2020届江苏省天一中学2017级高三一模考试数学试卷参考答案

合集下载

2020年江苏省无锡市锡山区天一中学高考数学第一次模拟测试试卷 (解析版)

2020年江苏省无锡市锡山区天一中学高考数学第一次模拟测试试卷 (解析版)

2020年高考数学第一次模拟试卷一、填空题(共14个小题)1.已知集合A={x|0<x<2},B={x|﹣1<x<1},则A∩B=.2.复数z=(i为虚数单位)的虚部为.3.函数的定义域为.4.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的两张,则抽取的两张卡片编号之和是偶数的概率为.5.在平面直角坐标系xOy中,若双曲线(a>0,b>0)的离心率为,则该双曲线的渐近线方程为.6.某种圆柱形的如罐的容积为128π个立方单位,当它的底面半径和高的比值为时,可使得所用材料最省.7.在平面直角坐标系xOy中,双曲线的右准线与渐近线的交点在抛物线y2=2px 上,则实数p的值为.8.已知α是第二象限角,且,tan(α+β)=﹣2,则tanβ=.9.已知等差数列{a n}的前n项和为S n,若S3=6,S6=﹣8,则S9=.10.在平面直角坐标系xOy中,已知直线l:y=与函数f(x)=sin(ωx+)(ω>0)的图象在y轴右侧的公共点从左到右依次为A1,A2…,若点A1的横坐标为1.则点A2的横坐标为.11.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若e2=3e1,则e1=.12.如图,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则=.13.已知函数f(x)是定义在R上的奇函数,其图象关于直线x=1对称,当x∈(0,1]时,f(x)=﹣e ax(其中e是自然对数的底数),若f(2020﹣ln2)=8,则实数a的值为.14.已知函数(其中e为自然对数的底数),若关于x的方程f2(x)﹣3a|f(x)|+2a2=0恰有5个相异的实根,则实数a的取值范围为.二、解答题15.如图,在斜三棱柱ABC﹣A1B1C1中,已知△ABC为正三角形,D,E分别是AC,CC1的中点,平面AA1C1C⊥平面ABC,A1E⊥AC1.(1)求证:DE∥平面AB1C1;(2)求证:A1E⊥平面BDE.16.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)若a=5,,求b的值;(2)若,求tan2C的值.17.截至1月30日12时,湖北省累计接收揭赠物资615.43万件,包括医用防护服2.6万套,N95口罩47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.某运输队接到给武汉运送物资的任务,该运输队有8辆載重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?18.在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.19.设函数f(x)=2x2+alnx,(a∈R)(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+m,求实数a,m的值(Ⅱ)若f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,求实数a的取值范围;(Ⅲ)关于x的方程f(x)+2cos x=5能否有三个不同的实根?证明你的结论20.已知f(x)=x3+ax2+bx,a,b∈R.(1)若b=1,且函数f(x)在区间(﹣1,)上单调递增,求实数a的范围;(2)若函数f(x)有两个极值点x1,x2,x1<x2,且存在x0满足x1+2x0=3x2,令函数g (x)=f(x)﹣f(x0),试判断g(x)零点的个数并证明你的结论.[选做题]本题包括A、B、C三小题,请选定其中两题.[选修4-2:矩阵与变换]21.已知矩阵M=的一个特征值为4,求矩阵M的逆矩阵M﹣1.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的非负半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段AB的长.[选修4-5:不等式选讲」23.已知x1,x2,x3∈(0,+∞),且满足x1+x2+x3=3x1x2x3,证明:x1x2+x2x3+x3x1≥3.[必做题]第22题、第23题,每题10分,共计20分.24.如图,在平面直角坐标系xOy中,已知抛物线:C:y2=2px(p>0)的焦点F在直线x+y﹣1=0上,平行于x轴的两条直线l1,l2分别交抛物线线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段AB上,P是DE的中点,证明:AP∥EF.25.在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.参考答案一、填空题1.已知集合A={x|0<x<2},B={x|﹣1<x<1},则A∩B={x|0<x<1}.解:∵A={x|0<x<2},B={x|﹣1<x<1},∴A∩B={x|0<x<1}.故答案为:{x|0<x<1}.2.复数z=(i为虚数单位)的虚部为1.解:z==i+1的虚部为1.故答案为:1.3.函数的定义域为[4,+∞)..解:函数f(x)=有意义,只需log2x﹣2≥0,且x>0,解得x≥4.则定义域为[4,+∞).故答案为:[4,+∞).4.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的两张,则抽取的两张卡片编号之和是偶数的概率为.解:在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的两张,基本事件总数为n==10,抽取的两张卡片编号之和是偶数包含的基本事件个数:m==4,则抽取的两张卡片编号之和是偶数的概率为p=.故答案为:.5.在平面直角坐标系xOy中,若双曲线(a>0,b>0)的离心率为,则该双曲线的渐近线方程为.