主变压器强迫油循环风冷控制回路改进
强油循环风冷变压器冷却控制回路发生机械故障的研究及改进

畿囊裂蹴YV A L L El 电子科学强油循环风冷变压器冷却控制回路发生机械故障的研究及改进廖立茜梅晋(谭家湾500kV变电站四川德阳618000)[摘要】在500kV强迫油循环风冷变压器冷却系统的日常维护工作中,针对四J I l某变电站型号为O D FPSZ一250000/500变压器的冷却器控制回路进行分析,若出现交流接触嚣机械战障,对其可能产生的危害进行厂深入的研究.[关键字】变压器冷却控制回路机械故障中图分类号:T M7文献标识码:B文章编号:1671—7597(2008)1210017-01一、引曹变压器时电力传输过程中的重要电力设备.根据不同的分类标准,目前市场上存在油浸自冷式、油浸风冷式及强迫油循环式等多种变雎器。
其中超大型变压器由于具有承受负载大、噪音小和结构简单等优点,在电力系统中被广泛应用。
目前国内对这些超大型变压器大多会采用强迫油循环导向风冷方式,这种冷却方式采用的是油泵导向强迫油加速循环,经风冷散热器使变压器油得到冷却。
按照《变压器运行规程》的相关规定,为防止变压器油劣化过速,上层油温一般度,不宜经常超过85摄氏这是因为温度升高,油的老化加快,根据试验得出,当平均温度每升高10摄氏度时,油的劣化速度就会增加1.52倍,一旦变压器因油温过高导致事故发生,就会给系统的正常供电和安全运行带来严重的影响,因此根据变压器的容量及其重要程度,必须装设良好且可靠的冷却系统。
而冷却系统的控制叫路侧直接决定了整个系统的运行水平,应尽量减少控制回路故障造成的影响。
据变电站实际使用情况,因控制回路继电器接点不能上E确动作所造成的机械故障,占到了所有故障的绝大多数。
因此,改进冷却拄制【n1路具有非常重要的意义。
=、O D FPSZ一25∞∞/500变压嚣翌油风冷的控翻回蘑工作原理图1-!为某站OD FPSZ一250000/500变压器强油风冷的一组控制凹路。
共有4组冷却器.运行时分别置于“工作”、。
500kV强迫油循环变压器冷却器异常分析及解决方法

500kV强迫油循环变压器冷却器异常分析及解决方法发布时间:2022-10-26T09:05:29.996Z 来源:《中国电业与能源》2022年第12期作者:黄晓燕[导读] 高电压等级、大容量变压器多采用强迫油循环冷却方式,变压器冷却器控制装置及附属设备的可靠性直接影响变压器的安全运行,本文对某发电公司2号主变运行中一组冷却器故障退出原因进行分析,并制定整改措施。
黄晓燕(广东大唐国际雷州发电有限责任公司,广东湛江524255)摘要:高电压等级、大容量变压器多采用强迫油循环冷却方式,变压器冷却器控制装置及附属设备的可靠性直接影响变压器的安全运行,本文对某发电公司2号主变运行中一组冷却器故障退出原因进行分析,并制定整改措施。
关键词:500kV三相一体变压器;大容量;冷却器;接触器0 引言随着国家工业不断的发展,变压器电压等级越来越高、容量越来越大,为保证变压器的安全运行、减少对电网的扰动,辅助设备的可靠性及保护装置配置的合理性、动作的准确性尤为重要。
现役汽轮机发电组中主变压器通常是采用设备的定期轮换及开机前保护传动试验及辅助设备的联锁试验来验证辅助设备及保护的可靠性。
1 系统概况某发电公司主变为保定天威保变电气股份有限公司生产的三相一体双绕组、强油风冷、无励磁调压变压器组合,规范为SFP-1140000/500,1140MV A,525±2×2.5%/27kV,1253.7/24377A,三相采用YN,D11连接组。
变压器冷却器控制装置为保定瑞高电气有限公司XKWFP-37系列智能型变压器冷却器控制柜。
变压器冷却器控制装置正常运行为就地控制模式,由控制柜PLC程序控制。
每组冷却器分为:“工作”、“辅助”、“备用”、“停止”四种状态。
“工作”状态的冷却器是指当变压器投入运行时即投入运行的冷却器。
“辅助”状态的冷却器是指当变压器油面温度或负载电流达到规定值时投入运行的冷却器。
“备用”状态的冷却器是指当变压器工作冷却器或辅助冷却器出现故障时投入运行的冷却器。
浅谈变压器强油风冷油泵负压进气及消除措施

