2019高考数学专题突破:解三角形专题(含答案)

合集下载

2019年高考一轮热点难点名师精讲与专题25:实际问题中的解三角形问题

2019年高考一轮热点难点名师精讲与专题25:实际问题中的解三角形问题

考纲要求:1.能运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.2.研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.常见的命题角度有:(1)两点都不可到达;(2)两点不相通的距离;(3)两点间可视但有一点不可到达. 基础知识回顾: 1.仰角和俯角在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角.(如图(a )).图(a ) 图(b )2.方位角:从某点的指北方向线起按顺时针转到目标方向线之间的水平夹角叫做方位角.如B 点的方位角为α(如图(b )).3.方向角:正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)××度. 4.a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形:(1) a ∶b ∶c =sin A ∶sin B ∶sin C ;(2) a =2Rsin A ,b =2Rsin B ,c =2Rsin C . 5.余弦定理:a 2=b 2+c 2-2bccos A ,b 2=a 2+c 2-2accos B ,c 2=a 2+b 2-2abcos C .变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.6.在△ABC 中,已知a ,b 和A 解三角形时,解的情况A 为锐角 A 为钝角或直角图形关系式 a <bsinA a =bsinAbsinA <a <ba ≥ba >ba ≤b解的 个数无解 一解 两解一解 一解 无解7.三角形常用的面积公式(1)S =12a ·h a (h a 表示a 边上的高).(2)S =12absinC =12acsinB =12bcsinA =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).应用举例:类型一、测量高度问题【例1】【河北省衡水中学2018届高三第十六次模拟考试】如图,一山顶有一信号塔CD (CD 所在的直线与地平面垂直),在山脚A 处测得塔尖C 的仰角为α,沿倾斜角为θ的山坡向上前进l 米后到达B 处,测得C 的仰角为β.(1)求BC 的长;(2)若24l =, 45α=, 75β=, 30θ=,求信号塔CD 的高度. 【答案】(1) ()()sin sin BC l αθβα-=-;(2) 2483-.【例2】要测量电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,求电视塔的高度.【答案】10 6【解析】如图,设电视塔AB高为x m,则在Rt△ABC中,由∠ACB=45°得BC=x.在Rt△ADB中,∠ADB=30°,则BD=3x.在△BDC中,由余弦定理得,BD2=BC2+CD2-2BC·CD·cos120°,即(3x)2=x2+402-2·x·40·cos120°,解得x=40,所以电视塔高为40 m.点评:求解高度问题应注意的3个问题类型二、测量距离问题研究测量距离问题,解决此问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.常见的命题角度有:(1)两点都不可到达;(2)两点不相通的距离;(3)两点间可视但有一点不可到达.【例3】【江苏省南京师大附中2018届高三高考考前模拟考试】如图,三个警亭有直道相通,已知在的正北方向6千米处,在的正东方向千米处.(1)警员甲从出发,沿行至点处,此时,求的距离;(2)警员甲从出发沿前往,警员乙从出发沿前往,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达后原地等待,直到甲到达时任务结束.若对讲机的有效通话距离不超过9千米,试问两人通过对讲机能保持联系的总时长?【答案】(1);(2)【解析】分析:(1)在中,,,,然后由正弦定理可得BP,(2)甲从C到A,需要4小时,乙从A到B需要1小时.设甲、乙之间的距离为,要保持通话则需要.当时,当时,分别求得对应的时长在求和即得到结论.解:(1)在中,,,由正弦定理,,即,故的距离是9-3千米.,即,解得,又所以,时长为3小时.3+=(小时).答:两人通过对讲机能保持联系的总时长是小时.点睛:考查正弦定理解三角形的应用以及对实际应用的分析问题和解决的能力,属于中档题.【例4】【上海市2018年5月高考模练习(一)】钓鱼岛及其附属岛屿是中国固有领土,如图:点分别表示钓鱼岛、南小岛、黄尾屿,点在点的北偏东方向,点在点的南偏西方向,点在点的南偏东方向,且两点的距离约为3海里.(1)求两点间的距离;(精确到0.01)(2)某一时刻,我国一渔船在点处因故障抛锚发出求教信号.一艘国舰艇正从点正东10海里的点处以18海里/小时的速度接近渔船,其航线为 (直线行进),而我东海某渔政船正位于点南偏西方向20海里的点处,收到信号后赶往救助,其航线为先向正北航行8海里至点处,再折向点直线航行,航速为22海里/小时.渔政船能否先于国舰艇赶到进行救助?说明理由.【答案】(1)14.25(2)渔政船能先于国舰艇赶到进行救助.【例5】如图所示,A,B两点在一条河的两岸,测量者在A的同侧,且B点不可到达,要测出AB的距离,其方法在A所在的岸边选定一点C,可以测出AC的距离m,再借助仪器,测出∠ACB=α,∠CAB=β,在△ABC中,运用正弦定理就可以求出AB.若测出AC=60 m,∠BAC=75°,∠BCA=45°,则A,B两点间的距离为________m.【答案】200 7 m.点评:求距离问题的2个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.类型三、测量角度问题【例6】【河北省邯郸市2017-2018学年高二下学期期末考试】如图,某军舰艇位于岛的的正西方处,且与岛的相距12海里.经过侦察发现,国际海盗船以10海里/小时的速度从岛屿出发沿北偏东30°方向逃窜,同时,该军舰艇从处出发沿北偏东的方向匀速追赶国际海盗船,恰好用2小时追上.(1)求该军舰艇的速度.(2)求的值.【答案】(1)14海里/小时;(2).点睛:与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.【例7】如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值. 【答案】2114.点评:解决测量角度问题的3个注意事项(1)测量角度时,首先应明确方位角及方向角的含义. (2)求角的大小时,先在三角形中求出其正弦或余弦值.(3)在解应用题时,要根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理“联袂”使用的优点. 方法、规律归纳: 1.三角形中常见的结论(1)A +B +C =π. (2)在△ABC 中,A >B ⇔a >b ⇔sinA >sinB ⇔cosA <cosB . (3)任意两边之和大于第三边,任意两边之差小于第三边.(4)三角形内的诱导公式: sin (A +B )=sin C ;cos (A +B )=-cos C ;tan (A +B )=-tan C ;sin A +B 2=cos C 2;cos A +B 2=sin C2.(6)在△ABC 中,A ,B ,C 成等差数列的充要条件是B =60° .(7)△ABC 为正三角形的充要条件是A ,B ,C 成等差数列且a ,b ,c 成等比数列. 2.判定三角形形状的两种常用途径(1)通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断. (2)利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断. 3.三角形面积公式的应用原则(1)对于面积公式S =12absin C =12acsin B =12bcsin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.实战演练:1.【东北师大附中、哈尔滨师大附中、辽宁省实验中学2017届高三下学期第四次联合模拟考试】如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()001515BAC ∠=方向上,匀速向北航行20分钟到达B 处,测得山顶P 位于北偏东060方向上,此时测得山顶P 的仰角060,若山高为23千米, (1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处的南偏东什么方向?【答案】(1)航行速度是每小时()631+千米.(2)山顶位于D 处南偏东0135.所以()231AB =+,船的航行速度是每小时()631+千米.(2)在BCD ∆中,由余弦定理得: 6CD =,在BCD ∆中,由正弦定理得:2sin sin sin 2CD B CDB DBC CDB =⇒∠=∠∠, 所以,山顶位于D 处南偏东0135.2.【江苏省盐城中学2018届高三上学期期末考试】我校为丰富师生课余活动,计划在一块直角三角形ABC 的空地上修建一个占地面积为S (平方米)的AMPN 矩形健身场地,如图,点M 在AC 上,点N 在AB上,且P 点在斜边BC 上,已知60ACB ∠=︒, 30AC =米, AM x =米, []10,20x ∈.设矩形AMPN健身场地每平方米的造价为37k S 元,再把矩形AMPN 以外(阴影部分)铺上草坪,每平方米的造价为12kS元(k 为正常数)(1)试用x 表示S ,并求S 的取值范围; (2)求总造价T 关于面积S 的函数()T f S =;(3)如何选取AM ,使总造价T 最低(不要求求出最低造价)【答案】(1) 20032253S ≤≤ (2) 选取AM 的长为12米或18米时总造价T 最低137T k S =,又ABC ∆的面积为4503,即草坪造价()2124503kT S S=-,写出总造价即可;(3)根据均值不等式21631263S S+≥即可求出造价的最小值.(2)矩形AMPN 健身场地造价137T k S = 又ABC ∆的面积为4503,即草坪造价()2124503kT S S=-, 由总造价122163,25,20032253T T T T k S S S ⎛⎫=+∴=+≤≤ ⎪ ⎪⎝⎭(3)21631263S S+≥ 当且仅当2163S S=即2163S =时等号成立,此时, ()3302163x x -=解得12x =或18x = 答:选取AM 的长为12米或18米时总造价T 最低.3.【江西省南昌市2018届高三第一轮复习训练题数学(四)】(Ⅰ)利用正余弦函数的定义和向量知识证明: ()cos cos cos sin sin αβαβαβ-=+;(Ⅱ)如下三图,四边形ABCD 是由两个斜边长为x 的直角三角形拼成,其面积为1, 89,31.BAD BAC ∠=∠= TUV ∆是斜边长为x 的直角三角形,63,.TUV TV y ∠==四边形PQRS 是平行四边形,其中,,,PQ y PS x QPS a ==∠=其面积为2,求a 的值.【答案】(Ⅰ)证明见解析;(Ⅱ)89或91.(Ⅱ) 在图1中可得cos31,sin31,sin32,cos32.AB x BC x AD x CD x ==== 再由四边形的面积为1, 2221141sin62sin6444cos26cos28x x x =+⇒=+由()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=- 得()()1cos cos cos cos 2αβαβαβ⎡⎤=++-⎣⎦ 2000042cos cos 2cos cos ,22cos26cos28cos1cos27A B A B x αβ+-===+002cos1cos27x =.在图2中得2cos27cos1y =在图3中得22sin sin sin sin89sin91cos1xy a a a ==⇒== 又8991.a =或4.在一水域上建一个演艺广场.演艺广场由看台Ⅰ,看台Ⅱ,三角形水域ABC ,及矩形表演台BCDE 四个部分构成(如图).看台Ⅰ,看台Ⅱ是分别以AB , AC 为直径的两个半圆形区域,且看台Ⅰ的面积是看台Ⅱ的面积的3倍;矩形表演台BCDE 中, 10CD =米;三角形水域ABC 的面积为4003平方米.设BAC θ∠=.(Ⅰ)当6πθ=时,求BC 的长;(Ⅱ)若表演台每平方米的造价为0.3万元,求表演台的最低造价.【答案】(Ⅰ)40;(Ⅱ)120万元.()80040423cos sin θθ=- ,即()80023cos 40423cos 40sin sin BC θθθθ-=-= 所以 23cos 40sin BC θθ-= , ()0,θπ∈. 当6πθ=时, 23cos 4040sin BC θθ-==点睛:本题主要考查了根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.利用导数求函数的最值是解决本题的关键.属于中档题.一般解决实际应用题目先要读懂题目构建数学模型,再用数学知识解决其中的问题。