解:因为双曲线(a>0,b>0)的离心率为,可得=,所以=,所以渐近线方程为y=±x.故答案为:y=±x.6.某种圆柱形的如罐的容积为128π个立方单位,当它的底面半径和高的比值为时,可使得所用材料最省.解:如图所示,设圆柱的高为h,底面半径为r.由题意,128π=πr2•h,∴S=2πr2+2πr•h==≥3.当且仅当,即当r=4时取等号.此时h==8.∴它的底面半径和高的比值为.故答案为:.7.在平面直角坐标系xOy中,双曲线的右准线与渐近线的交点在抛物线y2=2px 上,则实数p的值为.解:双曲线的右准线x=,渐近线y=x,双曲线的右准线与渐近线的交点(,),交点在抛物线y2=2px上,可得:=3p,解得p=.故答案为:.8.已知α是第二象限角,且,tan(α+β)=﹣2,则tanβ=﹣.解:∵α是第二象限角,且sinα=,∴cosα=﹣=﹣,tanα=﹣,∵tan(α+β)===﹣2;∴tanβ=﹣.故答案为:﹣.9.已知等差数列{a n}的前n项和为S n,若S3=6,S6=﹣8,则S9=﹣42.解:由题意可得:2×(﹣8﹣6)=6+S9﹣(﹣8),解得S9=﹣42.故答案为:﹣42.10.在平面直角坐标系xOy中,已知直线l:y=与函数f(x)=sin(ωx+)(ω>0)的图象在y轴右侧的公共点从左到右依次为A1,A2…,若点A1的横坐标为1.则点A2的横坐标为3.解:因为点A1的横坐标为1,即当x=1时,f(x)=sin(ω+)=,所以ω+=2kπ+或ω+=2kπ+(k∈Z),又直线l:y=与函数f(x)=sin(ωx+)(ω>0)的图象在y轴右侧的公共点从左到右依次为A1,A2…,所以ω+=,故ω=,所以:函数的关系式为f(x)=sin().当x2=3时,f(3)=sin()=,即点A2的横坐标为3,(3,)为二函数的图象的第二个公共点.故答案为:3.11.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若e2=3e1,则e1=.解:如图,由椭圆定义及勾股定理得,,可得=b12,∵e1=,∴a1=,∴b12=a12﹣c2=c2(),同理可得=b22,∵e2=,∴a2=,∴b22=c2﹣a22=c2(1﹣),∴c2(﹣1)=c2(1﹣),即,∵e2=3e1,∴e1=.故答案为:.12.如图,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则=.解:作DG∥AF交BC于G;∴,∴FE=DG;BF=FG;①∵,∴DG=AF;FG=GC;②联立①②可得EF=AF;AE=AF;BF=BC;∵=(+)•=﹣[+(﹣)]•()=﹣(+)•()=﹣[﹣﹣]=﹣[×22﹣•﹣×22]∴=;则=•=×()•=×(•+)=×(×+×22)=;故答案为:.13.已知函数f(x)是定义在R上的奇函数,其图象关于直线x=1对称,当x∈(0,1]时,f(x)=﹣e ax(其中e是自然对数的底数),若f(2020﹣ln2)=8,则实数a的值为3.解:根据题意,f(x)的图象关于x=1对称,所以f(1+x)=f(1﹣x)又由f(x)是R上的奇函数,所以f(x+1)=﹣f(x﹣1),则有f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x).则f(x)是周期为4的函数,故f(2020﹣ln2)=f(﹣ln2)=﹣f(ln2)=﹣(﹣e x•ln2)=8,变形可得:2x=8,解可得x=3;故答案为:314.已知函数(其中e为自然对数的底数),若关于x的方程f2(x)﹣3a|f(x)|+2a2=0恰有5个相异的实根,则实数a的取值范围为{}∪[,).解:当x≤2时,令f′(x)==0,解得x=1,所以当x≤1时,f′(x)>0,则f(x)单调递增,当1≤x≤2时,f′(x)<0,则f (x)单调递减,当x>2时,f(x)==单调递减,且f(x)∈[0,)作出函数f(x)的图象如图:(1)当a=0时,方程整理得f2(x)=0,只有2个根,不满足条件;(2)若a>0,则当f(x)<0时,方程整理得f2(x)+3af(x)+2a2=[f(x)+2a][f(x)+a]=0,则f(x)=﹣2a<0,f(x)=﹣a<0,此时各有1解,故当f(x)>0时,方程整理得f2(x)﹣3af(x)+2a2=[f(x)﹣2a][f(x)﹣a]=0,f(x)=2a有1解同时f(x)=a有2解,即需2a=1,a=,因为f(2)==>,故此时满足题意;或f(x)=2a有2解同时f(x)=a有1解,则需a=0,由(1)可知不成立;或f(x)=2a有3解同时f(x)=a有0解,根据图象不存在此种情况,或f(x)=2a有0解同时f(x)=a有3解,则,解得,故a∈[,)(3)若a<0,显然当f(x)>0时,f(x)=2a和f(x)=a均无解,当f(x)<0时,f(x)=﹣2a和f(x)=﹣a无解,不符合题意.综上:a的范围是{}∪[,)故答案为{}∪[,)二、解答题:共6小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在斜三棱柱ABC﹣A1B1C1中,已知△ABC为正三角形,D,E分别是AC,CC1的中点,平面AA1C1C⊥平面ABC,A1E⊥AC1.(1)求证:DE∥平面AB1C1;(2)求证:A1E⊥平面BDE.解:(1)证明:D,E分别是AC,CC1的中点,∴DE∥AC1,DE⊈平面AB1C1,∵AC1⫋平面AB1C1,故DE∥平面AB1C1;(2)证明:△ABC为正三角形,所以BD⊥AC,因为平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,故BD⊥平面AA1C1C,A1E⊂平面AA1C1C,所以BD⊥A1E,又A1E⊥AC1,DE∥AC1,所以A1E⊥DE,又BD∩DE=D,所以A1E⊥平面BDE.16.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)若a=5,,求b的值;(2)若,求tan2C的值.解:(1)在△ABC中,由余弦定理b2+c2﹣2bc cos A=a2,得,即b2﹣4b﹣5=0,解得b=5或b=﹣1(舍),所以b=5.(2)由及0<A<π得,,所以,又因为0<C<π,所以,从而,所以.17.