江苏省天一中学20XX学年高一数学上学期期末考试试题(无答案).doc
江苏省高一上学期数学期末考试试卷word版本

高一上学期数学期末考试一、填空题:本大题共14小题,每小题5分,共计70分,请把答案直接填写在答题纸相应.....位置上.... 1. 已知全集{12345}U =,,,,,集合{134}{23}A B ==,,,,,则()U A B = __2.已知:,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭8且,用列举法表示集合A = . 3.方程)2(log )12(log 255-=+x x 的解集为4. 函数23)(-=xx f 的定义域为5. 8120()log x x f x x x -⎧<⎪=⎨⎪⎩,,已知函数,≥0,若001()4f x x =,则的值为 ________6. 若函数()y f x =的定义域为R ,值域为[a ,b ],则函数()y f x a =+的最大值与最小值之和为 ______7.若函数262+-=x mx y 的图像与x 轴只有一个公共点,则=m8.方程x x 24lg -=的根(),1x k k ∈+,k Z ∈,则k = . 9.已知:定义在R 上的奇函数(),f x 当0x ≥时2()2,f x x x =+则当0x <时,()f x = ____________10.设函数e ()1exx a f x a -=+(a 为常数)在定义域上是奇函数,则a = ____11.函数21-=+x a y (a>0,且a ≠1)的图象恒.过一定点,这个定点是 . 12. 已知函数(2)75,1()1,1x a x a x f x a x -+-≤⎧=⎨+>⎩是R 上的增函数,则a 的取值范围是_______.13.已知奇函数f(x)是定义在()1,1-上的增.函数,且(21)()0f m f m ++<.则实数m 取值范围_____________________.14.给定集合A 、B ,定义一种新运算:},|{B A x B x A x x B A ∉∈∈=*但或.已知{0,1,2}A =,{1,2,3}B =,用列举法...写出=*B A .二. 解答题15.(14分)已知:{}{}3,15A x a x a B x x x =≤≤+=<->或 (1)若,A B =∅求实数a 的取值范围;(2)若,A B B =求实数a 的取值范围。
2020-2021学年江苏省无锡市天一高级中学高一数学文上学期期末试题含解析

2020-2021学年江苏省无锡市天一高级中学高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. (4分)函数f(x)=a x(a>0,a≠1)在[0,1]上的最大值与最小值的和为3,则a等于()A.B. 2 C. 4 D.参考答案:B考点:指数函数单调性的应用.专题:计算题.分析:利用函数f(x)=a x(a>0,a≠1)在[0,1]上的单调性与f(x)在[0,1]上的最大值与最小值的和为3即可列出关于a的关系式,解之即可.解答:∵函数f(x)=a x(a>0,a≠1)在[0,1]上的最大值与最小值的和为3,∴a0+a1=3,∴a=2.故选B.点评:本题考查指数函数单调性的应用,得到a的关系式,是关键,考查分析与计算能力,属于中档题.2. 函数的单调递增区间是()A.(-∞,+∞) B.[-2,+∞) C.(-∞,-2) D.[0,+∞)参考答案:B 3. 如图,已知正六棱柱的最大对角面的面积为1m2,互相平行的两个侧面的距离为1m,则这个六棱柱的体积为()A. m3 B. m3 C.1m3 D. m3参考答案:B【考点】棱柱、棱锥、棱台的体积.【专题】数形结合;数形结合法;立体几何.【分析】根据正六边形的性质求出底面边长,利用矩形的面积得出棱柱的高.【解答】解:设正六棱柱的底面边长为a,高为h,则,解得a=,h=.∴六棱柱的体积V==.故选B.【点评】本题考查了正棱柱的结构特征,棱柱的体积计算,属于基础题.4. 已知,则角的终边所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:D由可知:则的终边所在的象限为第四象限故选5. 为了得到函数的图像,需要把函数图像上的所有点()A.横坐标缩短到原来的倍,再向右平移个单位长度B.横坐标伸长到原来的倍,再向右平移个单位长度C. 横坐标缩短到原来的倍,再向左平移个单位长度D. 横坐标伸长到原来的倍,再向左平移个单位长度ks5u参考答案:B略6. 把88化为五进制数是()A.323(5) B.324(5) C.233(5) D.332(5)[参考答案:A7. 设、为两条不重合的直线,为两个不重合的平面,下列命题中正确命题的是A.若、与所成的角相等,则B.若,,∥,则C.若,,,则D.若,,⊥,则参考答案:D 8. 已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.﹣1 B.1 C.3 D.7参考答案:B【考点】8F:等差数列的性质.【分析】根据已知条件和等差中项的性质可分别求得a3和a4的值,进而求得数列的公差,最后利用等差数列的通项公式求得答案.【解答】解:由已知得a1+a3+a5=3a3=105,a2+a4+a6=3a4=99,∴a3=35,a4=33,∴d=a4﹣a3=﹣2.∴a20=a3+17d=35+(﹣2)×17=1.故选B9. 在中,是边上的中点,则向量A. B. C. D.参考答案:A略10. 某学生离家去学校,因为怕迟到,所以一开始就跑步,后来累了,就走回学校。
2023-2024学年江苏省苏州市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省苏州市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U={1,2,3,4,5},集合M={1,3,4},N={2,4,5},则M∩(∁U N)=()A.∅B.{4}C.{1,3}D.{2,5}2.已知幂函数y=f(x)的图象过点(3,√3),则函数y=f(x)+f(2﹣x)的定义域为()A.(﹣2,2)B.(0,2)C.(0,2]D.[0,2]3.“实数a=﹣1”是“函数f(x)=x2+2ax﹣3在(1,+∞)上具有单调性”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.某数学兴趣小组为研究指数函数的“爆炸性增长”进行了折纸活动.一张纸每对折一次,纸张变成两层,纸张厚度会翻一倍.现假定对一张足够大的纸张(其厚度等同于0.0766毫米的胶版纸)进行无限次的对折.借助计算工具进行运算,整理记录了其中的三次数据如下:已知地球到月亮的距离约为38万公里,问理论上至少对折()次,纸张的厚度会超过地球到月亮的距离.A.41B.43C.45D.475.已知一个扇形的周长为40cm,面积为100cm2,则该扇形的圆心角的弧度数为()A.12B.1C.32D.26.已知cosα﹣sinα=2sinαtanα,其中α为第一象限角,则tanα=()A.﹣1B.12C.1D.27.已知f(x)为偶函数,对任意实数x都有f(x+2)=f(x),当x∈[0,1]时,f(x)=x3.若函数y=f(x)的图象与函数g(x)=log a|x|(a>0,且a≠1)的图象恰有6个交点,则a的取值范围是()A.(3,5)B.(3,5]C.(5,7)D.(5,7]8.已知函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π2)的图象过点(0,1),且f(x)在区间(π8,π4)上具有单调性,则ω的最大值为()A.43B.4C.163D.8二、选择题:本题共4小题,每小题5分,共20分。
江苏省天一中学2023-2024学年高一上学期期末考试数学试卷

学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 A x x 2 , B a,0 ,且 B A ,则实数 a 的取值范围是( )
A.2, 2
12.若
n
N*
时,不等式
nx
6
ln
n x
0
恒成立,则实数
x
可取下面哪些值(
)
A.1
B. 2
C. 3
D. 4
三、填空题
试卷第 2 页,共 4 页
13.已知函数 f x x 4 ln 1 x ,则 f 2x 的定义域为.