专题15 解三角形-2019年高考数学母题题源系列(江苏专版)(原卷版)

专题15 解三角形-2019年高考数学母题题源系列(江苏专版)(原卷版)

专题15 解三角形【母题来源】【2019年高考江苏卷】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)3c =;(2)5.【解析】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A B a b=, 由正弦定理sin sin a b A B =,得cos sin 2B B b b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【名师点睛】本小题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.【命题意图】(1)掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(3)考查数形结合能力、化归与转化能力、运算求解能力,考查的核心素养是逻辑推理、数学运算、直观想象.【命题规律】解三角形问题是高考重要知识点,主要考查以斜三角形为背景求三角形的基本量、面积或判断三角形的形状,解三角形与不等式、三角函数性质、三角恒等变换交汇命题成为高考的热点.常见的命题角度主要有:(1)直接利用正、余弦定理解三角形;(2)与三角形面积有关的问题;(3)三角形形状的判断;(4)解三角形与三角恒等变换相结合.【答题模板】解答此类题目,一般考虑如下四步:第一步,定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向.第二步,定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化.第三步,求结果.第四步,再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形.【方法总结】(一)利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用.常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C +=-等.(2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sin cos 22A B C +=; cos sin 22A B C +=. (二)利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C ++=这个结论. 提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.(三)求三角形面积的方法(1)若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(四)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.(五)三角形中的综合问题(1)解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.(2)注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.(3)正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.1.【江苏省徐州市2018-2019学年高三考前模拟检测数学试题】在△ABC 中,已知3AC =,cos 14B =,(1)求AB 的长;(2.2.【江苏省镇江市2019届高三考前模拟(三模)数学试题】已知,,a b c 分别为ABC △三个内角,,A B C 所对的边,若向量(,cos )b B =m ,(cos ,2)C c a =-n ,且⊥m n .(1)求角B ;(2)若||=m 24ac =,求边,a c .3.【江苏省南通市2019届高三适应性考试数学试题】在△ABC 中,已知2AB =,cos 10B =(1)求BC 的长;(2.4.【江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研考试数学试题】在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,()()()sin sin sin sin a A B c b B C -=-+.(1)求角C 的值;(2)若4a b =,求sin B 的值.5.【江苏省苏锡常镇四市2019届高三教学情况调查(二)数学试题】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 2cos sin A C-=. (1)求角A 的大小;(2)若cos(B +6π)=14,求cos C 的值.6.【江苏省南通市基地学校2019届高三3月联考数学试题】在△ABC 中,角,,A B C 所对的边分别为,,a b c .向量()2,a b =m ,()1,cos C =-n ,且∥m n .(1)若30A =︒,求角C 的值;(2)求角B 的最大值.7.【江苏省南通、扬州、泰州、苏北四市七市2019届高三第一次(2月)模拟数学试题】在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,cos cos a B A =,cos A =. (1)求角B 的值;(2)若a =ABC 的面积.8.【江苏省泰州中学2019届高三3月月考数学试题】在△ABC 中,三个内角A ,B ,C 所对的边依次为a ,b ,c ,且1cos 4C =. (1)求22cos 2sin 22A B C ++的值; (2)设2c =,求a b +的取值范围.9.【江苏省如皋市2019届高三教学质量调研(三)数学试题】在△ABC 中,tan 3tan A B =-,cos cos b C c B +=.(1)求角C 的大小;(2)设2()sin()cos ()2x B f x x A +=++,其中5π[0,]6x ∈,求()f x 的取值范围.10.【江苏省南京市2019届高三上学期综合模拟数学试题】在△ABC 中,3π,6,4A AB AC ===(1)求πsin 4B ⎛⎫+ ⎪⎝⎭的值; (2)若点D 在BC 边上,AD BD =,求AD 的长.11.【江苏省南京市六校联合体2019届高三12月联考数学试题】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c sin cos A a B =.(1)求角B ;(2)若3b =,sin C A =,求a ,c .12.【江苏省南通市通州区、海门市2019届高三第二次质量调研数学试题】在△ABC 中,已知()22sin sin sin sin sin .A B A C C -=-(1)求内角B 的大小;(2)若cos 3A =求sin2C 的值.。