截至1月30日12时,湖北省累计接收揭赠物资615.43万件,包括医用防护服2.6万套,N95口罩47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.某运输队接到给武汉运送物资的任务,该运输队有8辆載重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?解:设每天派出A型卡车x辆,B型卡车y辆,运输队所花成本为z元,则,且x∈N,y∈N,化简得:,目标函数z=240x+378y,画出满足条件的可行域如图中阴影部分所示:由图可知,当直线z=240x+378y经过点A时,截距z最小,解方程组,得点A的坐标为(,0),又∵x∈N,y∈N,∴点A(,0)不是最优解,∵在可行域的整数点中,点(8,0)使z取得最小值,即z min=240×8+378×0=1920,∴每天排除A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为1920元,答:每天派出A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为1920元.18.在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.解:(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=,又由右准线方程为x=2,得到=2,解得a=,所以b2=a2﹣c2=1所以,椭圆C的方程为+y2=1(2)设B(x1,y1),而A(0,1),则M(,),∵=,∴N(,),因为点B,N都在椭圆上,所以,解得:y1=,x=所以(3)由原点O到直线l的距离为1,得=1,化简得:1+k2=m2联立直线l的方程与椭圆C的方程:,得(1+2k2)x2+4kmx+2m2﹣2=0设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,且△=8k2>0,∴•=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)﹣+m2====λ所以k2=,所以△OAB的面积S=1×AB=|x1﹣x2|====,因为S=在[,]为单调减函数,并且当λ=时,S=,当λ=时,S=,所以△OAB的面积S的范围为19.设函数f(x)=2x2+alnx,(a∈R)(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+m,求实数a,m的值(Ⅱ)若f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,求实数a的取值范围;(Ⅲ)关于x的方程f(x)+2cos x=5能否有三个不同的实根?证明你的结论解:(I)∵f(x)=2x2+alnx,∴f′(x)=4x,由题意可得,f′(1)=2,f(1)=2∴4+a=2,2+m=2∴a=﹣2,m=0,(II)∵f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,2(2x﹣1)2+aln(2x﹣1)+2>2(2x2+alnx),整理可得,4(x﹣1)2﹣a[2lnx﹣ln(2x﹣1)]>0对任意x∈[2,+∞)恒成立,∴4﹣a(n4﹣ln3)>0即a当a时,4(x﹣1)2﹣a[2lnx﹣ln(2x﹣1)]设g(x)=4(x﹣1)2﹣,则g′(x)=8(x﹣1)[(2x2﹣x)﹣]∵x≥2,∴x﹣1>0,,∴g′(x)>0,即g(x)单调递增,g(x)>g(2)=0综上可得,a(III)不可能有三个不同的实根,证明如下:令g′(x)=f(x)+2cos x,若g(x)=5有三个不同的实数根,则g(x)至少要有三个单调区间,则g′(x)=0至少有两个不等实根,所以只要证明g′(x)=0在(0,+∞)至多1个实根,g′(x)=4x,g′′(x)=4﹣2cos x﹣∵,∴g′′(x)>0,∴g′(x)在(0,+∞)上单调递增,∴g′(x)=0至多1个根,当a≥0时,(4x﹣2sin x)′=4﹣2cos x>0,∴y=4x﹣2sin x在(0,+∞)上单调递增,∴y=4x﹣2sin x>0,又因为a≥0时,∴>0,g′(x)=0g′(x)在(0,+∞)上没有实数根综上可得,g′(x)=0(0,+∞)上至多一个实数根,得证20.已知f(x)=x3+ax2+bx,a,b∈R.(1)若b=1,且函数f(x)在区间(﹣1,)上单调递增,求实数a的范围;(2)若函数f(x)有两个极值点x1,x2,x1<x2,且存在x0满足x1+2x0=3x2,令函数g (x)=f(x)﹣f(x0),试判断g(x)零点的个数并证明你的结论.解:f′(x)=3x2+2ax+b,(x∈R),(1)当b=1时,f′(x)=3x2+2ax+1,因为f(x)在区间(﹣1,)上单调递增所以当x∈(﹣1,)时,f′(x)=3x2+2ax+1≥0恒成立.函数f′(x)=3x2+2ax+1的对称轴为x=﹣.①﹣<﹣1,即a>3时,f′(﹣1)≥0,即3﹣2a+1≥0,解之得a,解集为空集;②﹣1,即﹣时,f即,解之得,所以﹣③﹣,即a时,f≥0即3+a+1≥0,解之得a≥﹣,所以﹣综上所述,当﹣函数f(x)在区间(﹣1,)上单调递增.…(2)∵f(x)有两个极值点x1,x2,∴x1,x2是方程f′(x)=3x2+2ax+b=0的两个根,且函数f(x)在区间(﹣∞,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.∵g′(x)=f′(x)∴函数g(x)也是在区间(﹣∞,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减∵g(x0)═f(x0)﹣f(x0)=0,∴x0是函数g(x)的一个零点.