14.在平面直角坐标系
xOy
中,角
以
Ox
为始边,终边经过点
3,4 55
x2
试卷第 1 页,共 4 页
的值为( )
A. 1
2
B. 2 2
C. 3 2
D. 2 6 4
8.已知函数 f (x) sin x ,若存在 x1 , x2 ,, xm 满足 0剟x1 x2 xm 6 ,且
| f (x1) f (x2 ) | | f (x2 ) f (x3) | | f (xm1) f (xm) |12(m…2 ,m N*) ,则 m 的最小值为( )
4.已知函数 f x 为 R 上的奇函数,当 x 0 时,f (x) 2x 1 ,则 f x 0 的解集为( )
8
A. 3,0 U0,3
B. 3, 3
C. , 3 0,3
D., 3 U3,
5.已知点
3,1 9
在幂函数
江苏省高一(上)期末数学试卷(附参考答案)

江苏省高一(上)期末数学试卷(附参考答案)一、单选题(共8小题).1.集合A={x|x2﹣x﹣2≤0},B={0,1},则集合A∩B中元素的个数是()A.1B.2C.3D.4解:∵集合A={x|x2﹣x﹣2≤0}={x|﹣1≤x≤2},B={0,1},∴A∩B={0,1},∴集合A∩B中元素的个数是2.故选:B.2.函数y=tan(2x﹣)的周期为()A.2πB.πC.D.解:函数y=tan(2x﹣),所以T==.故选:C.3.方程的解的个数为()A.0B.1C.2D.3解:因为方程的解的个数即为函数y=与函数y=log x的交点个数,在同一直角坐标系中,画出草图可得:交点个数只有一个,故方程的解的个数为1,故选:B.4.对于全集U,命题甲“所有集合A都满足A∪∁U A=U”,命题乙为命题甲的否定,则命题甲、乙真假判断正确的是()A.甲、乙都是真命题B.甲、乙都不是真命题C.甲为真命题,乙为假命题D.甲为假命题,乙为真命题解:因为命题乙为命题甲的否定,所以命题乙“存在集合A都满足A∪∁U A≠U”.对于A,因为命题与命题的否定只有一个为真,所以A错;对于B,因为A∪∁U A=U对任何U的子集都成立,所以B错;对于C,因为任何集合A,A∪∁U A=U都成立,但不存在集合A使A∪∁U A≠U,所以C 对;对于D,由C知,D错;故选:C.5.如图,有一个“鼓形”烧水壶正在接水.水壶底部较宽,口部较窄,中间部分鼓起.已知单位时间内注水量不变,壶中水面始终为圆形,当注水t=t0时,壶中水面高度h达到最高h0.在以下图中,最能近似的表示壶中水面高度h与注水时间t的关系是()A.B.C.D.解:由于壶底部较宽,口部较窄,中间部分鼓起,则注水过程中,水面逐步增加,一开始递增速度较慢,超过中间部分后,单位时间内递增速度较快,则对应的图象为B,故选:B.6.函数f(x)=log3(x+2)+x﹣1的零点所在的一个区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)解:∵f(x)=log3(x+2)+x﹣1,∴f(0)=log32﹣1<0,f(1)=1,∴f(0)f(1)<0,∴f(x)在(0,1)上存在零点.故选:A.7.我国著名数学家华罗庚先生曾说,数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,经常用函数的图象研究函数的性质.已知函数的图象可能为()A.B.C.D.解:f(﹣x)===f(x),则函数f(x)是偶函数,图象关于y 轴对称,排除B,C,当0<x<1时,f(x)>0,排除D,故选:A.8.为了提高资源利用率,全国掀起了垃圾分类的热潮,垃圾分类已经成为了新时代的要求.假设某地2020年全年用于垃圾分类的资金为500万元,在此基础上,每年投入的资金比上一年增长20%,则该市用于垃圾分类的资金开始不低于1600万元的年份是()(参考数据:lg2≈0.301,lg3≈0.477)A.2025年B.2026年C.2027年D.2028年解:设经过n年后的投入资金为y万元,则y=500(1+20%)n,令y≥1600,即500(1+20%)n≥1600,故,所以=,所以第7年即2027年市用于垃圾分类的资金开始不低于1600万元.故选:C.二、多项选择题9.下列命题中正确的是()A.若a<b<0,c<d<0,则ac>bdB.若a>b,则ka>kbC.若a<b,则|a|<|b|D.若a>b>0,则解:对于A,若a<b<0,c<d<0,则ac>bd,故A正确;对于B,当k≤0时,不等式ka>kb不成立,故B不正确;对于C,若a<b<0,则|a|>|b|,故C不正确;对于D,若a>b>0,则显然成立,故D正确.故选:AD.10.已知点P(1,t)在角θ的终边上,下列关于θ的论述正确的是()A.如果,B.如果,则t=2C.如果t=3,则sin2θ+sinθcosθ+8cos2θ=2D.如果sinθ+cosθ=a(a为常数,0<a<1),则解:对于A,<0⇒θ角终边在三、四象限,又因为点P(1,t)在角θ的终边,所以θ在第四象限,所以A对;对于B,当t=﹣2时,也有,所以B错;对于C,t=3⇒cosθ=,sinθ=⇒sin2θ+sinθcosθ+8cos2θ==2,所以C对;对于D,sinθ+cosθ=a(a为常数,0<a<1)⇒sin2θ+2sinθcosθ+cos2θ=a2⇒<0,又⇒sinθ<0⇒sinθ﹣cosθ=﹣=﹣=﹣,sin3θ﹣cos3θ=(sinθ﹣cosθ)•(sin2θ+sinθcosθ+cos2θ)=(sinθ﹣cosθ)(1+sinθcosθ)=﹣[1+]⇒,所以D对.