2019年高考数学大二轮复习专题三三角函数3-2三角变换与解三角形练习

2019年高考数学大二轮复习专题三三角函数3-2三角变换与解三角形练习

3.2三角变换与解三角形【课时作业】A 级1.(2018·全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =()A .42B .30 C.29D .25解析: ∵cos C 2=55,∴cos C =2cos 2C2-1=2×⎝ ⎛⎭⎪⎫552-1=-35.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×⎝ ⎛⎭⎪⎫-35=32,∴AB =32=4 2. 故选A. 答案: A2.(2018·山东菏泽2月联考)已知α∈⎝ ⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)=()A.427B .±225C .±427D .225解析: ∵α∈⎝⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,∴cos α=13,sin α=-223,由同角三角函数的商数关系知tan α=sin αcos α=-2 2.∴tan(π+2α)=tan2α=2tan α1-tan2α=-421--22=427,故选A. 答案: A3.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于() A.32B .34C.36D .38解析: 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3=B ,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.答案: B 4.若α∈⎝ ⎛⎭⎪⎫π4,π,且3cos2α=4sin ⎝⎛⎭⎪⎫π4-α,则sin2α的值为()A.79B .-79 C .-19D .19解析: 3(cos 2α-sin 2α)=22(cos α-sin α),因为α∈⎝ ⎛⎭⎪⎫π4,π,所以cos α-sin α≠0,所以3(cos α+sin α)=22,即cos α+sin α=223,两边平方可得1+sin2α=89⇒sin2α=-19.答案: C5.(2018·南昌市第一次模拟测试卷)已知台风中心位于城市A 东偏北α(α为锐角)的150千米处,以v 千米/时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)的200千米处,若cos α=34cos β,则v =() A .60B .80 C .100D .125解析: 如图,台风中心为B,2.5小时后到达点C ,则在△ABC中,AB sin α=AC sin β,即sin α=43sin β,又cos α=34cos β.∴sin 2α+cos 2α=169sin 2β+916cos 2β=1=sin 2β+cos 2β,∴sin β=34cos β, ∴sin β=35,cos β=45,∴sin α=45,cos α=35,∴cos(α+β)=cos αcos β-sin αsin β=35×45-45×35=0,∴α+β=π2,∴BC 2=AB 2+AC 2,∴(2.5v )2=1502+2002,解得v =100,故选 C. 答案: C 6.化简:π-α+sin 2αcos2α2=________.解析:π-α+sin 2αcos2α2=2sin α+2sin α·cos α12+cos α=2sin α+cos α12+cos α=4sinα.答案: 4sin α7.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C =________.解析:sin 2A sin C =2sin Acos A sin C =2a c ·b2+c2-a22bc =2×46·25+36-162×5×6=1. 答案: 18.(2018·开封市高三定位考试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,b tan B +b tan A =2c tan B ,且a =5,△ABC 的面积为23,则b +c 的值为________.解析: 由正弦定理及b tan B +b tan A =2c tan B ,得sin B ·sin B cos B +sin B ·sin A cos A =2sin C ·sin Bcos B ,即cos A sin B +sin A cos B =2sin C cos A ,亦即sin(A +B )=2sin C cos A ,故sin C =2sin C cos A .因为sin C ≠0,所以cos A =12,所以A =π3.由面积公式,知S △ABC =12bc sin A =23,所以bc =8.由余弦定理,知a 2=b 2+c 2-2bc cos A =(b +c )2-3bc ,代入可得b +c =7.答案: 79.(2018·浙江卷)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解析: (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35,由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.10.(2018·北京卷)在△ABC 中,a =7,b =8,cos B =-17.(1)求∠A ;(2)求AC 边上的高.解析: (1)在△ABC 中,因为cos B =-17,所以sin B =1-cos2B =437. 由正弦定理得sin A =asin B b =32.由题设知π2<∠B <π,所以0<∠A <π2.所以∠A =π3.(2)在△ABC 中,因为sin C =sin(A +B )=sin A cos B +cos A sin B =3314,所以AC 边上的高为a sin C =7×3314=332.B 级1.(2018·河南濮阳一模)已知△ABC 中,sin A ,sin B ,sin C 成等比数列,则sin 2Bsin B +cos B 的取值范围是() A.⎝ ⎛⎦⎥⎤-∞,22B .⎝ ⎛⎦⎥⎤0,22C .(-1,2)D .⎝⎛⎦⎥⎤0,3-32解析: 由sin A ,sin B ,sin C 成等比数列,知a ,b ,c ,成等比数列,即b 2=ac ,∴cos B =a2+c2-b22ac =a2+c2-ac 2ac =⎝ ⎛⎭⎪⎫a2c +c 2a -12≥2a 2c ·c 2a -12=12,当且仅当a =c 时等号成立,可知B ∈⎝⎛⎦⎥⎤0,π3,设y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B,设sin B +cos B =t ,则2sin B cos B =t 2-1.由于t =sin B +cos B =2sin ⎝ ⎛⎭⎪⎫B +π4,B ∈⎝ ⎛⎦⎥⎤0,π3,所以t ∈(1,2],故y =sin 2B sin B +cos B =2sin Bcos B sin B +cos B =t2-1t =t -1t ,t ∈(1,2],因为y =t -1t 在t ∈(1,2]上是增函数,所以y ∈⎝⎛⎦⎥⎤0,22.故选B. 答案: B2.(2018·石家庄质量检测(一))如图,平面四边形ABCD 的对角线的交点位于四边形的内部,AB =1,BC =2,AC =CD ,AC ⊥CD ,当∠ABC 变化时,对角线BD 的最大值为________.解析: 设∠ABC =θ,θ∈(0,π),则由余弦定理得AC 2=3-22cos θ,由正弦定理得1sin∠ACB =AC sin θ,得sin ∠ACB =sin θAC .在△DCB 中,由余弦定理可得,BD 2=CD 2+2-22CD cos ⎝ ⎛⎭⎪⎫π2+∠ACB =AC 2+2+22AC sin ∠ACB =3-22cos θ+2+22AC ×sin θAC =5+22(sin θ-cos θ)=5+4sin ⎝ ⎛⎭⎪⎫θ-π4,当θ=3π4时,⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫θ-π4max =1,∴BD 2m ax =9,∴BD max =3.答案: 33.已知向量a =⎝ ⎛⎭⎪⎫cos ⎝ ⎛⎭⎪⎫π2+x ,sin ⎝ ⎛⎭⎪⎫π2+x ,b =(-sin x ,3sin x ),f (x )=a ·b . (1)求函数f (x )的最小正周期及f (x )的最大值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=1,a =23,求△ABC 面积的最大值.解析: (1)易得a =(-sin x ,cos x ), 则f (x )=a ·b =sin 2x +3sin x cos x =12-12cos2x +32sin2x =sin ⎝ ⎛⎭⎪⎫2x -π6+12,所以f (x )的最小正周期T =2π2=π, 当2x -π6=π2+2k π,k ∈Z 时,即x =π3+k π(k ∈Z )时,f (x )取最大值是32.(2)因为f ⎝ ⎛⎭⎪⎫A 2=sin ⎝⎛⎭⎪⎫A -π6+12=1,所以sin ⎝ ⎛⎭⎪⎫A -π6=12⇒A =π3.因为a 2=b 2+c 2-2bc cos A , 所以12=b 2+c 2-bc , 所以b 2+c 2=bc +12≥2bc ,所以bc ≤12(当且仅当b =c 时等号成立),所以S =12bc sin A =34bc ≤3 3.所以当△ABC 为等边三角形时面积取最大值是3 3.4.如图,在一条海防警戒线上的点A 、B 、C 处各有一个水声检测点,B 、C 两点到A 的距离分别为20千米和50千米,某时刻B 收到发自静止目标P 的一个声波信号,8秒后A 、B 同时接收到该声波信号,已知声波在水中的传播速度是1.5千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求出x 的值; (2)求P 到海防警戒线AC 的距离.解析: (1)依题意,有PA =PC =x ,PB =x -1.5×8=x -12. 在△PAB 中,AB =20,cos ∠PAB =PA2+AB2-PB22PA·AB =x2+202--2x·20=3x +325x,同理,在△PAC 中,AC =50,cos ∠PAC =PA2+AC2-PC22PA·AC =x2+502-x22x·50=25x .∵cos ∠PAB =cos ∠PAC ,∴3x +325x =25x, 解得x =31.(2)作PD ⊥AC 于点D ,在△ADP 中, 由cos ∠PAD =2531,得sin ∠PAD =1-cos2∠PAD=42131,∴PD =PA sin ∠PAD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米.。

2019版文科数学讲义:第四章 三角函数 解三角形4.1 含答案

2019版文科数学讲义:第四章 三角函数 解三角形4.1 含答案

§4.1任意角、弧度制及任意角的三角函数最新考纲考情考向分析1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3。

理解任意角三角函数(正弦、余弦、正切)的定义.以理解任意角三角函数的概念、能进行弧度与角度的互化和扇形弧长、面积的计算为主,常与向量、三角恒等变换相结合,考查三角函数定义的应用及三角函数的化简与求值,考查分类讨论思想和数形结合思想的应用意识.题型以选择题为主,低档难度。

1.角的概念(1)角的分类(按旋转的方向)角错误!(2)象限角(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:长度等于半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.(2)角度制和弧度制的互化:180°=π rad,1°=错误!rad,1 rad=错误!°. (3)扇形的弧长公式:l=|α|r,扇形的面积公式:S=错误!lr=错误!|α|r2.3.任意角的三角函数的定义α为任意角,α的终边上任意一点P (异于原点)的坐标(x ,y ),它与原点的距离OP =r =错误! (r >0),则sin α=y r ;cos α=错误!;tan α=错误!;cot α=错误!;sec α=错误!;csc α=错误!.4.三角函数在各象限的符号规律及三角函数线(1)三角函数在各象限的符号:象限符号函数Ⅰ Ⅱ Ⅲ Ⅳsin α,csc α + + - -cos α,sec α + - - +tan α,cot α + - + -(2)三角函数线:正弦线 如图,角α的正弦线为错误!。

余弦线 如图,角α的余弦线为错误!。

正切线 如图,角α的正切线为错误!.知识拓展三角函数值的符号规律三角函数值在各象限内的符号:一全正、二正弦、三正切、四余弦.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.(×)(2)角α的三角函数值与其终边上点P的位置无关.(√) (3)不相等的角终边一定不相同.(×)(4)若α为第一象限角,则sin α+cos α〉1。

2019年高考试题:正余弦定理解三角形

2019年高考试题:正余弦定理解三角形

2019年高考试题训练一:2019年高考理科数学新课标Ⅰ卷第17题:ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c 。

设C B A C B sin sin sin )sin (sin 22-=-。

(Ⅰ)求A ;(Ⅱ)若c b a 22=+,求C sin 。

本题解析:(Ⅰ)本题目是边角转化和余弦定理四项式综合的经典题型。

半角转化:方程中每一项都有内角的正弦,每一项中正弦次数相加相等,可以把每一项中的正弦全部转化为对边,保持次数不变。

CC B B C B A C B 2222sin sin sin 2sin sin sin sin )sin (sin +-⇒-=-CB AC B C B A sin sin sin sin sin sin sin sin 2222=-+⇒-=bc a c b =-+⇒222。

根据余弦定理得到:32122cos 222π=⇒==-+=A bc bc bc a c b A 。

(Ⅱ)本题目是边角转化和一个角的正弦等于另外两个角和的正弦综合的经典题型。

边角转化:方程中每一项都有边,每一项中的边次数相加相等,可以把每一项中的边全部转化为对角的正弦,保持次数不变。

C B A c b a sin 2sin sin 222=+⇒=+。

C C A C C A C A B sin 21cos 23cos sin cos sin )sin(sin +=+=+=C C C C C sin 23cos 2326sin 2sin 21cos 23232=+⇒=++⨯⇒6sin 3cos 3sin 3cos 36-=⇒=+⇒C C C C 2sin 3cos -=⇒C C 2cos sin 3=-⇒C C 2)6sin(22)cos 6sin sin 6(cos 2=-⇒=-⇒πππC C C 4622)6sin(πππ=-⇒=-⇒C C 或125436πππ=⇒=-C C 或1211π=C 。