…由题意知:x1+2x0=3x2,g(x2)=f(x2)﹣f(x0)∵x1+2x0=3x2,∴2x0﹣2x2=x2﹣x1>0,∴x0>x2∴f(x2)<f(x0),∴g(x2)=f(x2)﹣f(x0)<0又g(x1)=f(x1)﹣f(x0)=x13+ax12+bx1﹣(x03+ax02+bx0)=(x1﹣x0)(x12+x1x0+x02+ax1+ax0+b)=(x1﹣x0)(x12+x1•+()2+ax1+a•+b)=(x1﹣x0)(3x12+2ax1+b+9x22+6ax2+3b)∵x1,x2是方程f′(x)=3x2+2ax+b=0的两个根,∴3x12+2ax1+b=0,3x22+2ax2+b=0…∴g(x1)=f(x1)﹣f(x0)=0∵函数g(x)图象连续,且在区间(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增∴当x∈(﹣∞,x1)时,g(x)<0,当x∈(x1,x0)时g(x)<0,当x∈(x0,+∞)时g(x)>0,∴函数g(x)有两个零点x0和x1.…(16分)[选做题]本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.已知矩阵M=的一个特征值为4,求矩阵M的逆矩阵M﹣1.解:矩阵M的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣3t;因为矩阵M的一个特征值为4,所以方程f(λ)=0有一根为4;即f(4)=2×3﹣3t=0,解得t=2;所以M=,设M﹣1=,则MM﹣1==,由,解得;由,解得;所以M﹣1=.[选修4-4:坐标系与参数方程](本小题满分10分)22.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的非负半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段AB的长.解:(1)已知直线l的参数方程为(t为参数),转换为直角坐标方程为:,曲线C的极坐标方程是.由,得ρ2=4ρcosθ+4ρsinθ,整理的直角坐标方程为:x2+y2=4x+4y,所以曲线C:(x﹣2)2+(y﹣2)2=8.(2)由(1)知圆C半径,利用圆心到直线的距离,所以.[选修4-5:不等式选讲」23.已知x1,x2,x3∈(0,+∞),且满足x1+x2+x3=3x1x2x3,证明:x1x2+x2x3+x3x1≥3.【解答】证明:∵x1+x2+x3=3x1x2x3,∴,∴,当且仅当“x1=x2=x3=1”时取等号,故x1x2+x2x3+x3x1≥3,即得证.[必做题]第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.24.如图,在平面直角坐标系xOy中,已知抛物线:C:y2=2px(p>0)的焦点F在直线x+y﹣1=0上,平行于x轴的两条直线l1,l2分别交抛物线线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段AB上,P是DE的中点,证明:AP∥EF.解:(1)抛物线C的焦点F坐标为,且该点在直线x+y﹣1=0上,所以,解得p=2,故所求抛物线C的方程为y2=4x;(2)由点F在线段AB上,可设直线l1,l2的方程分别为y=a和y=b且a≠0,b≠0,a≠b.则,,D(﹣1,a),E(﹣1,b)∵P是DE的中点,∴直线AB的方程为,即4x﹣(a+b)y+ab=0,又点F(1,0)在线段AB上,∴ab=﹣4,,,由于AP,EF不重合,所以AP∥EF.25.在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.【解答】角:(1)某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.选出的4名选手中恰好有一名女教师的选派方法数为:m=+=28.(2)记X为选出的4名选手中女教师的人数,则X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的概率分布为:X0123PX的数学期望E(X)==.。

2017年江苏省苏州市高考数学一模试卷(解析版)

2017年江苏省苏州市高考数学一模试卷(解析版)

2017年江苏省苏州市高考数学一模试卷一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M=.2.若复数z满足z+i=,其中i为虚数单位,则|z|=.3.函数f(x)=的定义域为.4.如图是给出的一种算法,则该算法输出的结果是5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B 两点,其中A点在第一象限,且=2,则直线l的方程为.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.12.已知sinα=3sin(α+),则tan(α+)=.13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为.二.解答题:本大题共6小题,共计90分15.在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.16.如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.17.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.18.在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.19.己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.2=0,设数列{b n} 20.己知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+1满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A 作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].2017年江苏省苏州市高考数学一模试卷参考答案与试题解析一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M= {6,7} .【考点】补集及其运算.【分析】解不等式化简集合M,根据补集的定义写出运算结果即可.