p p Th u p e sn a u e d i r v n e m u . e s p r s i g me s s a mp o i g r — r n
( . tce o eeo ot ies y T i a 0 0 0 , hn ; . a u nN . h r l o r l t 1At h dclg N rhUnvri , ay n 3 0 8 C ia2 T i a o 1 ema P we a , a l f t u y T Pn T iu 0 0 2 , hn ) ay a n 3 0 1 C ia
摘
要 : 对 变 压 器 强 迫 油 循 环风 冷 方 式 中 , 泵 油
1 潜油泵负压进气 的部位与原 因
负压进 气的部 位 、 因、 果进行 了详 细分 析 , 原 后 并提
出了消除油 泵 负压进 气 的措 施 以及 油 泵 的 改造 方
1 1 潜油泵 电动机 壳体 负压 区进 气 .
油位下 , 当流速超过一定数值时, 则会 出现负压区。
由于该 部位 还 存 在 较 大 的 涡 流 , 剧 了负 压 , 行 加 运 中该部 位 曾多次 发生 过 负 压进 气 , 量 实测 结 果也 大
证 明 了这 1 ( 表 1 。 点 见 )
但从运行状况来看 , 由于潜油泵负压进气导致变压
(u 7) S m.7
浅 谈 变 压 器 强 油 风 冷 油 泵 负压 进 气 及 消 除措 施
阎根 弟 王晓春2 ,
(. 1 中北 大学分校 , 山西 太原 0 00 ;. 308 2 太原 第一 热 电厂 , 山西 太原 0 02 ) 30 1
变压器冷却方式改造的可行性分析

变压器冷却方式改造的可行性分析柴冰;魏韬;史雁坤;彭玉春【摘要】近年来,因变压器强迫油循环方式存在缺陷多、损耗大、维护量大等缺点,需要及时改造。
文章通过对一台220千伏变压器冷却方式改造工程的分析,证实了改变变压器冷却方式的可行性和经济性,并总结出了一些施工过程中的经验与教训。
%In recent years, forced oil circulation for cooling the transformer there is a fault and more, big loss, maintenance workload and other shortcomings, be phased out, renovation project is gradually increasing. Based on the transformation of a 220 kilovolt transformer engineering analysis confirms the feasibility of changing the transformer cooling method, summarizes some lessons learned from the process of transformation, so that we communicate and discuss.【期刊名称】《河南机电高等专科学校学报》【年(卷),期】2011(019)006【总页数】3页(P23-25)【关键词】变压器;冷却方式;改造【作者】柴冰;魏韬;史雁坤;彭玉春【作者单位】周口供电公司,河南周口466000;周口供电公司,河南周口466000;华北水利水电学院,河南郑州450011;周口供电公司,河南周口466000【正文语种】中文【中图分类】TM407强迫油循环冷却方式因冷却效果好、占地面积小,在2000年以前被大部分变压器生产厂家采用。
强迫油循环风冷变压器“冷却器全停”故障的分析与处理

强迫油循环风冷变压器“冷却器全停”故障的分析与处理【摘要】大型变压器在高压电网运行中最重要的设备之一,而大型变压器大多采用强油循环风冷方式,其冷却系统的可靠运行的直接关系到变压器的使用寿命及运行安全,本文主要阐述了强油风冷变压器冷却系统的控制回路,通过其常见故障情况,介绍了电力变压器强油风冷全停原因及处理方法,并对强油风冷变压器风冷控制原理作了分析,希望可以在提高风冷系统运行可靠性、降低故障率的运行工作中,起到一定作用。
【关键词】强迫油循环;变压器;风冷;处理;冷却系统;故障;分析0.前言大型变压器的冷却系统主要由箱体、油枕、散热管等部分组成。
常见的冷却方式有强迫油循环风冷(OFAF)和强迫油循环水冷(OFWF)两种。
箱体(即油箱)里灌满变压器油,铁芯与绕组浸在油里,流动的变压器油可以帮助绕组与铁芯散热,冷却器通过上下油管与油箱连接,油通过冷却器内密集的铜管簇,利用风扇吹风或循环水作冷却降温,再利用油泵打入油冷却器后再复回油箱。
在负荷和环境温度不变的情况下,强油风冷变压器运行中一旦发生“冷却器全停”,油温会急剧上升,将对变压器内部绝缘材料造成很大威胁,可能造成绝缘老化、击穿。
如果处理不及时或者处理不当,会造成变压器损坏及更大电网事故。
因此规程规定,当强油风冷变压器风冷全停,在额定负载下运行20分钟。
20分钟后顶层油温未达到75℃,则继续运行到顶层油温达到75℃。
但是切除全部负荷到的最长时间在任何情况下不得超过1小时。
因此做好冷却系统的运行维护、技术改造和反事故措施是非常重要的一项工作。
1.“冷却器全停”故障的原因分析当工作的一组冷却器或辅助冷却器发生故障时,置备用位置的冷却器自动投入运行,并发出备用冷却器投入信号,不会降低变压器的冷却效果,对变压器的整体运行不会造成危害。
对变压器危害最大的是冷却器全停。
下面介绍下“冷却器全停”信号的原理。
(1)“冷却器全停”,“工作电源I故障(或工作电源II故障)”两个信号发出。
强迫油循环风冷变压器冷却器全停故障的分析与处理