2019年高考数学(文)一轮复习第三章 三角函数、解三角形跟踪检测 (二十一)简单的三角恒等变换及答案

2019年高考数学(文)一轮复习第三章 三角函数、解三角形跟踪检测 (二十一)简单的三角恒等变换及答案

课时跟踪检测 (二十一) 简单的三角恒等变换一抓基础,多练小题做到眼疾手快1.已知cos ⎝ ⎛⎭⎪⎫π4-x =35,则sin 2x =( )A .1825B .725C .-725D .-1625解析:选C ∵sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =2cos 2⎝ ⎛⎭⎪⎫π4-x -1,∴sin 2x =-725.2.若tan θ=3,则sin 2θ1+cos 2θ=( )A . 3B .- 3C .33D .-33解析:选A sin 2θ1+cos 2θ=2sin θcos θ1+2cos 2θ-1=tan θ=3.3.简:cos 40°cos 25°1-sin 40°=( )A .1B . 3C . 2D .2解析:选C 原式=cos 220°-sin 220°cos 25° cos 20°-sin 20°=cos 20°+sin 20°cos 25°=2cos 25°cos 25°=2,故选C .4.已知tan(3π-x )=2,则2cos 2x2-sin x -1sin x +cos x =________.解析:由诱导公式得tan(3π-x )=-tan x =2, 故2cos 2x2-sin x -1sin x +cos x =cos x -sin x sin x +cos x =1-tan xtan x +1=-3.答案:-35.在△ABC 中,sin(C -A )=1,sin B =13,则sin A =______.解析:∵sin(C -A )=1,∴C -A =90°,即C =90°+A , ∵sin B =13,∴sin B =sin(A +C )=sin(90°+2A )=cos 2A =13,即1-2sin 2A =13,∴sin A =33. 答案:33二保高考,全练题型做到高考达标1.(2017·东北四市联考)已知sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,则cos 2α=( )A .1B .-1C .12D .0解析:选D ∵sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,∴12cos α-32sin α=32cos α-12sin α,即⎝ ⎛⎭⎪⎪⎫12-32sin α=-⎝⎛⎭⎪⎪⎫12-32cos α, ∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0.2.已知sin 2α=35⎝ ⎛⎭⎪⎫π2<2α<π,tan(α-β)=12,则tan(α+β)等于( )A .-2B .-1C .-211D .211解析:选A 由题意,可得cos 2α=-45,则tan 2α=-34,tan(α+β)=tan =tan 2α-tan α-β1+tan 2αtan α-β=-2.3.2cos 10°-sin 20°sin 70°的值是( )A .12B .32C . 3D . 2解析:选C 原式=2cos 30°-20° -sin 20°sin 70°=2 cos 30°cos 20°+sin 30°sin 20° -sin 20°sin 70°=3cos 20°cos 20°=3.4.在斜三角形ABC 中,sin A =-2cos B cos C ,且tan B ·tanC =1-2,则角A 的值为( )A .π4B .π3C .π2D .3π4解析:选A 由题意知,sin A =-2cos B cos C =sin(B +C )=sin B cos C +cos B sin C ,在等式-2cos B cos C =sin B cos C +cos B sin C 两边同除以cos B cos C 得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A ,即tan A =1,所以A =π4.5.若tan α=3,则sin ⎝⎛⎭⎪⎫2α+π4的值为( )A .-210B .210C .5210D .7210解析:选 A ∵sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=35,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-45,∴sin ⎝⎛⎭⎪⎫2α+π4=22sin 2α+22cos 2α=22×35+⎝ ⎛⎭⎪⎫-45=-210.6.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.解析:因为cos(α+β)=16,所以cos αcos β-sin αsin β=16.①因为cos(α-β)=13,所以cos αcos β+sin αsin β=13.②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.答案:137.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝ ⎛⎭⎪⎫-π2,π2,则α+β=________.解析:由已知得tan α+tan β=-3a ,tan αtan β=3a +1, ∴tan(α+β)=1.又∵α,β∈⎝ ⎛⎭⎪⎫-π2,π2,tan α+tan β=-3a <0,tan αtanβ=3a +1>0,∴tan α<0,tan β<0,∴α,β∈⎝ ⎛⎭⎪⎫-π2,0,∴α+β∈(-π,0),∴α+β=-3π4.答案:-3π48.3tan 12°-34cos 212°-2 sin 12°=________. 解析:原式=3· sin 12°cos 12°-32 2cos 212°-1 sin 12°=23⎝⎛⎭⎪⎪⎫12sin 12°-32cos 12°cos 12°2cos 24°sin 12°=23sin -48°2cos 24°sin 12°cos 12°=-23sin 48°sin 24°cos 24°=-23sin 48°12sin 48°=-43. 答案:-4 39.已知tan α=-13,cos β=55,α∈⎝ ⎛⎭⎪⎫π2,π,β∈⎝⎛⎭⎪⎫0,π2,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈⎝⎛⎭⎪⎫0,π2,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.∵α∈⎝ ⎛⎭⎪⎫π2,π,β∈⎝⎛⎭⎪⎫0,π2,∴π2<α+β<3π2, ∴α+β=5π4.10.已知函f (x )=A cos ⎝ ⎛⎭⎪⎫x 4+π6,x ∈R ,且f ⎝ ⎛⎭⎪⎫π3=2.(1)求A 的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫4α+4π3=-3017,f ⎝⎛⎭⎪⎫4β-2π3=85,求cos(α+β)的值.解:(1)因为f ⎝ ⎛⎭⎪⎫π3=A cos ⎝ ⎛⎭⎪⎫π12+π6=A cos π4=22A =2,所以A=2.(2)由f ⎝ ⎛⎭⎪⎫4α+4π3=2cos ⎝ ⎛⎭⎪⎫α+π3+π6 =2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-3017,得sin α=1517,又α∈⎣⎢⎡⎦⎥⎤0,π2,所以cos α=817.由f ⎝ ⎛⎭⎪⎫4β-2π3=2cos ⎝⎛⎭⎪⎫β-π6+π6 =2cos β=85,得cos β=45,又β∈⎣⎢⎡⎦⎥⎤0,π2,所以sin β=35,所以cos(α+β)=cos αcos β-sin αsin β =817×45-1517×35=-1385. 三上台阶,自主选做志在冲刺名校1.cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9=( ) A .-18B .-116C .116D .18解析:选A cos π9·cos 2π9·cos ⎝ ⎛⎭⎪⎫-23π9 =cos 20°·cos 40°·cos 100° =-cos 20°·cos 40°·cos 80°=-sin 20°·cos 20°·cos 40°·cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18.2.已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点P (-3,3).(1)求sin 2α-tan α的值;(2)若函f (x )=cos(x -α)cos α-sin(x -α)sin α,求函g (x )=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域.解:(1)∵角α的终边经过点P (-3,3), ∴sin α=12,cos α=-32,tan α=-33.∴sin 2α-tan α=2sin αcos α-tan α=-32+33=-36. (2)∵f (x )=cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R ,∴g (x )=3cos ⎝ ⎛⎭⎪⎫π2-2x -2cos 2x =3sin 2x -1-cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6-1,∵0≤x ≤2π3,∴-π6≤2x -π6≤7π6.∴-12≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1,∴-2≤2sin ⎝ ⎛⎭⎪⎫2x -π6-1≤1,故函g (x )=3f ⎝ ⎛⎭⎪⎫π2-2x -2f 2(x )在区间⎣⎢⎡⎦⎥⎤0,2π3上的值域是.。