故选:ACD.11.若2x=3,3y=4,则下列说法正确的是()A.xy=2B.C.D.x>y解:∵2x=3,3y=4,∴x=log23,y=log34,∴xy=log23•log34=2,故A正确;x=log23>=,故B错误;x+y=log23+log34>=2,故C正确;x﹣y=log23﹣log34=﹣=>>=0,即x>y,故D正确.故选:ACD.12.水车在古代是进行灌溉的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图,一个半径为6米的水车逆时针匀速转动,水轮圆心O距离水面3米.已知水轮每分钟转动1圈,如果当水轮上一点P从水中浮现时(图中点P0)开始计时,经过t秒后,水车旋转到P点,则下列说法正确的是()A.在转动一圈内,点P的高度在水面3米以上的持续时间为30秒B.当t=[0,15]时,点P距水面的最大距离为6米C.当t=10秒时,PP0=6D.若P第二次到达最高点大约需要时间为80秒解:以水轮所在平面为坐标平面,以水轮轴心O为坐标原点,以平行于水面的直线为x 轴建立平面直角坐标系,点P距离水面的高度h关于时间t的函数为h=f(t)=A sin(ωt+φ)+B.则,解A=6,B=3,又水轮每分钟转动一周,则,∴f(t)=6sin(φ)+3,由f(0)=6sinφ+3=0,得sinφ=,∴φ=,则f(t)=6sin()+3.对于A,由f(t)=6sin()+3>3,得0π,解得5<t<35,则在转动一圈内,点P的高度在水面3米以上的持续时间为35﹣5=30秒,故A正确;对于B,f(15)=6sin()+3=>6米,故B错误;对于C,当t=10时,,又OP=6,∴,故C正确;对于D,由6sin()+3=9,得,即t=20,则P第二次到达最高点大约需要时间为60+20=80秒,故D正确.故选:ACD.三、填空题13.已知幂函数y=f(x)的图象经过点(4,2),则f(2)的值为.解:设幂函数为:y=x a,∵幂函数y=f(x)的图象经过点(4,2),∴2=4a,∴a=,∴f(2)=.故答案为:14.函数在上的值域为.解:对于函数,当x∈时,2x﹣∈[﹣,π],故当2x﹣=时,y取得最大值为2,当2x﹣=﹣时,y取得最小值为﹣,∴函数在上的值域为[﹣,2],故答案为:[﹣,2].15.若正数a,b满足a+b=2,则ab的最大值为1;的最小值为.解:∵正数a,b满足a+b=2,∴2≥2,解得ab≤1,当且仅当a=b=1时取等号,∴ab有最大值为1.=(+)(a+b)=(5++)(5+2)=,当且仅当b=2a=时取等号.∴的最小值为,故答案为:1,.16.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为(40+30)π米.解:由题意,如图所示,可得QT=60米,PQ=60米,连接PO,可得PO⊥QT,因为sin∠QPO=,所以∠QPO=,∠QPT=,所以绕着月牙泉的岸边步行一周,则该游客步行的路程为L=2π×()+60×=(40+30)π米.故答案为:(40+30)π.四、解答题17.求下列各式的值.(1)(e为自然对数的底数);(2).解:(1)==.(2)===.18.已知函数定义域为A,集B={x|x2﹣2mx+m2﹣4≤0}.(1)求集合A,B;(2)若x∈B是x∈A成立的充分不必要条件,求实数m的取值范围.解:(1)由题意知:,解得x>3或x<1,∴集合A=(﹣∞,1]∪(3,+∞),对于集合B满足:x2﹣2mx+m2﹣4=(x﹣m+2)(x﹣m﹣2)≤0,其中m﹣2<m+2,∴B=[m﹣2,m+2];(2)若x∈B是x∈A的充分不必要条件,则集合B是A的真子集,由(1)知,只需满足m+2<1或m﹣2>3即可,此时解得m<﹣1或m>5,综述,满足题意的m的取值范围是(﹣∞,﹣1)∪(5,+∞).19.设函数.(1)解不等式.(2)若x∈[1,9],求函数f(x)的最大值.解:(1)令,则原式变为,而t2﹣t+2>0恒成立,∴,即,所以2t>t2﹣t+2,即t2﹣3t+2<0,解得t∈(1,2),∴,解得x∈(3,9);(2)当x∈[1,9]时,由(1)中换元知t∈[0,2].当t=0时,f(t)=0;当t=(0,2]时,∵,当且仅当时取等,∴f(x)的最大值为,经检验满足题意,综上所述,f(x)的最大值为.21.已知函数f(x)=x3﹣3x.(1)判断并证明函数f(x)的奇偶性;(2)用定义证明函数f(x)在[0,1]上为减函数;(3)已知x∈[0,2π],且f(sin x)=f(cos x),求x的值.【解答】解.(1)奇函数;证明:函数f(x)=x3﹣3x,定义域x∈Rf(﹣x)=(﹣x)3﹣3(﹣x)=﹣(x3﹣3x)=﹣f(x)故f(x)为奇函数(2)任取0≤x1<x2≤1,=,因为,,0≤x1x2<1所以则f(x1)﹣f(x2)>0⇒f(x1)>f(x2)所以f(x)在[0,1]上为减函数.(3)x∈[0,2π],﹣1≤sin≤1,﹣﹣1≤cos x≤1f(x)在R上为奇函数且f(x)在[0,1]为减函数,则有f(x)在[﹣1,1]也是减函数,又f(sin x)=f(cos x)⇒sin x=cos x,又x∈[0,2π],则或.22.已知函数(a为常数,且a≠0,a∈R).请在下面四个函数:①g1(x)=2x,②g2(x)=log2x,③,④中选择一个函数作为g(x),使得f(x)具有奇偶性.