【解答】解:集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z}={x|1≤x≤5,x∈Z}={1,2,3,4,5},则∁U M={6,7}.故答案为:{6,7}.2.若复数z满足z+i=,其中i为虚数单位,则|z|=.【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由z+i=,得=,则|z|=.故答案为:.3.函数f(x)=的定义域为{x|x>且x≠1} .【考点】函数的定义域及其求法.【分析】根据对数函数的性质以及分母不是0,得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x>且x≠1,故函数的定义域是{x|x>且x≠1},故答案为:{x|x>且x≠1}.4.如图是给出的一种算法,则该算法输出的结果是24【考点】伪代码.【分析】模拟程序代码的运行过程,可知程序的功能是利用循环结构计算并输出变量t的值,由于循环变量的初值为2,终值为4,步长为1,故循环体运行只有3次,由此得到答案.【解答】解:当i=2时,满足循环条件,执行循环t=1×2=2,i=3;当i=3时,满足循环条件,执行循环t=2×3=6,i=4;当i=4时,满足循环条件,执行循环t=6×4=24,i=5;当i=5时,不满足循环条件,退出循环,输出t=24.故答案为:24.5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为300.【考点】分层抽样方法.【分析】用分层抽样的方法抽取一个容量为45的样本,根据高一年级抽20人,高三年级抽10人,得到高二年级要抽取的人数,根据该高级中学共有900名学生,算出高二年级学生人数.【解答】解:∵用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,∴高二年级要抽取45﹣20﹣10=15,∵高级中学共有900名学生,∴每个个体被抽到的概率是=∴该校高二年级学生人数为=300,故答案为:300.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,求出PO,由此能求出该正四棱锥的体积.【解答】解:如图,正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,则AO=AC=.在直角三角形POA中,PO===1.所以VP﹣ABCD=•SABCD•PO=×4×1=.故答案为:.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n==6,再利用列举法求出这两个数的和为3的倍数包含的基本事件个数,由此能求出这两个数的和为3的倍数的槪率.【解答】解:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n==6,这两个数的和为3的倍数包含的基本事件有:(1,2),(2,4),共2个,∴这两个数的和为3的倍数的槪率p=.故答案为:.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l 的右焦点,则双曲线的离心率为2.【考点】双曲线的简单性质.【分析】求得抛物线的焦点坐标,可得c=2,由双曲线的方程可得a=1,由离心率公式可得所求值.【解答】解:抛物线y2=8x的焦点为(2,0),则双曲线﹣=l的右焦点为(2,0),即有c==2,不妨设a=1,可得双曲线的离心率为e==2.故答案为:2.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的前n项和公式和通项公式列出方程组,求出,由此能求出a8的值.【解答】解:∵等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,∴,解得,∴a8==(a1q)(q3)2=8×=2.故答案为:2.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B 两点,其中A点在第一象限,且=2,则直线l的方程为x﹣y﹣1=0.【考点】直线与圆的位置关系.【分析】由题意,设直线x=my+1与圆x2+y2=5联立,利用韦达定理,结合向量知识,即可得出结论.【解答】解:由题意,设直线x=my+1与圆x2+y2=5联立,可得(m2+1)y2+2my ﹣4=0,设A(x1,y1),B(x2,y2),则y1=﹣2y2,y1+y2=﹣,y1y2=﹣联立解得m=1,∴直线l的方程为x﹣y﹣1=0,故答案为:x﹣y﹣1=0.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为﹣或1.【考点】平面向量数量积的运算.【分析】根据题意,利用平面向量的线性运算,把、用、与λ表示出来,再求•即可.【解答】解:△ABC中,AB=1,AC=2,∠A=60°,点P满足=+,∴﹣=λ,∴=λ;又=﹣=(+λ)﹣=+(λ﹣1),∴•=λ•[+(λ﹣1)]=λ•+λ(λ﹣1)=λ×2×1×cos60°+λ(λ﹣1)×22=1,整理得4λ2﹣3λ﹣1=0,解得λ=﹣或λ=1,∴实数λ的值为﹣或1.故答案为:﹣或1.12.已知sinα=3sin(α+),则tan(α+)=2﹣4.【考点】两角和与差的正切函数;两角和与差的正弦函数.【分析】利用同角三角的基本关系、两角和差的三角公式求得tanα、tan的值,可得tan(α+)的值.【解答】解:sinα=3sin(α+)=3sinαcos+3cosαsin=sinα+cosα,∴tanα=.又tan=tan(﹣)===2﹣,∴tan(α+)====﹣=2﹣4,故答案为:2﹣4.13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为4.【考点】根的存在性及根的个数判断.【分析】利用分段函数,对x≥1,通过函数的零点与方程根的关系求解零点个数,当x<1时,利用数形结合求解函数的零点个数即可.【解答】解:当x≥1时,=,即lnx=,令g(x)=lnx﹣,x≥1时函数是连续函数,g(1)=﹣<0,g(2)=ln2﹣=ln>0,g(4)=ln4﹣2<0,由函数的零点判定定理可知g(x)=lnx﹣,有2个零点.