解三角形中的最值、范围问题--高考数学【解析版】

解三角形中的最值、范围问题--高考数学【解析版】

专题25 解三角形中的最值、范围问题近几年高考对解三角形问题考查,大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式.与平面几何相结合的问题,要注重几何图形的特点的利用.由于新教材将正弦定理、余弦定理列入平面向量的应用,与平面向量相结合的命题将会出现.另外,“结构不良问题”作为实验,给予考生充分的选择空间,充分考查学生对数学本质的理解,引导中学数学在数学概念与数学方法的教学中,重视培养数学核心素养,克服“机械刷题”现象.同时,也增大了解题的难度.【重点知识回眸】(一) 余弦定理变形应用:变式()()2221cos a b c bc A =+-+在已知,a A 的情况下,配合均值不等式可得到b c +和bc 的最值(二)三角形中的不等关系(1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少(2)在三角形中,边角以及角的三角函数值存在等价关系:sin sin cos cos a b A B A B A B >⇔>⇔>⇒<其中由cos cos A B A B >⇔<利用的是余弦函数单调性,而sin sin A B A B >⇔>仅在一个三角形内有效.(三)解三角形中处理不等关系的几种方法 1.三角形中的最值、范围问题的解题策略和步骤(1)转变为一个变量的函数:通过边角互化和代入消元,将多变量表达式转变为函数,从而将问题转化为求函数的值域(最值) (2)利用均值不等式求得最值 (3)①定基本量:根据题意或几何图形厘清三角形中边、角的关系,利用正、余弦定理求出相关的边、角或边角关系,并选择相关的边、角作为基本量,确定基本量的范围.②构建函数:根据正、余弦定理或三角恒等变换将待求范围的变量用关于基本量的函数解析式表示.③求最值:利用基本不等式或函数的单调性等求最值. 2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解,已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.【典型考题解析】热点一 三角形角(函数值)相关的最值(范围)问题【典例1】(2021·山西·祁县中学高三阶段练习(理))在锐角ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin a c B =,则tan A 的最大值为( ) A .1 B .32C .43D .54【答案】C【分析】先由正弦定理化简得111tan tan C B+=,结合基本不等式求得tan tan 4B C ≥,再由正切和角公式求解即可.【详解】在ABC 中,sin a c B =,所以sin sin sin A C B =,又()sin sin A B C =+,整理得:sin cos cos sin sin sin B C B C B C +=,又sin sin 0B C ≠,得到111tan tan C B+=,因为角A 、B 、C 为锐角,故tan A 、tan B 、tan C 均为正数, 故112tan tan B C≥整理得tan tan 4B C ≥,当且仅当tan tan 2B C ==时等号成立,此时tan tan tan tan 1tan tan()11tan tan 1tan tan 1tan tan B C B CA B C B C B C B C+⋅=-+=-=-=---⋅,当tan tan B C 取最小值时,1tan tan B C 取最大值,11tan tan B C-取最小值,故111tan tan B C-⋅的最大值为43,即当tan tan 2B C ==时,tan A 的最大值为43.故选:C .【典例2】(2021·河南·高三开学考试(文))ABC 的内角,,A B C 的对边分别为,,a b c ,若sin tan sin sin A A B C =,则cos A 的最小值为________. 【答案】23【分析】先根据题目条件和正弦定理得到2cos a A bc=,结合cos A 的余弦定理表达式,得到,,a b c 的关系,利用此关系求cos A 的最小值.【详解】由条件可知,2sin cos sin sin A A B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc +-==,化简可得2223a b c =+.所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=,当且仅当b c =时取得等号,cos A 取得最小值23. 故答案为:23【典例3】(2020·浙江·高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 30b A a =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围. 【答案】(I )3B π=;(II )3132⎤+⎥⎝⎦ 【解析】 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围. 【详解】 (I )[方法一]:余弦定理由2sin 3b A a =,得222233sin 4a a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a c b B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin 3b A a =,结合正弦定理可得:32sin sin 3,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知3a cb+= 而ABC 为锐角三角形,所以3a cb+> 由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++, 222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭ 故cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭131cos cos 22A A A =-+311cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则3sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,1313sin 622A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦. 即cos cos cos A B C ++的取值范围是3132⎤+⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 【总结提升】求角(函数值)的最值(范围)问题一般先将边转化为角表示,再根据三角恒等变换及三角形内角和定理转化为一个角的一个三角函数表示,然后求解. 热点二 三角形边(周长)相关的最值(范围)【典例4】(2018·北京·高考真题(文))若ABC 2223)a c b +-,且∠C 为钝角,则∠B =_________;ca的取值范围是_________. 【答案】 60 (2,)+∞ 【解析】 【分析】根据题干结合三角形面积公式及余弦定理可得tan 3B =3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题. 【详解】)22231sin 2ABC S a c b ac B ∆=+-=, 22223a c b ac +-∴=cos 3B =sin 3,cos 3B B B π∴∠=,则231sin cos sin sin 311322sin sin sin tan 2A A Ac C a A A A A π⎛⎫⎛⎫---⋅ ⎪ ⎪⎝⎭⎝⎭====+, C ∴∠为钝角,,036B A ππ∠=∴<∠<,)31tan ,3,tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,+∞. 【典例5】(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++, 在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++ ()44233211m m ≥=-+⋅+, 当且仅当311m m +=+即31m =时,等号成立, 所以当ACAB取最小值时,31m =. 31.【典例6】(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c a a c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.【典例7】(2020·全国·高考真题(理))ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C . (1)求A ;(2)若BC =3,求ABC 周长的最大值. 【答案】(1)23π;(2)33+ 【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果. 【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:3AC AB +≤AC AB =时取等号),ABC ∴周长323L AC AB BC =++≤+ABC ∴周长的最大值为33+[方法二]:正弦化角(通性通法) 设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知23sin sin sin a b cA B C===23(sin sin )b c B C +=+23sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦233α=≤当且仅当0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为33+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,223b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin 3b c θθ+==23236πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()23b c +=所以ABC 周长的最大值为323+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.【典例8】(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c+的最小值. 【答案】(1)π6;(2)425. 【解析】 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. (1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B B A B B B ===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-. 所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-==()2222222cos11cos 24cos 5285425cos cos B BB BB-+-==+-≥=. 当且仅当22cos B =222a b c +的最小值为425.【规律方法】求边(周长)的最值(范围)问题一般通过三角中的正、余弦定理将边转化为角的三角函数值,再结合角的范围求解,有时也可将角转化为边,利用均值不等式或函数最值求解. 热点三 求三角形面积的最值(范围)【典例9】(2023·山西大同·高三阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,且2cos 2b A a c =+,且2b =,则ABC 面积的最大值为___________. 3133【分析】利用余弦定理进行角化边后,结合基本不等式,三角形面积公式求解.【详解】由余弦定理,2cos 2b A a c =+可化为222222b c a b a c bc +-⋅=+,整理可得2224c a ac b ++==,由余弦定理2221cos 22a cb B ac +-==-,又(0,)B π∈,故23B π=,根据基本不等式22423a c ac ac ac ac =++≥+=,23a c ==取得等号,故133sin 243ABC S ac B ac ==≤,即ABC 面积的最大值为33. 故答案为:33. 【典例10】(2022·全国·高三专题练习)已知A ,B ,C 分别是椭圆22143x y +=上的三个动点,则ABC 面积最大值为_____________. 【答案】92##4.5【分析】作变换'2'3x x y y =⎧⎪⎨=⎪⎩之后椭圆变为圆,方程为224x y '+'=,A B C '''是圆的内接三角形,圆的内接三角形面积最大时为等边三角形,则ABC A B C S bS a'''=,求出A B C S ''',代入即可得出答案. 【详解】作变换'2''3x x y y y =⎧⎪⎨==⎪⎩之后椭圆变为圆,方程为224x y '+'=, A B C '''是圆的内接三角形,设A B C '''的半径为R ,设,,A B C '''所对应边长为,,a b c ''',所以 211sin 2sin 2sin sin 2sin sin sin 22A B C Sa b C R A R B C R A B C ''''''''''==⋅⋅⋅=⋅⋅'' 32sin sin sin 23A B C R ++⎛⎫≤ ⎝''⎪⎭',当且仅当3A B C π===时取等, 因为sin y x =在()0,π上为凸函数,则sin sin sin sin 33A B C A B C ''''+'+≤'++,3332222sin sin sin 3322sin 2sin 3334A B C A B C A B C SR R R R π'''++++⎛⎫'⎛⎫⎛⎫=≤==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭''''',当且仅当3A B C π===时取等, 所以圆的内接三角形面积最大时为等边三角形,因此2333343344A B C S R '''==⨯=,又因为ABC A B C S b S a '''=, ∴393322ABC A B C b SS a'''==⨯=. 故答案为:92.【典例11】(2019·全国·高考真题(理))ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2)33(). 【解析】 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCSac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCS C 的值域.