(1)请写出g(x)表达式,并求a的值;(2)当f(x)为奇函数时,若对任意的x∈[1,2],都有f(2x)≥mf(x)成立,求实数m的取值范围;(3)当f(x)为偶函数时,请讨论关于x的方程f(2x)=mf(x)解的个数.解:(1)若选①g1(x)=2x,则f(x)=,定义域为R,当f(x)为奇函数,f(0)=≠0,不满足条件.奇函数的性质;当f(x)为偶函数,f(﹣x)=f(x),即f(﹣x)===,整理得2a=不是常数,不满足条件.若选②g2(x)=log2x,则函数的定义域为(0,+∞),函数为非奇非偶函数,不满足条件.若选③,则f(x)=.定义域为R,当f(x)为奇函数,f(0)=≠0,不满足条件.奇函数的性质;当f(x)为偶函数,f(﹣x)=f(x),即===,整理得a==﹣=﹣不是常数,不满足条件.若选④g(x)=8x,,,当f(x)为奇函数,f(x)=﹣f(﹣x)⇒a=﹣1;当f(x)为偶函数,f(x)=f(﹣x)⇒a=1.(2)当f(x)为奇函数时,f(x)=2x﹣2﹣x,x∈[1,2],2x∈[2,4],,若对于任意的x∈[1,2],都有f(2x)≥mf(x)成立,,所以m的取值范围是.(3)当f(x)为偶函数时,f(x)=2x+2﹣x,f(2x)=22x+2﹣2x=(2x+2﹣x)2﹣2,令t=2x+2﹣x≥2,则t2﹣2=mt(t≥2),,又在[2,+∞)单调递增,所以h(t)≥1,1.当m<1,此时方程无解;2.当m≥1,存在唯一解t0∈[2,+∞),又因为f(x)=2x+2﹣x为偶函数,不防设0≤x1<x2,,所以f(x)在[0,+∞)单调递增,在(﹣∞,0]单调递减,①当m=1时,t0=2,此时方程有唯一解x0=0;②当m>1时,t0>2,此时方程有两个解,下证必要性:令h(x)=2x+2﹣x﹣t0,h(x)为偶函数,h(x)在[0,+∞)单调递增,h(0)=2﹣t0<0,所以h(x)在有一个零点,又因为函数时偶函数,则在也有一个零点,所以当m>1,t0>2时一共有2两个零点.。
江苏省无锡市天一中学2022年高一上数学期末质量检测模拟试题含解析

点睛:利用函数性质解抽象函数不等式,实质是利用对应函数单调性,而对应函数需要构造. 12、16
【解析】由题意易知:△ ABC 和△ AED 为全等的等腰直角三角形,斜边长为 2 2 ,
AD
BF BG BC
BF BG
2
2BC
2
2BC
16
,
故答案为 16 点睛:平面向量数量积 类型及求法 (1)求平面向量数量积有三种方法:一是夹角公式 a·b=|a||b|cos θ;二是坐标公式 a·b=x1x2+y1y2;三是利用数 量积的几何意义.本题就是利用几何意义处理的.
B,因为 4e 9 ,所以 e2
3
,故 ln 3 ln 2
ln
3
1
lne 2
1
,B
不正确;
2
2
2
对于
C,显然, 0
ln
2
ln 3 , ln
2 ln
3
ln
2
2
ln
3
2
ln
6 2 lne2 1,C 正确;
对于 D,因为 ln 9 ln8 ,所以 2ln 3 3ln 2 ,即 ln 3 3 ,D 不正确. ln 2 2
B.斜率的估计值等于 6.217,说明年龄每增加一个单位,身高就约增加 6.217 个单位
C.年龄为 10 时,求得身高是134cm ,所以这名孩子的身高一定是134cm
D.身高与年龄成正相关关系 二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。
11.已知函数 f (x) 是定义在 R 上的奇函数,且 f (1) 0 ,若对任意的 x1, x2 ,0 ,当 x1 x2 时,都有
,则 的值等于_________.
2023届天一大联盟高一数学第一学期期末统考试题含解析

C.60°D.90°
8.下列函数中定义域为 ,且在 上单调递增的是
A. B.
C. D.
9.某市中心城区居民生活用水阶梯设置为三档,采用边际用水量确定分档水量为:
第一档水量为240立方米/户 年及以下部分;
第二档水量为240立方米/户 年以上至360立方米/户 年部分(含360立方米/户 年);
(2)求证:AE∥平面BFD;
(3)求三棱锥C-BGF的体积
20.对于在区间 上有意义的函数 ,若满足对任意的 , ,有 恒成立,则称 在 上是“友好”的,否则就称 在 上是“不友好”的.现有函数 .
(1)当 时,判断函数 在 上是否“友好”;
(2)若关于x的方程 的解集中有且只有一个元素,求实数a的取值范围
(2)函数的最小值为
(3) 或
【解析】(1)把 、 分别代入函数解析式即可把下表补充完整;描点、连线即可得到函数的图象;
(2)这个函数的最小值为 ;
(3)画出两个函数的图象,结合图象即可求解结论
【小问1详解】
解:①将 和 分别代入函数解析式可得:
, ;
②根据表格描点,连线,
x
0
1
3
5
7
9
y
0
1
可得这个函数的图象所示:
【详解】由题意直线斜率为 ,所以倾斜角为
故选:A
8、D
【解析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项.
【详解】因为 的定义域为 , 的定义域为 ,所以排除选项B,C.
因为 在 是减函数,所以排除选项A,故选D.
【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养.