(结合函数y=与y=可知函数的图象由2个交点.)当x<1时,y=,函数的图象与y=的图象如图,考查两个函数由2个交点,综上函数y=|f(x)|﹣的零点个数为:4个.故答案为:4.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为1.【考点】函数的最值及其几何意义.【分析】由题意可得x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),求出y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,求出导数和单调区间、极值和最值,即可得到所求最小值.【解答】解:由正数x,y满足15x﹣y=22,可得y=15x﹣22>0,则x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),其中y3﹣y2+y=y(y2﹣y+)=y(y﹣)2≥0,即y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,f(x)的导数为f′(x)=3x2﹣2x=x(3x﹣2),当x=时,f(x)的导数为×(﹣2)=,可得f(x)在x=处的切线方程为y=x﹣.由x3﹣x2≥x﹣⇔(x﹣)2(x+2)≥0,当x=时,取得等号.则x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2)≥x﹣﹣y≥﹣=1.当且仅当x=,y=时,取得最小值1.故答案为:1.二.解答题:本大题共6小题,共计90分15.在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.【考点】余弦定理;正弦定理.【分析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,可得A=B+,C=,可得sinC=sin.代入可得﹣16sin2B=,化简即可得出.【解答】解:(1)∵acosB=3,bcosA=l,∴a×=3,b×=1,化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加可得:2c2=8c,解得c=4.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,∴A=B+,C=π﹣(A+B)=,可得sinC=sin.∴a=,b=.∴﹣16sin2B=,∴1﹣﹣(1﹣cos2B)=,即cos2B﹣=,∴﹣2═,∴=0或=1,B∈.解得:B=.16.如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.【考点】空间中直线与直线之间的位置关系;直线与平面平行的性质.【分析】(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.【解答】证明:(1)连结BC1,取AB中点E′,∵侧面AA1C1C是菱形,AC1与A1C交于点O,∴O为AC1的中点,∵E′是AB的中点,∴OE′∥BC1;∵OE′⊄平面BCC1B1,BC1⊂平面BCC1B1,∴OE′∥平面BCC1B1,∵OE∥平面BCC1B1,∴E,E′重合,∴E是AB中点;(2)∵侧面AA1C1C是菱形,∴AC1⊥A1C,∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,∴AC1⊥平面A1BC,∵BC⊂平面A1BC,∴AC1⊥BC.17.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.【考点】函数模型的选择与应用.【分析】(1)求出上底,即可将l表示成关于α的函数l=f(α);(2)求导数,取得函数的单调性,即可解决当α为何值时l最小?并求最小值.【解答】解:(1)设上底长为a,则S=,∴a=﹣,∴l=﹣+(0<α<);(2)l′=h,∴0<α<,l′<0,<α<,l′>0,∴时,l取得最小值m.18.在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【考点】直线与椭圆的位置关系.【分析】(1)由题意可知2c=2,c=1,离心率e=,求得a=2,则b2=a2﹣c2=1,即可求得椭圆的方程:(2)则直线PQ的方程:y=k(x﹣)﹣,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.【解答】解:(1)由题意可知:椭圆+=l (a>b>0),焦点在x轴上,2c=1,c=1,椭圆的离心率e==,则a=,b2=a2﹣c2=1,则椭圆的标准方程:;(2)证明:设P(x1,y1),Q(x2,y2),A(,0),由题意PQ的方程:y=k(x﹣)﹣,则,整理得:(2k2+1)x2﹣(4k2+4k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=,x1x2=,则y1+y2=k(x1+x2)﹣2k﹣2=,则k AP+k AQ=+=,由y1x2+y2x1=[k(x1﹣)﹣]x2+[k(x2﹣)﹣]x1=2kx1x2﹣(k+)(x1+x2)=﹣,k AP+k AQ===1,∴直线AP,AQ的斜率之和为定值1.19.己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数f(x)的导数,问题转化为a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),根据函数的单调性求出a的范围即可;(2)问题转化为(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.