【详解】 (1)根据题意sin sin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sinsin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A C B π++=,而根据题意A B C π++=,故2A CB π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=, 故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 33sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅22sincos cos sin 3321231333(sin cos )sin 3tan 38tan C CC C C ππππ--= 又因3,tan 62C C ππ<<>331338tan C << 33ABCS <<. 故ABCS的取值范围是33(【典例12】(2021·河北省曲阳县第一高级中学高三阶段练习)在ABC 中,内角,,A B C 的对边分别是,,a b c ,)sin 3cos b C a b C =-.(1)求角B 的大小;(2)若点D 满足=a AD cDC ,且||23BD =ABC 面积的最小值. 【答案】(1)π3B = (2)43【分析】(1)由正弦定理把边化为角,再结合三角恒等变换即可求解;(2)由题意得||||=a DC c AD ,进而利用三角面积可转化1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCD ABD BC BD DBC DC S BC S AB AD AB BD ABD ,从而有sin sin ∠=∠DBC ABD ,再由面积公式与基本不等式求解即可(1)因为()sin 3cos b C a b C =-,所以()sin sin 3sin sin cos B C A B C =-. 因为sin sin()sin cos cos sin A B C B C B C =+=+,所以sin sin 3(sin cos cos sin sin cos )3cos sin =+-=B C B C B C B C B C . 因为sin 0C ≠, 所以tan 3B =. 又因为0πB <<, 所以π3B =.(2)因为=a AD cDC , 所以点D 在线段AC 上,且||||=a DC c AD . 因为1sin ||21||sin 2⋅⋅⋅∠===⋅⋅⋅∠△△BCDABDBC BD DBC DC S BC S AB AD AB BD ABD , 所以sin sin ∠=∠DBC ABD , 即BD 为ABC ∠的角平分线. 由(1)得π3B =, 所以π6ABD CBD ∠=∠=. 由ABC ABD BCD S S S =+△△△,得1π1π1πsin sin sin 232626ac a BD c BD =⋅+⋅,即2()4=+≥ac a c ac ,得16≥ac ,当且仅当a c =时,等号成立,11sin 16sin 432323=≥⨯=△ABC S ac ππ.故ABC 面积的最小值为43. 【规律方法】求三角形面积的最值(范围)的两种思路(1)将三角形面积表示为边或角的函数,再根据条件求范围.(2)若已知三角形的一个内角(不妨设为A),及其对边,则可根据余弦定理,利用基本不等式求bc 的最值从而求出三角形面积的最值.【精选精练】一、单选题1.(2022·上海市松江一中高三阶段练习)在ABC 中,a 、b 、c 分别是角A 、B 、C 所对的边,B 是A 、C 的等差中项,则a c +与2b 的大小关系是( )A .2a c b +>B .2a c b +<C .2a c b +≥D .2a c b +≤【答案】D【分析】根据等差中项的性质及内角和的性质求出B ,再由余弦定理及基本不等式计算可得.【详解】解:依题意,在ABC 中B 是A 、C 的等差中项,所以2A+C =B , 又A C B π++=,所以3B π=,由余弦定理2222cos b a c ac B =+-()22222233a c ac a c ac ac a c ac =+-=++-=+-,又22a c ac +⎛⎫≤ ⎪⎝⎭,当且仅当a c =时取等号,所以2332a c ac +⎛⎫-≥- ⎪⎝⎭,所以()()()222213324a c a c ac a c a c +⎛⎫+-≥+-=+ ⎪⎝⎭,即()2214b ac ≥+,即()224b a c ≥+,所以2a c b +≤; 故选:D2.(2022·贵州贵阳·高三开学考试(理))已知ABC 的内角,,A B C 对应的边分别是,,a b c , 内角A 的角平分线交边BC 于D 点, 且 4=AD .若(2)cos cos 0b c A a C ++=, 则ABC 面积的最小值是( ) A .16 B .3C .64 D .643【答案】B【分析】利用正弦定理及诱导公式可得23A π=,然后利用三角形面积公式及基本不等式即得. 【详解】∵(2)cos cos 0b c A a C ++=, ∴2sin cos sin cos sin cos 0B A C A A C ++=, 即()2sin cos sin 2sin cos sin 0B A C A B A B ++=+=, 又()0,B π∈,sin 0B >,∴2cos 10A +=,即1cos 2A =-,又()0,A π∈,∴23A π=, 由题可知ABCABDACDS SS=+,4=AD ,所以1211sin4sin 4sin 232323bc c b πππ=⨯+⨯,即()4bc b c =+, 又()48bc b c bc =+≥,即64bc ≥, 当且仅当b c =取等号,所以1213sin 641632322ABCSbc π=≥⨯⨯=. 故选:B.3.(2022·河南·郑州四中高三阶段练习(理))在等腰ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则ABC 的面积的最大值是( ) A .6 B .12C .18D .24【答案】A【分析】利用余弦定理得到边长的关系式,然后结合勾股定理和基本不等式即可求得ABC 面积的最大值. 【详解】设2AB AC m ==,2BC n =,由于ADB CDB π∠=-∠,在ABD △和BCD △中应用余弦定理可得:2222949466m m m n m m+-+-=-,整理可得:2292m n =-,结合勾股定理可得ABC 的面积:22222111()2434222S BC AC BC n m n n n =⨯-=⨯⨯-=- 222243(43)62n n n n +-=-≤⨯=,当且仅当22n =时等号成立. 则ABC 面积的最大值为6. 故选:A.4.(2023·全国·高三专题练习)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒ ,∠ABC 的平分线交AC 于点D ,且BD =1,则4a c + 的最小值为( ) A .8 B .9 C .10 D .7【答案】B【分析】根据三角形面积可得到111a c +=,将4a c +变为11(4)()a c a c++,展开后利用基本不等式,即可求得答案.【详解】由题意得111sin120sin 60sin60222ac a c =+ ,即ac a c =+ ,得111a c+=,得 114(4)()a c a c a c +=++45c a a c =++≥425459c aa c⋅+=+=, 当且仅当4c aa c=,即23c a ==时,取等号, 故选:B . 二、多选题5.(2020·全国·高三专题练习)如图,ABC 的内角,,A B C 所对的边分别为),,3cos cos 2sin a b c a C c A b B +=,且3CAB π∠=.若D 是ABC 外一点,1,3DC AD ==,则下列说法中正确的是( )A .ABC 的内角3B π= B .ABC 的内角3C π=C .四边形ABCD 533 D .四边形ABCD 面积无最大值 【答案】AB【分析】根据正弦定理进行边化角求角B ,从而判断选项A ,B 正确;把四边形ABCD 的面积表示成ADC ∠的三角函数,从而根据三角函数求最值 【详解】因为()3cos cos 2sin a C c A b B +=,所以由正弦定理,得()23sin cos sin cos 2sin A C C A B +=,所以()23sin 2sin A C B +=,又因为A B C π++=,所以()sin sin A C B +=,所以23sin 2sin B B = 因为sin 0,B ≠所以3sin 2B =, 又因为3CAB π∠=,所以20,3B π⎛⎫∈ ⎪⎝⎭, 所以3B π=,所以3C A B ππ=--=,因此A ,B 正确;四边形ABCD 面积等于231sin 42ABC ACDS SAC AD DC ADC +=+⋅⋅∠()22312cos sin 42AD DC AD DC ADC AD DC ADC =⨯+-⋅⋅∠+⋅⋅∠ ()31916cos 3sin 42ADC ADC =⨯+-⋅∠+⨯∠ 533sin 23ADC π⎛⎫=+∠- ⎪⎝⎭, 所以当32ADC ππ∠-=即sin 13ADC π⎛⎫∠-= ⎪⎝⎭时,ABCACDSS+取最大值5332+, 所以四边形ABCD 面积的最大值为5332+, 因此C ,D 错误 故选:AB6.(2022·云南·高三阶段练习)如图,在长方体1111ABCD A B C D -中,4AB AD ==,13AA =,点M 满足12A M MA =,点P 在底面ABCD 的边界及其内部运动,且满足4AMP π∠≤,则下列结论正确的是( )A .点P 所在区域面积为4πB .线段1PC 17C .有且仅有一个点P 使得1MP PC ⊥D .四面体11P A CD -的体积取值范围为[6,8]【答案】AD【分析】A 选项,由1MA AP ==时,MP 与底面ABCD 的所成角4πθ=求解判断; B 选项,若PC 取最小值时,则线段1PC 长度最小,由A ,P ,C 三点共线求解判断; C 选项,由点P 与点F 重合,由点P 与点E 重合,利用余弦定理求解判断;,D 选项,由点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,当P与点F 重合时,此时点P 到平面11A CD 的距离最小求解判断. 【详解】如图所示:A 选项,当1MA AP ==时,MP 与底面ABCD 的所成角4πθ=,故点P 所在区域为以A 为圆心,1为半径的圆在正方形ABCD 内部部分(包含边界弧长),即圆的14,面积为211144π⨯=π,A 正确;B 选项,当PC 取最小值时,线段1PC 长度最小,由三角形两边之和大于第三边可知:当A ,P ,C 三点共线时,PC 取得最小值,即min ||421PC =-,则221min (421)34282PC =-+=-,B 错误; C 选项,不妨点P 与点F 重合,此时2221134PC FB BC C C =++=,由余弦定理得:1cos MFC ∠=22211123436022234MF C F C M MF C F +-+-==⋅⨯⨯,则12MFC π∠=,同理可得:12MEC π∠=,故多于一个点P 使得1MP PC ⊥,C 错误;D 选项,当点P 位于AE 上时,此时点P 到平面11A CD 的距离最大,最大距离341255AH ⨯==,此时四面体11P A CD -的体积为11111124583325A CD S AH ⋅=⨯⨯⨯⨯=△,当P 与点F 重合时,此时点P 到平面11A CD 的距离最小,最小距离为FK ,因为BFK BAH ∽△△,所以34FK AH =,所以最小体积为3864⨯=,故四面体11P A CD -的体积取值范围为[]6,8 ,D 正确, 故选:AD . 三、填空题7.(2022·贵州遵义·高三开学考试(文))在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin sin 2B Cb a B +=,2a =△ABC 周长的最大值为________.【答案】32【分析】根据正弦定理,结合三角恒等变换可得3A π=,再根据余弦定理与基本不等式求解周长最大值即可.【详解】由正弦定理,sin sin 2B C b a B +=即sin sin sin sin 22A B A B π⎛⎫-= ⎪⎝⎭,又sin 0B ≠,故sin sin 22A A π⎛⎫-= ⎪⎝⎭,即cossin 2AA =. 由二倍角公式有cos2sin cos 222A A A =,因为0,22A π⎛⎫∈ ⎪⎝⎭,故cos 02A ≠,所以1sin 22A =,所以26A π=,即3A π=.由余弦定理22222cos 3b c bc π=+-,结合基本不等式有()()2222332b c b c bc b c +⎛⎫=+-≥+-⨯ ⎪⎝⎭,即()2124b c +≤,()28b c +≤,故22b c +≤,当且仅当2b c ==时取等号. 故△ABC 周长的最大值为a b c ++的最大值为22232+=. 故答案为:328.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.【答案】33434-【分析】根据余弦定理结合同角三角函数的关系可得sin C ,进而表达出ABCS ,结合基本不等式求解ABCS的最值,进而求得cos C 即可.【详解】由余弦定理,()222222243cos 222a b a b a b c b C ab ab a+-++-===-,又()0,C π∈,故2222349sin 1cos 122b a b C C a a -⎛⎫=-=--=⎪⎝⎭,故 2222114949sin 2224ABCa b b a b Sab C ab a --===. 又222416a b c +==,故()2222416496425564254420ABCb b b b b b b S----===222564258405b b +-≤=,当且仅当22256425b b =-,即425b =时取等号. 此时2322721642525a =-⨯=,即4175a =. 故ABC 的面积取得最大值时,42333345cos 23441725b C a ⨯=-=-=-⨯. 故答案为:33434-【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方9.(2021·河南·高三开学考试(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若sin tan sin sin A A B C =,则sin A 的最大值为________,此时cos B =________. 【答案】5366【分析】由已知条件结合正余弦定理可得2223b c a +=,再利用余弦定理结合基本不等式可求出cos A 的最小值,从而可求出sin A 的最大值,则可求出cos2B ,再利用二倍角公式可求出cos B . 【详解】由条件可知,2sin cos sin sin AA B C=,由正弦定理得2cos a A bc =,由余弦定理得,2222cos 2b c a a A bc bc+-==,则2223a b c =+. 所以222222223cos 2333b c b c b c bc A bc bc bc ++-+==≥=, 当且仅当b c =时取得等号,cos A 取得最小值23. 因为()0,A π∈, 所以25sin 1cos 3A A =-≤,当且仅当b c =时取得等号, 故sin A 的最大值为53. 