2−ab+ab−b2 = a2−b2
【师】好了,大家现在得到了结论:(a+b)(a−b)= a2−b2。
这就是我们今天要学习的核心——平方差公式。
(板书并介绍概念)
【板书/PPT】
平方差公式:(a+b)(a−b)= a2−b2
两数和与这两数差的积等于这两个数的平方差
【师】根据这个公式,只要大家以后碰到类似的多项式计算,对于具有和上面左侧相同结构的多项式相乘,可以直接写出来运算结果。
[3]边学边练:相关例题讲解和易错点简介(结合PPT,例题均为书上的)
【师】趁热打铁,大家既然看到了这个公式,我们先来学习一下这个公式怎么用,先看这个,
请计算:(3x+2)(3x−2)。
这里我们把3x看做是公式里面的a,2看做是公式里面的b,现在请大家套用乘法公式,给出答案。
【生】(给出答案,原式=(3x)2−22=9x2−4。
)
【师】好了,下面我们来进一步剖析一下这个公式,大家请看,(a+b)(a−b)= a2−b2。
这个公式的结果可以解读为:同号项的平方减去异号项的平方,这也是运用这个公式时候注意的地方,不要对应错位置。
请大家看这道题,(-x+2y)(-x-2y),这里面的同号项是哪个,异号项是哪个呢?
【生】−x是同号项,2y是异号项。
【师】没错。
那下面大家写出来结果吧。
【生】(给出答案,原式=(-x)2-(2y)2= x2-4y2。
)
【PPT/板书】
巧记:同号项的平方减去异号项的平方。
【师】平方差公式需要灵活运用,下面老师给出来常见的两个平方差公式的变体,大家到了具体的题目中也要会辨别。
几个常见的变体:
乘法交换律:(a−b)(a+b)= a2−b2
加法交换律:(−b+a)(b+a)= a2−b2
【师】那大家看一下老师在投影上给出的这几个式子,这几个式子可以用平方差公式计算吗?
【生】(给出答案)。
【师】下面我们再来做两个题,看看大家有没有思路?(给出:(y+2)(y-2)–(y-1)(y+5),102×98两个题目,强调以下两点:只有符合公式条件的乘法,才能运用公式简化运算,其余的运算仍按照乘法法则进行;公式里的字母完全可以是个数字,因此可以进行简算)
【PPT/板书】
注意事项:
(1)只有符合公式条件的乘法,才能运用公式简化运算,其余的运算仍按照乘法法则进行。
(2)可以进行简便运算。
(以上为黑板左侧内容,没有PPT教学设备的课堂可在右侧安排书写相应例题)
[4]补充讲解:数形结合的思想
【师】我们回过头来,看看为什么阿凡提没有答应换地。
你们这次能给出答案吗?
【生】因为巴依老爷给他的地少了,原来是a 2,现在只有a 2−25了。
【师】那根据刚才的启发,大家看下面这幅图,能直观地说明平方差公式吗?
【生】通过平移,两个浅色部分的长方形形状是一样的。
根据面积的等量关系,大正方形扣除小正方形之后剩下的面积,就等于边长分别为(a-b)和(a+b)的长方形。
三、归纳总结:
本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a ,第二个数b ;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.
略
◆ 教学反思。