2023-2024学年江苏省南京市高一(上)期末数学试卷【答案版】

2023-2024学年江苏省南京市高一(上)期末数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符 1.已知集合M ={﹣1,0,1},N ={0,1,2},则M ∪N =( ) A .{﹣1,0,1,2} B .{﹣1,0,1} C .{﹣1,0,2}D .{0,1}2.命题“∀x ∈R ,x +2≤0”的否定是( ) A .∃x ∈R ,x +2>0 B .∃x ∈R ,x +2≤0 C .∀x ∈R ,x +2>0D .∀x ∉R ,x +2>0 3.若函数f (x )=x 2﹣mx +3在区间(﹣∞,2)上单调递减,则实数m 的取值范围是( ) A .(﹣∞,2]B .[2,+∞)C .(﹣∞,4]D .[4,+∞)4.已知角θ的终边经过点P (x ,﹣5),且tanθ=512,则x 的值是( ) A .﹣13B .﹣12C .12D .135.已知a =log 0.32,b =log 0.33,c =log 32,则下列结论正确的是( ) A .a <b <cB .a <c <bC .c <a <bD .b <a <c6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣17.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√328.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( )A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab10.已知关于x 的不等式ax 2+bx +c >0的解集是{x |1<x <3},则( ) A .a <0B .a +b +c =0C .4a +2b +c <0D .不等式cx 2﹣bx +a <0的解集是{x |x <﹣1或x >−13}11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f (x )=cot x ,其中cotx =tan(π2−x),则下列关于余切函数的说法正确的是( )A .定义域为{x |x ≠k π,k ∈Z }B .在区间(π2,π)上单调递增C .与正切函数有相同的对称中心D .将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =cot x 的图象12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 . 14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 .15.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调增函数,若f (lgx )<f (1),则实数x 的取值范围是 .16.已知函数f(x)=log 9x +12x −1的零点为x 1.若x 1∈(k ,k +1)(k ∈Z ),则k 的值是 ;若函数g (x )=3x +x ﹣2的零点为x 2,则x 1+x 2的值是 .四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明, 17.(10分)(1)已知a +a﹣1=3,求a 12+a−12的值;(2)求值:e ln 2+(lg 5)2+lg 5lg 2+lg 20.18.(12分)设全集U =R ,已知集合A ={x |x 2﹣5x +4≤0},B ={x |m ≤x ≤m +1}. (1)若A ∩B =∅,求实数m 的取值范围;(2)若“x ∈B ”是“x ∈A ”的充分条件,求实数m 的取值范围.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值; (2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.2023-2024学年江苏省南京市高一(上)期末数学试卷参考答案与试题解析一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符1.已知集合M={﹣1,0,1},N={0,1,2},则M∪N=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{﹣1,0,2}D.{0,1}解:因为集合M={﹣1,0,1},N={0,1,2},所以M∪N={﹣1,0,1,2},故选:A.2.命题“∀x∈R,x+2≤0”的否定是()A.∃x∈R,x+2>0B.∃x∈R,x+2≤0C.∀x∈R,x+2>0D.∀x∉R,x+2>0解:命题为全称命题,则命题的否定为“∃x∈R,x+2>0”.故选:A.3.若函数f(x)=x2﹣mx+3在区间(﹣∞,2)上单调递减,则实数m的取值范围是()A.(﹣∞,2]B.[2,+∞)C.(﹣∞,4]D.[4,+∞)解:函数f(x)=x2﹣mx+3开口向上,对称轴方程为x=m 2,所以函数的单调递减区间为(﹣∞,m2 ],要使在区间(﹣∞,2)上单调递减,则m2≥2,解得m≥4.即m的范围为[4,+∞).故选:D.4.已知角θ的终边经过点P(x,﹣5),且tanθ=512,则x的值是()A.﹣13B.﹣12C.12D.13解:由题意得,tanθ=512=−5x,故x=﹣12.故选:B.5.已知a=log0.32,b=log0.33,c=log32,则下列结论正确的是()A.a<b<c B.a<c<b C.c<a<b D.b<a<c解:∵log0.33<log0.32<log0.31=0,∴b<a<0,∵log32>log31=0,∴c>0,∴b<a<c.故选:D.6.北京时间2023年5月10日21时22分,搭载天舟六号货运飞船的长征七号遥七运载火箭,在我国文昌航天发射场点火发射,约10分钟后,天舟六号货运飞船与火箭成功分离并进入预定轨道,发射取得圆满成功.在不考虑空气阻力的情况下,火箭的最大速度v (km /s )和燃料的质量M (kg )、火箭(除燃料外)的质量m (kg )的函数关系的表达式为v =2ln(1+Mm ),若火箭的最大速度v 达到10km /s ,则M m的值是( ) A .5e ﹣1B .e 5﹣1C .510﹣1D .105﹣1解:由题意知火箭的最大速度v 达到10km /s ,故10=2ln(1+M m ),即1+Mm =e 5,∴M m =e 5−1. 故选:B .7.已知定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)的值是( )A .−√32B .−12C .12D .√32解:定义在R 上的函数f (x )={cosx ,x ≤0f(x −π),x >0,则f(113π)=f(83π)=f(5π3)=f(2π3)=f(−π3)=cos(−π3)=12. 故选:C .8.在等式a b =N 中,如果只给定a ,b ,N 三个数中的一个数,那么a b =N 就成为另两个数之间的“函数关系”.