此时B C =,所以2cos2cos()cos 3B A A π=-=-=-,所以222cos 13B -=-,因为角B 为锐角, 所以6cos 6B =. 故答案为:53,66 10.(2022·全国·高三专题练习)ABC 的外接圆半径为1,角A B C ,,的对边分别为a b c ,,,若cos cos 3a B b A +=0CA CB ⋅<,则C ∠=________;32a b +的最大值为_________【答案】23π27 【分析】由余弦定理求得c ,由向量数量积可得C 为锐角,再由正弦定理结合外接圆半径可求得C ,用正弦定理把32a b +表示为A 的三角函数,利用两角和与差的正弦公式变形化函数为一个角的一个三角函数形式,然后利用正弦函数性质得最大值.【详解】222222cos cos 322a c b c b a a B b A a b c ac cb+-+-+=⋅+⋅==,又22sin c R C ==,所以3sin 2C =, 0CA CB ⋅<,所以C 是钝角,所以23C π=, 由2sin sin a bA B==得2sin a A =,2sin b B =, 326sin 4sin 6sin 4sin()3a b A B A A π+=+=+-316sin 4(cos sin )4sin 23cos 22A A A A A =+-=+2327(sin cos )77A A =+, 设2cos 7ϕ=,3sin 7ϕ=(ϕ为锐角),则3227sin()a b A ϕ+=+,由23C π=得03A π<<,31sin 27ϕ=>,ϕ为锐角,则62ππϕ<<, 所以2A πϕ=-时,32a b +取得最大值27.故答案为:23π;27. 四、解答题11.(2022·湖北·襄阳五中高三阶段练习)在ABC 中,4tan ,3CAB D ∠=为BC 上一点,32=AD(1)若D 为BC 的中点,32BC =ABC 的面积;(2)若45DAB ∠=︒,求ABC 的面积的最小值. 【答案】(1)9 (2)92【分析】(1)根据中线向量公式可得,b c 关系,结合余弦定理可求452bc =,从而可求面积. (2)根据不同三角形的面积关系可得34355b c bc +=,利用基本不等式可求bc 的最小值,从而可求面积的最小值. (1)因为D 为BC 的中点,所以()12AD AB AC =+, ()222124AD AB AC AB AC ∴=++⋅. 记角,,A B C 的对边分别为,,a b c , 因为4tan 3A =,故A 为锐角,所以43sin ,cos 55CAB CAB ∠∠==, 则221318245c b bc ⎛⎫=++⋅ ⎪⎝⎭. 又由余弦定理得:2231825c b bc =+-⋅两式联立解得:452bc =,所以11454sin 92225ABCS bc CAB ∠==⨯⨯=. (2)445,tan 3DAB A ∠==,()41113tan tan ,sin 475213CAD CAB DAB CAD ∠∠∠∠-∴=-===+, 1132sin 32sin 22ABCCAD BADSSSb CADc DAB ∠∠=+=⋅+⋅ 1sin 2bc CAB ∠=, 即34355b c bc +=, 即34345323,5554b c bc b c bc +=≥⋅≥(当且仅当153,22b c ==时取得最小值)所以114549sin 22452ABCSbc CAB ∠=≥⨯⨯=.12.(2022·广东广州·高三开学考试)在ABC 中,设角A ,B ,C 所对的边分别为a ,b ,c ,且满足()2a b b c +=.(1)求证:2C B =; (2)求4cos a bb B+的最小值. 【答案】(1)证明见解析 (2)43【分析】(1)由已知及余弦定理可推出2cos b a b C =-,利用正弦定理边化角结合两角和差的正弦公式化简可得()sin sin B C B =-,即可证明结论; (2)利用(1)的结论将4cos a b b B +边化角,结合三角恒等变换可得43=4cos cos cos a b B b B B++,由基本不等式可求得答案. (1)证明:在ABC 中,由已知及余弦定理,得()2222cos a b b c a b ab C +==+-,即2cos b a b C =-,由正弦定理,得sin sin 2sin cos B A B C =-,又()πA B C =-+, 故()sin sin 2sin cos sin cos cos sin 2sin cos B B C B C B C B C B C =+-=+-cos sin sin cos B C B C =-()sin C B =-.∵()0sin sin B C B <=-,∴0πC B C <-<<, ∵()πB C B C +-=<,∴B C B =-,故2C B =. (2)由(1)2C B =得()30,πB C B +=∈,∴π0,3B ⎛⎫∈ ⎪⎝⎭,1cos ,12B ⎛⎫∈ ⎪⎝⎭,由(1)()12cos a b C =+,2C B =得()2522cos 1452cos 52cos 2cos cos cos cos B a b C B b B B B B+-+++===334cos 24cos 43cos cos B B B B =+≥⋅=, 当且仅当ππ0,63B ⎛⎫=∈ ⎪⎝⎭时等号成立, 所以当π6B =时,4cos a bb B+的最小值为43.13.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,tan tan 33B C ++=(1)求角A ;(2)若4a =,求b c +的取值范围. 【答案】(1)π3A = (2)(43,8⎤⎦【分析】(1)利用两角和的正切公式及诱导公式计算可得;(2)利用正弦定理将边化角,再转化为关于B 的三角函数,根据B 的取值范围及正弦函数的性质计算可得. (1)解:因为tan tan 33tan tan B C B C++=,所以tan tan 33tan tan B C B C ++=,所以tan tan 3(tan tan 1)B C B C +=-,从而tan tan 31tan tan B CB C +=--, 即tan()3B C +=-,所以tan 3A =,因为(0,π)A ∈,所以π3A =. (2)解:因为4a =,π3A =,由正弦定理,有83sin sin sin 3b c a B C A ===所以83sin 3b B =,83832π833143sin sin cos sin 4cos sin 3333223c C B B B B B ⎛⎫⎛⎫==-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以π43sin 4cos 8sin 6b c B B B ⎛⎫+=+=+ ⎪⎝⎭,又因为ABC 为锐角三角形,所以π022ππ032B B ⎧<<⎪⎪⎨⎪<-<⎪⎩,即ππ62B <<,所以ππ2π363B <+<,所以3πsin 126B ⎛⎫<+≤ ⎪⎝⎭,从而b c +的取值范围为(43,8⎤⎦. 14.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若23a =ABC 面积的最大值.【答案】(1)3π; (2)33.【分析】(1)由正弦定理化角为边,再利用余弦定理及特殊角的三角函数即得;(2)由余弦定理表示出,a b 关系,再由基本不等式得出ab 的最大值,从而可得面积最大值;或利用正弦定理边角互化,然后利用三角恒等变换及三角函数的性质即得. (1)在ABC 中,由题意及正弦定理得()()a c b a c b bc +--+=, 整理得222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===, 因为0A π<<, 所以3A π=;(2)方法一:由(1)知,3A π=,又23a =,所以22122b c bc bc bc bc =+--=,所以12bc ,当且仅当23b c ==时,等号成立, 所以()max 113sin 1233222ABC Sbc A ==⨯⨯=; 方法二:由(1)知,3A π=,又23a =,所以由正弦定理,知234sin sin sin sin3a b c A B C π====, 所以4sin ,4sin b B c C ==, 所以13sin 8sin sin 43sin sin 22ABCSbc A B C B C ==⨯=, 又因为23B C π+=, 所以23143sin sin 43sin sin 43sin cos sin 322B C B B B B B π⎛⎫⎛⎫=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭31cos223sin222B B ⎛⎫-=+= ⎪ ⎪⎝⎭23sin 236B π⎛⎫-+ ⎪⎝⎭,因为23B C π+=,所以270,23666B B ππππ<<-<-<,所以当262B ππ-=,即3B π=时,ABC 的面积取得最大值,最大值为33.15.(2022·上海·模拟预测)在如图所示的五边形中,620AD BC AB ===,,O 为AB 中点,曲线CMD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称;(1)若点P 与点C 重合,求POB ∠的大小; (2)求五边形MQABP 面积S 的最大值, 【答案】(1)33arcsin 14(2)2874【分析】(1)利用余弦定理求出OC ,再利用正弦定理即可得出答案; (2)根据题意可得,QOMPOMAOQBOPS SSS==,则()2AOQQOMMQABP S SS=+五边形,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,根据三角形的面积公式结合三角函数的性质即可得出答案.(1)解:若点P 与点C 重合,连接OC ,10,6,120OB BC BP ABC ===∠=︒,在OBP 中,2222cos 1003660196OC OB BP OB BP OBP =+-⋅∠=++=, 所以14OC =, 因为sin sin BC OCPOB OBP=∠∠,所以36sin 332sin 1414BC OBPPOB OC ⨯⋅∠∠===, 所以33arcsin14POB ∠=;(2)解:连接,,,QA PB OQ OP ,因为曲线CMD 上任一点到O 距离相等, 所以14OP OQ OM OC ====, 因为P ,Q 关于OM 对称, 所以,QOMPOMAOQBOPSSSS==,设QOM POM α∠=∠=,则2AOQ BOP πα∠=∠=-,则()2AOQQOMMQABP S SS=+五边形112sin sin 222OQ OA OQ OM παα⎡⎤⎛⎫=⋅⋅-+⋅ ⎪⎢⎥⎝⎭⎣⎦196sin 140cos αα=+()2874sin αϕ=+,其中5tan 7ϕ=, 当()sin 1αϕ+=时,MQABP S 五边形取得最大值2874, 所以五边形MQABP 面积S 的最大值为2874.16.(2022·广东·广州市真光中学高三开学考试)在平面四边形ABCD 中,30CBD ∠=,4BC =,23BD = (1)若ABD △为等边三角形,求ACD △的面积. (2)若60BAD ∠=,求AC 的最大值. 【答案】(1)3 (2)232+【分析】(1)利用余弦定理求出CD 的长,结合勾股定理可知90BDC ∠=,进而可求得ADC ∠的大小,利用三角形的面积公式可求得ACD △的面积;(2)设()0120ADB αα∠=<<,利用正弦定理可得出AD ,利用余弦定理可得出2AC 关于α的表达式,利用三角恒等变换结合正弦型函数的基本性质可求得AC 的最大值. (1)解:在BCD △中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅⋅∠. 即231612242342CD =+-⨯⨯⨯=,所以2CD =, 所以222BD CD BC +=,因此90BDC ∠=,因为ABD △为等边三角形,所以60ADB ∠=,23AD BD ==,所以150ADC ∠=.所以111sin 2323222ACD S AD CD ADC =⋅⋅⋅∠=⨯⨯⨯=△.(2)解:设()0120ADB αα∠=<<,则120ABD α∠=-, 在ABD △中,由正弦定理得sin sin AD BDABD BAD=∠∠,即()23sin60sin 120AD α=-,所以()4sin 120AD α=-. 在ACD △中,由余弦定理,得2222cos AC AD CD AD CD ADC =+-⋅⋅∠, ()()()224sin 120424sin 1202cos 90AC ααα⎡⎤=-+-⨯-⨯⨯+⎣⎦ 231314cos sin 16cos sin sin 483sin2162222αααααα⎡⎤⎛⎫⎛⎫=++++=+⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 0120α<<,则02240α<<,故当290α=时,即当45α=时,2AC 取到最大值8316+,即AC 的最大值为232+.17.(2023·河北·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4b =,在 ①()(sin sin )(sin sin )b c B C A C a +-=-,②cos2()3cos 1A C B ++= 两个条件中任选一个完成以下问题: (1)求B ;(2)若D 在AC 上,且BD AC ⊥,求BD 的最大值. 【答案】(1)π3B = (2)23【分析】(1)选①,利用正弦定理得到222a c b ac +-=,再利用余弦定理求出π3B =;选②:利用诱导公式和二倍角公式得到1cos 2B =,从而求出π3B =;(2)法一:利用余弦定理得到2216a c ac =+-,利用基本不等式求出16ac ≤,求出面积的最大值,从而求出BD 的最大值;法二:利用正弦定理ABC 外接圆的直径,进而利用正弦定理表示面积,利用三角函数的有界性求出面积最大值,进而求出BD 的最大值. (1)若选①,由正弦定理得,()()()b c b c a c a +-=- 即222b c a ac -=-,即222a c b ac +-= ∴2221cos 222a cb ac B ac ac +-===, ∵(0,π)B ∈,∴π3B =, 若选②,∵cos 2()3cos cos 2(π)3cos cos 23cos 1A C B B B B B ++=-+=+=, ∴22cos 13cos 1B B -+=,即22cos 3cos 20B B +-=, 即cos 2B =-(舍)或1cos 2B =, ∵(0,π)B ∈,∴π3B =, (2)∵BD AC ⊥,BD 为AC 边上的高,当面积最大时,高取得最大值 法一:由余弦定理得,22222162cos b a c ac B a c ac ==+-=+-, 由重要不等式得162ac ac ac ≥-=, 当且仅当a c =时取等, 所以1sin 432ABC S ac B =≤△ 所以AC 边上的高的最大值为432312b = 法二:由正弦定理得ABC 外接圆的直径为832sin 3b R B ==, 利用正弦定理表示面积得:118383sin sin sin sin 2233ABC S ac B A C B ==⋅△ 1838332π1632πsin sin sin sin 2332333A A A A ⎛⎫⎛⎫=⋅⋅⋅-=- ⎪ ⎪⎝⎭⎝⎭。