强迫油循环风冷变压器冷却器全停故障的分析与处理摘要:本文对强迫油循环风冷变压器冷却器全停故障进行了分析,并提出了相应的处理方法。
全停故障是指冷却器系统完全失去运行或停止工作的情况,可能导致设备过热、功率降低、绝缘老化、安全风险等潜在影响。
针对这种故障,需要进行有效的故障诊断和修复措施,包括检查电源、控制回路和机械部件,确保系统恢复正常运行。
关键词:强迫油循环风冷变压器冷却器;全停故障;故障分析;一、引言强迫油循环风冷变压器冷却器的作用重要性在于通过循环系统将变压器内部油冷却剂与外界空气进行热交换,有效降低温度,控制设备温度、提高容量和可靠性,并减少能源消耗和环境污染。
若发生全停故障,可能导致设备过热、负载能力下降、绝缘老化、安全隐患等严重影响,因此需要及时处理修复以确保设备正常运行和安全操作【1】。
二、故障原因分析(一)设备故障可能原因的分析和排查:电源故障:电源故障可能包括电源供应不稳定、电压波动、断电等问题。
在排查电源故障时,可以检查电源线是否连接良好,测量电源输出电压是否正常,并确保供电系统的稳定性【2-3】。
控制回路故障:控制回路故障可能导致设备无法正常运行或产生错误的信号。
在排查控制回路故障时,可以检查控制器的连接、传感器和执行器的工作状态,以及控制回路的连线和电气元件是否有故障【4】。
冷却液泵故障:冷却液泵是用来循环冷却液体的设备,在故障时可能导致设备过热。
排查冷却液泵故障时,可以检查泵的电源供应和电机工作状态,还可以检查管道连接是否正常以及冷却系统中是否存在堵塞或泄漏的情况【5】。
温度探测器故障:温度探测器用于监测设备温度,如果出现故障可能导致无法准确监测温度变化。
在排查温度探测器故障时,可以检查连接线路是否正常、探测器的位置是否合适,并进行必要的校准或更换。
(二)环境因素可能导致的故障:高温环境下的散热问题:在高温环境下,设备的散热能力可能受限,导致设备内部温度升高。
这可能导致设备过热故障或引起其他组件老化、膨胀等问题。
主变风冷控制回路异常分析与处理

主变风冷控制回路异常分析与处理0 引言主变压器是电网的核心设备,主要作用是变换电压,以利于功率的传输,其能否安全运行,关系到电网的安危。
由于运行时变压器的空载损耗与负载损耗会产生大量的热量,变压器的油温会随着负载和环境温度的增加而上升。
为保证变压器油温不超过变压器绝缘所允许的温度,必须采取有效的方式进行冷却,对于超高压主变一般采取外冷却方式。
文章以油浸风冷的冷却方式为例,当主变冷却回路发生故障时,严重时将导致主变的冷却回路停止工作,因此对主变风冷回路的运行维护工作异常重要[1]。
1 主变风冷的作用主变在运行过程中会产生铁损和铜损,这两部分损耗全部转化为热量,使铁芯和绕组发热,温升直接影响变压器绝缘材料的寿命、机械强度、负荷能力及使用年限。
变压器油箱内充满了变压器油,变压器油的作用是绝缘和散热。
变压器油可以增加变压器内部各部件的绝缘强度。
变压器绕组的绝缘多采用A级绝缘,因此绕组的温升为65 ℃。
当温度在80 ℃到140 ℃之间,温度每增加6 ℃,绝缘寿命将要减少一半[2]。
为延长主变绝缘寿命,需要在主变变压器油温度较高时进行冷却。
在正常带负荷运行时油温越高,油密度越小。
因此主变上层油温比下层油温高,当上下层油温产生温差时,经过冷却器使油温迅速降低,较低的油温自然下降到变压器底部形成油温对流,流回油箱,起到油温降低的作用。
当主变通过油温高低自然形成对流则称为自然风冷;当自然对流无法满足冷却需求时,增加一台潜油泵而增加油流则称为强迫油循环方式。
2 主变风冷回路的原理2.1 主变风冷电源回路对于强油循环风冷变压器,在运行中,当冷却系统发生故障切除全部冷却器时,变压器在额定负载下可运行20 min。
20 min以后,当油面温度尚未达到75 ℃时,允许上升到75 ℃,但冷却器全停的最长运行时间不得超过1 h。
对于油浸风冷的冷却系统部分风扇停止运行后,顶层油温不超过65 ℃时,允许带额定负载运行。
当主变风冷电源一旦失去,则冷却系统停止运行,油温将无法控制在合格范围内,因此将冷却系统定义为站内重要负荷,需要双路电源供电,两路电源不得取自同一380 V站用主母线上,且当任一电源故障时,另一路电源可自动投入运行[3]。
220kV强迫油循环变压器风冷控制二次回路改进