如果N 为常数10,将a 视为自变量x (x >0且x ≠1),则b 为x 的函数,记为y ,那么x y =10,现将y 关于x 的函数记为y =f (x ).若f (m 2)>f (2m ),则实数m 的取值范围是( ) A .(0,2)B .(1,2)C .(0,1)∪(1,2)D .(0,12)∪(1,2)解:因为x y =10,(x >0且x ≠1),所以lgx y =lg 10=1,即ylgx =1, 所以y =f (x )=1lgx,所以函数f (x )在(0,1),(1,+∞)上单调递减, 若f (m 2)>f (2m ),则0<m 2<2m <1,或1<m 2<2m ,解得0<m <12或1<m <2.故选:D .二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题 9.若a <b <0,c ∈R ,则( ) A .a +c <b +cB .ab <b 2C .1a <1bD .b a <ab解:对于A ,由a <b ,两边都加上c ,可得a +c <b +c ,故A 正确; 对于B ,a <b <0,两边都乘以b ,可得ab >b 2,故B 不正确; 对于C ,a <b <0,则1a −1b =b−a ab >0,可知1a >1b,故C 不正确;对于D,a<b<0,则ba −ab=b2−a2ab=(b+a)(b−a)ab<0,可得ba<ab,故D正确.故选:AD.10.已知关于x的不等式ax2+bx+c>0的解集是{x|1<x<3},则()A.a<0B.a+b+c=0C.4a+2b+c<0D.不等式cx2﹣bx+a<0的解集是{x|x<﹣1或x>−13}解:因为不等式ax2+bx+c>0的解集是{x|1<x<3},所以a<0且1,3为方程ax2+bx+c=0的两根,A正确;故{1+3=−ba1×3=ca,所以b=﹣4a,c=3a,所以a+b+c=a﹣4a+3a=0,B正确;4a+2b+c=4a﹣8a+3a=﹣a>0,C错误;由不等式cx2﹣bx+a=3ax2+4ax+a<0可得3x2+4x+1>0,解得x<﹣1或x>−13,D正确.故选:ABD.11.古人立杆测日影以定时间,后来逐步形成了正切和余切的概念.余切函数可以用符号表示为f(x)=cot x,其中cotx=tan(π2−x),则下列关于余切函数的说法正确的是()A.定义域为{x|x≠kπ,k∈Z}B.在区间(π2,π)上单调递增C.与正切函数有相同的对称中心D.将函数y=﹣tan x的图象向右平移π2个单位可得到函数y=cot x的图象解:根据cotx=tan(π2−x),所以余切函数的图象如图所示:对于A:函数的定义域为{x|x≠kπ,k∈Z},故A正确;对于B:在区间(π2,π)上单调递减,故B错误;对于C :与正切函数有相同的对称中心,都为(kπ2,0)(k ∈Z ),故C 正确;对于D :将函数y =﹣tan x 的图象向右平移π2个单位可得到函数y =﹣tan (x −π2)=cot x 的图象,故D 正确. 故选:ACD .12.已知扇形的半径为r ,弧长为l .若其周长的数值为面积的数值的2倍,则下列说法正确的是( ) A .该扇形面积的最小值为8 B .当扇形周长最小时,其圆心角为2 C .r +2l 的最小值为9D .1r 2+4l 2的最小值为12解:因为扇形的半径为r ,弧长为l ,所以扇形的周长为2r +l ,面积为12lr ;因为2r +l =2×12lr ,所以l =2rr−1,且r >1;所以扇形的面积为S =12×2r r−1×r =r 2r−1=(r−1)2+2(r−1)+1r−1=(r ﹣1)+1r−1+2≥2√(r −1)⋅1r−1+2=4,当且仅当r ﹣1=1r−1,即r =2时取等号,所以选项A 错误; 扇形的周长为L =2r +2r r−1=2(r ﹣1)+2r−1+4≥2√2(r −1)⋅2r−1+4=8, 当且仅当2(r ﹣1)=2r−1,即r =2时取等号,此时圆心角为|α|=l r =42=2,α=±2,选项B 错误; r +2l =r +4r r−1=r +4+4r−1=(r ﹣1)+4r−1+5≥2√(r −1)⋅4r−1+5=9, 当且仅当r ﹣1=4r−1,即r =3时取等号,选项C 正确; 1r 2+4l 2=1r 2+(r−1)2r 2=1−2r +2r 2=2(1r −12)2+14]≥12,当r =2时取等号,所以选项D 正确.故选:CD .三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上 13.已知幂函数f (x )=x α的图象经过点(9,3),则f (8)的值是 2√2 . 解:根据幂函数f (x )=x α的图象经过点(9,3),可得9α=3,求得α=12,故f (x )=x 12=√x .故f (8)=√8=2√2.故答案为:2√2.14.已知sin(x +π6)=13,则sin 2(π3−x)的值是 89 .解:∵cos (π3−x )=sin(x +π6)=13,∴sin2(π3−x)=1﹣cos2(π3−x)=1−19=89.故答案为:8 9.15.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(lgx)<f(1),则实数x的取值范围是110<x<10.解:∵f(x)定义在实数集R上的偶函数,在区间[0,+∞)上是单调增函数∴f(x)中(﹣∞,0)上是减函数又f(lgx)<f(1)∴﹣1<lgx<1∴110<x<10故答案为:110<x<1016.已知函数f(x)=log9x+12x−1的零点为x1.若x1∈(k,k+1)(k∈Z),则k的值是1;若函数g (x)=3x+x﹣2的零点为x2,则x1+x2的值是2.解:函数f(x)=log9x+12x−1是增函数,f(1)=−12<0,f(2)=log92>0,满足f(1)f(2)<0,所以函数的零点x1∈(1,2),所以k的值为1.函数f(x)=log9x+12x−1=12(log3x+x﹣2),函数的零点是y=log3x与y=2﹣x两个函数的图象的交点的横坐标x1,函数g(x)=3x+x﹣2的零点为x2,是函数y=3x与y=2﹣x图象交点的横坐标,由于y=log3x与y=3x是反函数,关于y=x对称,并且y=2﹣x与y=x垂直,交点坐标(1,1),所以x1+x2的值是2.故答案为:1;2.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,17.(10分)(1)已知a+a﹣1=3,求a 12+a−12的值;(2)求值:e ln2+(lg5)2+lg5lg2+lg20.解:(1)因为(a 12+a−12)2=a+a﹣1+2=3+2=5,又因为a 12+a−12>0,所以a12+a−12=√5;(2)e ln2+(lg5)2+lg5lg2+lg20=2+1g5(lg5+1g2)+1g2+1=2+1g5+1g2+1=2+1+1=4.18.(12分)设全集U=R,已知集合A={x|x2﹣5x+4≤0},B={x|m≤x≤m+1}.(1)若A∩B=∅,求实数m的取值范围;(2)若“x∈B”是“x∈A”的充分条件,求实数m的取值范围.解:(1)由x 2﹣5x +4≤0,解得1≤x ≤4,所以A ={x |1≤x ≤4}. 因为A ∩B =∅,且B ≠∅,所以m +1<1或m >4,得m <0或m >4, 所以实数m 的取值范围是{m |m <0或m >4}.