2019年高考数学文真题分项解析:专题04 三角函数与解三角形

2019年高考数学文真题分项解析:专题04 三角函数与解三角形

第四章 三角函数与三角形1.【2019高考新课标Ⅰ,文7】tan255°= A. -2-3 B. -2+3C. 2-3D. 2+3【答案】D 【解析】 【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查. 【详解】详解:000000tan 255tan(18075)tan 75tan(4530)=+==+=00031tan 45tan 3032 3.1tan 45tan 30313++==+--【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.2.【2019高考新课标Ⅰ,文11】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c =A. 6B. 5C. 4D. 3【答案】A 【解析】 【分析】利用余弦定理推论得出a ,b ,c 关系,在结合正弦定理边角互换列出方程,解出结果. 【详解】详解:由已知及正弦定理可得2224a b c -=,由余弦定理推论可得22222141313cos ,,,464224242b c a c c c b A bc bc b c +---==∴=-∴=∴=⨯=,故选A . 【点睛】本题考查正弦定理及余弦定理推论的应用.3.【2019高考新课标Ⅱ,文8】若x 1=4π,x 2=34π是函数f (x )=sin x ω(ω>0)两个相邻的极值点,则ω=A. 2B.32C. 1D.12【答案】A 【解析】 【分析】从极值点可得函数的周期,结合周期公式可得ω. 【详解】由题意知,()sin f x x ω=的周期232()44T ωπππ==-=π,得2ω=.故选A . 【点睛】本题考查三角函数的极值、最值和周期,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用方程思想解题.4.【2019高考新课标Ⅱ,文11】已知a ∈(0,π2),2sin2α=cos2α+1,则sinα= A. 15B.55 C.33D.255【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+Q ,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭Q . sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,5sin 5α∴=,故选B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.5.【2019高考新课标Ⅲ,文5】函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A. 2 B. 3C. 4D. 5【答案】B 【解析】 【分析】令()0f x =,得sin 0x =或cos 1x =,再根据x 的取值范围可求得零点.【详解】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2x π∈Q ,02x ππ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【点睛】本题考查在一定范围内的函数的零点个数,渗透了直观想象和数学运算素养.采取特殊值法,利用数形结合和方程思想解题.6.【2019高考北京卷,文6】设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C 【解析】 【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时,()cos sin cos f x x b x x =+=, ()f x 为偶函数; ()f x 为偶函数时,()=()f x f x -对任意的x 恒成立,()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查.7.【2019高考北京卷,文8】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A. 4β+4cos βB. 4β+4sin βC. 2β+2cos βD. 2β+2sin β【答案】B 【解析】 【分析】由题意首先确定面积最大时点P 的位置,然后结合扇形面积公式和三角形面积公式可得最大的面积值. 【详解】观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π-β, 面积S 的最大值为2222βππ⨯⨯+S △POB + S △POA =4β+1||sin()2OP OB πβ-‖1||sin()2OP OA πβ+-‖ 42sin 2sin 44sin βββββ=++=+⋅.故选:B .【点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键观察分析区域面积最大时的状态,并将面积用边角等表示.8.【2019高考天津卷,文7】已知函数()sin()(0,0,||)f x A x A ωϕωϕπ=+>><是奇函数,将()y f x =的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应的函数为()g x .若()g x 的最小正周期为2π,且24g π⎛⎫= ⎪⎝⎭,则38f π⎛⎫= ⎪⎝⎭( ) A. 2- B. 2-C.2 D. 2【答案】C 【解析】 【分析】只需根据函数性质逐步得出,,A ωϕ值即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 2 ) b 2 + c 2 = k 2 ( sin 2 B + sin 2 C )
2 = k 2 sin 2 ( − C ) + sin 2 C 3 1 = k 2 1 + sin 2C − 6 2 7 2 由C 0, , 得2C − − , 6 6 6 3 1 3 3 1 + sin 2C − , 2 6 4 2 16 又k 2 = , 则b 2 + c 2 ( 4,8 . 3
解三角形专题
问题类型 :
( 01) : 边长,角度数值计算问题; ( 02 ) : 三角形形状判断问题; ( 03) : 边长,角度等范围最值问题; ( 04 ) : 实际问题中高度,长度等表达式问题; ( 05) : 三角形唯一性等问题;
解三角形专题
第 001 题 正弦定理、三角恒等变换、三角函数、最值范围问题 在 ABC 的三个内角 A, B, C 所对的边分别为 a, b, c ,且 A =
特殊
( 09 ) BA BC = ac cos B = (10 )
1 2 2 2 (a + c − b ) 2 ABC , a, b, c成等差数列
B A−C = cos 2 2 A+C A−C A C 1 2 cos = cos tan tan = 2 2 2 2 3 证 : 2sin B = sin A + sin C 2b = a + c 2sin B = sin A + sin C 2sin B B cos ; 2 2 A+C A−C B A−C A+C A−C A+C A−C RHS = sin + − cos = cos cos ; + sin = sin 2 2 2 2 2 2 2 2 B A−C 2sin = cos . 2 2 LHS = 2sin
类型题: 在 ABC 的三个内角 A, B, C 所对的边分别为 a, b, c .
1 1 1 , 则 sin 2C − − , 6 4 2 2
(1) 已知 A = 120 ,求 sin B + sin C 的最大值;
( 2 ) 已知 a = 3 , A = 60 ,求 bc 的最大值; ( 3) 已知 a 2 + b 2 = 2c 2 ,求 cos C 的最小值; ( 4 ) 已知 sin A +
加强
( 05) ( 06 ) ( 07 )
a : b : c = sin A : sin B : sin C; sin 2 B = sin 2 A + sin 2 C − 2sin A sin C cos B; S ABC =
abc 1 1 b abc = S ABC = ac sin B = ac ; 4R 2 2 2R 4R 1 S ABC = ( a + b + c ) r ( r为内切圆半径 ) ; 2 1 2 2 2 3 S a b c sin A sin B sin C ; ABC = 8 ( 08) tan A + tan B + tan C = tan A tan B tan C; 证 : tan A + tan B + tan C = − tan ( B + C ) + tan ( B + C )(1 − tan B tan C ) = tan A tan B tan C
2 sin B = 2 sin C ,求 cos C 的最小值.
解三角形专题
第 002 题 边长与数列,内角与向量,函数与方程 已知在 ABC 中,三边长 a, b, c 依次成等差数列. (1) 若 sin A : sin B = 3: 5 ,求三个内角中最大角的度数;
( 2 ) 若 b = 1且 BA BC = b2 − ( a − c )

3
,a = 2.
(1) 求 ABC 的周长的取值范围;
( 2 ) 求 b2 + c 2 的取值范围.
解析 : b c a 2 2 (1)易得 : b = k sin B, c = k sin C , B = − C 3 b + c = k ( sin B + sin C ) = 4sin C + 6 5 2 由C 0, , 得C + , , 则有 : b + c ( 2, 4 6 6 6 3 正弦定理 : 又a = 2, 则CABC = a + b + c ( 4, 6 .
解三角形专题
三角形共有 9 个要素,三个顶点,三条边,三个角
基础
( 01) ( 02 ) ( 03) ( 04 )
b a c = = = k = 2 R ( ABC外接圆半径 ) sin B sin A sin C a 2 + c2 − b2 2 2 2 cos B = , b =a + c − 2ac cos B 2ac 1 S ABC = ac sin B 2 sin B = sin ( A + C ) , cos B = − cos ( A + C ) , tan B = − tan ( A + C )
解析 :
2
,求 ABC 的面积.
a 2 + b2 − c2 余弦定理 : cos C = c 2 = a 2 + b 2 − 2ab cos C 2 ab (1)由a, b, c依次成等差数列, 得2b = a + c 又 sin A : sin B = 3 : 5, 则a : b = 3 : 5 令a = 3k , b = 5k , 则c = 7 k 即 最大角为C 由cos C = a 2 + b2 − c2 1 2 = − , 得C = ; 2 ab 2 3 ( 2 )由b = 1, 得a + c = 2
相关文档
最新文档