【解答】解:(1)f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx++1﹣a,若f(x)在(0,+∞)上单调递增,则a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),g′(x)=,令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,故g(x)在(0,1)递减,在(1,+∞)递增,故g(x)min=g(1)=2,故0<a≤2;(2)若不等式(x﹣1)f(x)≥0恒成立,即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,①x≥1时,只需a≤(x+1)lnx恒成立,令m(x)=(x+1)lnx,(x≥1),则m′(x)=lnx++1,由(1)得:m′(x)≥2,故m(x)在[1,+∞)递增,m(x)≥m(1)=0,故a≤0,而a为正实数,故a≤0不合题意;②0<x<1时,只需a≥(x+1)lnx,令n(x)=(x+1)lnx,(0<x<1),则n′(x)=lnx++1,由(1)n′(x)在(0,1)递减,故n′(x)>n(1)=2,故n(x)在(0,1)递增,故n(x)<n(1)=0,故a≥0,而a为正实数,故a>0.2=0,设数列{b n} 20.己知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+1满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.【考点】数列的求和;等比数列的通项公式.【分析】(1)数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,化为:=2×,即可证明.(2)由(1)可得:=,可得=n•4n﹣1.数列{b n}满足b n=,可得b1,b2,b3,利用数列{b n}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12S n﹣a14n2=16b m,即可得出a1.【解答】(1)证明:数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,∴=a n,即=2,+1∴数列{}是以a1为首项,以2为公比的等比数列.(2)解:由(1)可得:=,∴=n•4n﹣1.∵b n=,∴b1=,b2=,b3=,∵数列{b n}是等差数列,∴2×=+,∴=+,化为:16t=t2+48,解得t=12或4.(3)解:数列{b n}是等差数列,由(2)可得:t=12或4.①t=12时,b n==,S n=,∵对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴=,n=1时,化为:﹣=>0,无解,舍去.②t=4时,b n==,S n=,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴n=4m,∴a1=.∵a1为正整数,∴=k,k∈N*.∴满足条件的所有整数a1的值为{a1|a1=2,n∈N*,m∈N*,且=k,k∈N*}.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A 作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.【考点】弦切角.【分析】连接OC,先证得三角形OBC是等边三角形,从而得到∠DCA=60°,再在直角三角形ACD中得到∠DAC的大小;考虑到直角三角形ABE中,利用角的关系即可求得边AE的长.【解答】解:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.【考点】特征值与特征向量的计算;几种特殊的矩阵变换.【分析】(1)先设矩阵A=,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=8及对应的一个特征向量e1及矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).得到关于a,b,c,d的方程组,即可求得矩阵M;(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,从而求得另一个特征值为2.【解答】解:(1)设矩阵A=,这里a,b,c,d∈R,则=8=,故,由于矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).则=,故联立以上两方程组解得a=6,b=2,c=4,d=4,故M=.(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,故矩阵M的另一个特征值为2.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.【考点】简单曲线的极坐标方程;相交弦所在直线的方程.【分析】(1)先利用三角函数的差角公式展开圆O2的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆O2的直角坐标方程及圆O1直角坐标方程.(2)先在直角坐标系中算出经过两圆交点的直线方程,再利用直角坐标与极坐标间的关系求出其极坐标方程即可.【解答】解:(1)ρ=2⇒ρ2=4,所以x2+y2=4;因为,所以,所以x2+y2﹣2x﹣2y﹣2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.【考点】二维形式的柯西不等式.【分析】利用柯西不等式,结合a+b+c=3,即可求得++的最大值.【解答】解:由柯西不等式可得(++)2≤[12+12+12][()2+()2+()2]=3×12∴++≤3,当且仅当==时取等号.∴++的最大值是6,故最大值为6.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.利用向量法能求出异面直线MN与PC所成角.(2)求出平面PBC的法向量和平面PNC的法向量,利用向量法能求出二面角N ﹣PC﹣B的余弦值.【解答】解:(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.