(2)因为“x ∈B ”是“x ∈A ”的充分条件,所以B ⊆A , 所以{m ≥1m +1≤4,解得1≤m ≤3,所以实数m 的取值范围是{m |1≤m ≤3}.19.(12分)已知函数f (x )=A sin (ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示. (1)求函数f (x )的解析式;(2)求函数y =f (x )在区间[﹣π,0]上的单调减区间.解:(1)由图可知A =2,T =4×(π3−π12)=π,所以ω=2πT=2.∵f (x )=2sin (2x +φ)的图象经过点(π12,2), ∴π6+φ=π2+2kπ,k ∈Z ,即φ=π3+2kπ,k ∈Z .∵0<φ<π,所以φ=π3,∴f(x)=2sin(2x +π3).(2)令π2+2kπ≤2x +π3≤3π2+2kπ,k ∈Z ,解得π12+kπ≤x ≤7π12+kπ,k ∈Z ,∴f(x)=2sin(2x +π3)的减区间为[π12+kπ,7π12+kπ],k ∈Z ,∴f(x)=2sin(2x +π3)在[﹣π,0]上的减区间为[−11π12,−5π12].20.(12分)已知函数f(x)=a⋅2x−12x +1(a ∈R).(1)若函数f (x )为奇函数,求a 的值;(2)当a =3时,用函数单调性的定义证明:函数f(x)=a⋅2x−12x +1在R 上单调递增;(3)若函数y =f (x )﹣2x 有两个不同的零点,求a 的取值范围.解:(1)由 f (0)=0,得a =1,此时f(x)=2x−12x +1.因为f(−x)=2−x−12−x +1=1−2x1+2x =−f(x),所以f (x )为奇函数,故a =1. 证明:(2)当a =3时,f(x)=3⋅2x−12x +1=3−42x +1.任取x 1,x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=42x 2+1−42x 1+1=4(2x1−2x2)(1+2x 1)(1+2x 2), 因为x 1<x 2,所以2x 1<2x 2,2x 1+1>0,2x 2+1>0, 所以4(2x 1−2x 2)(1+2x 1)(1+2x 2)<0,即f (x 1)<f (x 2),所以函数f(x)=a⋅2x−12x +1在R 上单调递增.解:(3)y =f (x )﹣2x 有两个不同的零点,等价于(2x )2+(1﹣a )2x +1=0有两个不同的实数解. 令t =2x (t >0),则t 2+(1﹣a )t +1=0在(0,+∞)有两个不同的实数解, 所以{(1−a)2−4>0a −1>0,解得a >3.所以a 的取值范围为(3,+∞).21.(12分)如图,有一条宽为30m 的笔直的河道(假设河道足够长),规划在河道内围出一块直角三角形区域(图中△ABC )种植荷花用于观赏,C ,B 两点分别在两岸l 1,l 2上,AB ⊥AC ,顶点A 到河两岸的距离AE =h 1,AD =h 2,设∠ABD =α.(1)若α=30°,求荷花种植面积(单位:m 2)的最大值; (2)若h 2=4h 1,且荷花的种植面积为150m 2,求sin α.解:由题可得,AB =ℎ2sinα,AC =ℎ1cosα. (1)当α=30°时,AB =2h 2,AC =2√31, 所以S △ABC =12AB ⋅AC =2√31ℎ2,又因为h 1+h 2=30,h 1,h 2≥0, 所以S △ABC =√31ℎ2≤√3(ℎ1+ℎ22)2=150√3,当且仅当h 1=h 2=15时取等号.所以荷花种植区域面积的最大值为150√3m 2.(2)因为h 1+h 2=30,h 2=4h 1,所以h 1=6,h 2=24,故AB =24sinα,AC =6cosα,α∈(0,π2), 从而S △ABC =12AB ⋅AC =72sinαcosα=150, 所以sinαcosα=1225,① 所以(sinα+cosα)2=1+2sinαcosα=4925. 又因为α∈[0,π2],所以sinα+cosα=75,② 由①②解得:sinα=35或45. 22.(12分)若存在实数对(a ,b ),使等式f (x )•f (2a ﹣x )=b 对定义域中每一个实数x 都成立,则称函数f (x )为(a ,b )型函数.(1)若函数f (x )=2x 是(a ,1)型函数,求a 的值;(2)若函数g(x)=e 1x 是(a ,b )型函数,求a 和b 的值;(3)已知函数h (x )定义在[﹣2,4]上,h (x )恒大于0,且为(1,4)型函数,当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2.若h (x )≥1在[﹣2,4]恒成立,求实数m 的取值范围.解:(1)由f (x )=2x 是(a ,1)型函数,得f (x )•f (2a ﹣x )=2x •22a ﹣x =1,即22a =1,所以a =0. (2)由g(x)=e 1x是(a ,b )型函数,得g(x)⋅g(2a −x)=e 1x ⋅e 12ax −x =b ,则1x +12a−x =lnb ,因此x 2lnb ﹣2axlnb +2a =0对定义域{x |x ≠0}内任意x 恒成立,于是{lnb =02alnb =02a =0,解得a =0,b =1,所以a =0,b =1.(3)由h (x )是(1,4)型函数,得h (x )•h (2﹣x )=4,(1)当x =1时,h (1)•h (1)=4,而h (x )>0,则h (1)=2,满足h (x )≥1;(2)当x ∈(1,4]时,ℎ(x)=−(log 2x)2+m ⋅log 2x +2≥1恒成立,令log 2x =t ,则当t ∈(0,2]时,﹣t 2+mt +2≥1恒成立,于是m ≥t −1t 恒成立,而函数y =t −1t在(0,2]单调递增,则t −1t ≤32,当且仅当t =2时取等号,因此m ≥32; (3)当x ∈[﹣2,1)时,2﹣x ∈(1,4],则ℎ(x)=4ℎ(2−x)=4−[log 2(2−x)]2+m⋅log 2(2−x)+2,由h (x )≥1,得0<−[log 2(2−x)]2+m ⋅log 2(2−x)+2≤4,令log 2(2﹣x )=u ,则当u ∈(0,2]时,0<﹣u 2+mu +2≤4,由(2)知﹣u 2+mu +2≥1,则只需u ∈(0,2]时,﹣u 2+mu +2≤4恒成立,即m ≤2u +u 恒成立,又u +2u≥2√u ⋅2u =2√2,当且仅当u =√2时取等号,因此m ≤2√2, 所以实数m 的取值范围是:[32,2√2].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省天一中学 2020―― 2020 学年第一学期期终考试
高一数学试卷
注意事项及答题要求:
1.本试卷分填空题和解答题两部分.满分
160 分,考试时间为
120 分钟;
2.考生作答时,除作图以外区域一律使用黑色碳素墨水笔.将答案答在答卷纸上,在本试卷上 答题无效.考试结束后, 将答题答卷纸交上; 3.答题前,考生先将自己的班级、姓名、学号填写清楚;
4.答题中禁止使用计算器,否则按考试舞弊处理. 一、填空题:每小题 5 分,共 70 分.请把答案直接填写在答题纸相应位置上 .