220kV 强迫油循环变压器风冷控制二次回路改进邹勇(惠州供电局)引言冷却器全停跳闸是强迫油循环主变防止380V 交流Ⅰ、Ⅱ段电源消失主变温度过高影响主变安全稳定运行的重要保护元件。
冷却器全停跳闸就是在380V 交流Ⅰ、Ⅱ段电源消失的情况下,经过一定延时联跳三侧主变,其中短延时经负荷闭锁、长延时不经任何闭锁。
但冷却器全停跳闸在某些情况下也会发生误动作,给变压器运行带来安全隐患。
1冷却器全停跳闸误动作现象及检查1.1误动事故一2007年5月14日某220kV 变电站运行中的#2主变冷却器全停跳闸动作,出口跳闸。
值班人员及继保人员检查发现是冷却器全停跳闸长延时继电器故障、继电器接点导通引起主变非电量动作跳闸,故障时间继电器为图中2BSJ ,而380V 交流Ⅰ、Ⅱ段电源均正常,风扇、油泵运转正常,切换回路完好。
1.2误动事故二2009年3月28日某220kV 变电站运行中的#1主变非电量保护装置跳闸出口,跳开三侧开关。
值班人员及继保人员检查发现#1主变冷却器380V 电源用电源Ⅰ,电源Ⅰ交流接触器能动作吸合,但辅助触点故障,故障接触器为图1中1JC ,导致冷却器全停延时启动回路动作出口跳闸,而接触器能正常吸合,风扇、油泵能正常运转。
2事故原因分析及其对策2.1事故原因分析冷却器全停跳闸误动原因有以下几点:(1)误动事故一中,冷却器全停跳闸延时继电器故障,图中2BSJ ,是造成本次误动作事故的直接原因。
从该事故可以看出,无论是短延时继电器,图中1BSJ ,还是长延时继电器故障,图中2BSJ ,都将导致主变冷却器全停跳闸,即时短延时继电器经负荷闭锁,图中过负荷闭锁继电器,但220kV 主变负荷比较重。
在380V 交流电源Ⅰ、Ⅱ段切换后未加装电压闭锁,给主变以后安全稳定运行留下隐患。
(2)误动事故二中,接触器辅助触点故障,图中1JC 常闭接点,是造成本次误动作事故的直接原因。
当主变冷却器380V 电源用电源Ⅱ,电源Ⅱ交流接触器辅助触点故障,JC 常闭接点,也将导致冷却器全停跳闸延时启动回路启动动作跳闸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主变压器强迫油循环风冷控制回路改进
华北油田任东220kV变电所1#、2#主变压器采用强迫油循环风冷方式,因原风机控制设备元器件老化严重、故障频发,所以对这两台主变压器的冷却控制设备进行升级改造,采用XKWFP-15型控制系统替换原设备。
安装完毕,在进行调试、传动试验时,我们发现该型产品电源的自动控制回路存在一个很大的缺陷:冷却系统采用双路电源供电,通过转换开关SAM1可任选一路为工作或备用,不论将转换开关置Ⅰ工作或Ⅱ工作位置,当备用电源出现断相或失电,工作电源奇怪的被切断,致使冷却器失去电源而全部停止运行。
各位同行都知道,当主变压器冷却器全停时,若不及时发现处理,变压器各侧断路器就会延时跳闸。
可见这个缺陷影响冷却系统的可靠性,甚至威胁电网的安全稳定运行,必须分析原因并加以完善。
1、工作原理简述及缺陷原因分析
图1为电源自动控制回路部分,若两路电源都正常,接触器K1、K2线圈带电吸合,断相保护继电器KX1和KX2不动作,接触器K7不动作。
当将转换开关SAM1置I位,即电源I工作电源Ⅱ备用,电源ISAM1③~④触点K1动合触点K7动断触点KMM2动断触点K5动断触点(因其线圈与本文无关,未画出)KMM1线圈带电吸合,投入电源I。
如果电源I出现故障,电源Ⅱ正常,断相保护继电器KX1动作,K7动作,KMM1线圈失电,切断电源I。
同时,电源IISAM1⑤~⑥触点K7动合触点或K1动断触点KMM1动断触点K5动断触点KMM2线圈带电吸合,投入电源II。
但如果电源I工作过程中,备用电源II出现断相或失电,断相保护继电器KX2动作,K7动作,致使KMM1线圈失电,切断电源I,造成主变冷却器全。