........
1.已知全集 U
{1, 2,3, 4} ,集合 A {2 ,3},B {3, 4} ,则 (C U A) (C U B)
▲
.
uuur uuur uuur
uuur uuur
2.已知向量 OA 0,1 ,OB
(1,3), OC ( m, m) ,若 AB // AC ,则 实数 m =
▲
.
3.已知
2
, 3sin 2 2cos
,则 cos(
)
▲
.
4. 函数 f (x) (sin x cos x) 2 的最小正周期为
▲ .
5.设
1,1, 1 , 2 ,则使幂函数 y x 的定义域为 R 且为奇函数的所 有 的值
2 3
为 _
▲
.
r
r
r r r
r r
r r
6.若向量 a, b 满足 a
2, b 1,a ( a b) 1 ,则向量 a, b 的夹角的大小为
▲
.
7.已知
,且 sin
cos
1 ▲
.
2
,则 tan 的值为
2
5
8.设 f ( x)
2a x , x 1,
且 f (2
2) 1 ,则 f ( f (2))
▲
.
log a (x 2
1), x 1,
9.设函数 f ( x)
3|x|
,则 f (x) 在区间 ( m 1,2m) 上不是单调函数 ,则实数 m 的取值范 围是 ▲ .
10.已知
1
cos2 1 , tan(
)
1
,则 tan(
2 )的值为
▲
.
sin cos
3
11.函数 f ( x) 2sin( x)
1 , x [ 2, 4] 的所有零点之和为 ▲.
1
x
12.已知函数
1 x
<
<
为奇函数,当 x
( 1,a] 时,函数 f (x) 的值域是
f ( x) log
a
b x (0 a 1) ( ,1]
,则实数 a b 的值为 ▲ .
13.已知函数 f x
a x b
a
0,b R, c 0 ,
x 2
b
c
g x m
f x
2
mn 0
n ,给出下列三个结论:
①函数 f
x 的图像关于 x 轴上某点成中心对称;
②存在实数 p, q ,使得 p f x
q 对于任意的实数 x 恒成立;
③关于 x 的方程 g x 0 的解集可能为
4, 2,0,3 .
其中正确结论的 序号 为
▲ ___.(请填写序号,不选、漏选、选错均不给分)
uuur uuur
uuur
14.在斜三角形⊿ ABC 中, A
45o , H 是⊿ ABC 的垂
心,
AB
AC , AH
tan C tan B
则 ▲ ___.
二、解答题:本大题共 6 题,共 90 分,解答应写出文 字说明、证明过程或演算步骤.
15.(本题满分 14 分)设集合 A 2,3, a 2 2a 3 , B
x x a 2 ,
( 1)当 a
2时,求 A B ;(2)若 0 A B ,求实数 a 的值.
r r
4 tan ) .
16.(本题满分 14 分)已知 a (4,5cos ), b (3,
r r r r
) ,求 cos(2
( 1)若 a // b ,求 sin 的值 ;( 2)若 a b ,且
(0, ) 的值.
2 4
17.(本题满分 14 分)已知函数 f ( x) Asin( x )( A 0, 0,0
) 图像上两
个相邻的最值点为 ( ,2) 和 (
2
, 2).
6 3
( 1)求函数 f ( x) 的解析式;
( 2) 求函数 f ( x) 在区间 (0, ) 上的对称中心 、对称轴;
2
( 3)将函数 f ( x) 图 像上每一个点向右平移
个单位得到函数 y
g( x) ,
3
令 h( x)
f (x) g( x) ,求函数 h(x) 在区间 (
,0) 上的最大值,并指出此时 x 的值.
3
18.(本题满分 16 分)已知 A, B 两地相距 2R , AB 为直径作一个半圆,在半圆上取一点
C ,连接 AC, BC
,在
ABC 内种草(如图) , M , N 分别为弧
AC ,弧
BC 的中点,在
AMC , BNC 上种花,其余是空地. 设花坛的面积为
S 1 ,草坪的面积为
S 2 ,取
ABC
.
( 1)用
及 R 表示
S 1 和 S 2 ;( 2)求
S 1 S 2
的最小值.
19.(本题满分16 分)已知函数 f ( x) 1 log 2 x, g( x)2x.
( 1)若F (x) f (g( x)) g( f ( x)) ,求函数 F (x) 在x1,4 的值域;( 2)令G(x) f (8 x2 ) f ( x )kf ( x) ,已知函数G ( x)在区间1,4有零点,求实数 k 的取值范围;
( 3)若H ( x) g ( x) ,求H( 1
) H(
2
) H(
3
) H (
2015
) 的值.
g(x)2 2016 2016 2016 2016
20.(本题满分 16 分)对于定义在R上的函数f ( x),定义同时满足下列三个条件的函数为“ Z 函数”:
①对任意
②对任意
③对任意x, a ,都有 f (x) C1;
x b,,都有 f (x) C 2;
x a,b ,都有( f ( x)C1 )( f ( x) C2 ) 0 .(其中 a b,C1, C 2为常数)
( 1)判断函数f1( x) x 1 x 3 1和 f 2 ( x) x x 2 是否为R上的“ Z 函数”?( 2)已知函数g( x) x 2 x2 mx 4 ,是否存在实数m,使得g( x)为R上的“Z 函数”?若存在,求实数m 的值;否则,请说明理由;
( 3)设f (x)是( 1)中的“Z函数”,令h( x) f ( x) ,若h(2 a2 a) h(4 a) ,
求实数a的取值范围.。