则A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),…设P(0,0,p),则=(﹣1,1,p),又AP=2,∴1+1+p2=4,∴p=,∵===(),=(),∴=(﹣1,1,﹣),=(0,,﹣),设异面直线MN与PC所成角为θ,则cosθ===.θ=30°,∴异面直线MN与PC所成角为30°.(2)=(﹣1,1,﹣),=(1,1,﹣),=(,﹣),设平面PBC的法向量=(x,y,z),则,取z=1,得=(0,,1),设平面PNC的法向量=(a,b,c),则,取c=1,得=(,2,1),设二面角N﹣PC﹣B的平面角为θ,则cosθ===.∴二面角N﹣PC﹣B的余弦值为.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].【考点】数列的求和.【分析】(1)利用sin=,即可得出.+a2k=(﹣1)tan nθ.利用等比数列的求和公式即可得出.(2)a2k﹣1【解答】证明:(1)a n=sin tan nθ,当n=2k(k∈N*)为偶数时,a n=sinkπ•tan nθ=0;当n=2k﹣1为奇函数时,a n=•tan nθ=(﹣1)k﹣1tan nθ=(﹣1)tan nθ.(2)a2k+a2k=(﹣1)tan nθ.∴奇数项成等比数列,首项为tanθ,公比为﹣1﹣tan2θ.∴S2n==sin2θ•[1+(﹣1)n+1tan2nθ].2017年4月18日。

(精品word版)2017年普通高等学校招生全国统一考试(江苏卷)数学

(精品word版)2017年普通高等学校招生全国统一考试(江苏卷)数学

2017年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上.1.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 .解析:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.答案:1.2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是 .解析:利用复数的运算法则、模的计算公式即可得出.复数z=(1+i)(1+2i)=1+i2+3i=1-2+3i=-1+3i,∴|z|==3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.解析:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为6061000100=,则应从丙种型号的产品中抽取300×6100=18件.答案:184.如图是一个算法流程图:若输入x的值为116,则输出y的值是 .解析:初始值x=116,不满足x ≥1, 所以y=2+log 2116=2-log 224=-2. 答案:-2.5.若tan 164πα⎛⎫-= ⎪⎝⎭.则tan α= . 解析:直接根据两角差的正切公式计算即可∵tan tantan 14tan 4tan 11tan ta 46n 1παπααπαα--⎛⎫-=== ⎪+⎝⎭+, ∴6tan α-6=tan α+1, 解得tan α=75. 答案:75.6.如图,在圆柱O1O2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则12V V 的值是 .解析:设球的半径为R ,则球的体积为:343R π,圆柱的体积为:πR 2·2R=2πR 3.则313224332V R R V ππ==.答案:32.7.记函数 D.在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是 .解析:由6+x-x 2≥0得x 2-x-6≤0,得-2≤x ≤3, 则D=[-2,3],则在区间[-4,5]上随机取一个数x ,则x ∈D 的概率()()325549P --==--.答案:59.8.在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .解析:求出双曲线的准线方程和渐近线方程,得到P ,Q 坐标,求出焦点坐标,然后求解四边形的面积.双曲线2213x y -=的右准线:x=32,双曲线渐近线方程为:y=3x ,所以P 322⎛⎫ ⎪ ⎪⎝⎭,,Q 322⎛- ⎝⎭,,F 1(-2,0).F 2(2,0).则四边形F 1PF 2Q 的面积是:241⨯=答案:9.等比数列{a n }的各项均为实数,其前n 项为S n ,已知S 3=74,S 6=634,则a 8= . 解析:设等比数列{a n }的公比为q ≠1, ∵S 3=74,S 6=634, ∴()311714a q q -=-,()6111634a q q -=-, 解得114a =,q=2. 则a 8=14×27=32. 答案:32.10.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 . 解析:由题意可得:一年的总运费与总存储费用之和为:600642240xx⨯+≥=(万元).当且仅当36004xx=时取等号.∵x>0,∴x=30. 答案:30.11.已知函数f(x)=x3-2x+e x-1xe,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0.则实数a的取值范围是 .解析:求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1-a,运用二次不等式的解法即可得到所求范围.函数f(x)=x3-2x+ex-1xe的导数为:f′(x)=3x2-2+e x+1xe≥1xxe=0,可得f(x)在R上递增;又f(-x)+f(x)=(-x)3+2x+e-x-e x+x3-2x+e x-1xe=0,可得f(x)为奇函数,则f(a-1)+f(2a2)≤0,即有f(2a2)≤-f(a-1)=f(1-a),即有2a2≤1-a,解得-1≤a≤12.答案:[-1,12 ].12.如图,在同一个平面内,向量OA,OB,OC的模分别为1,1OA与OC的夹角为α,且tanα=7,OB与OC的夹角为45°.若OC mOA nOB=+(m,n∈R),则m+n= .解析:如图所示,建立直角坐标系.A(1,0).由OA与OC的夹角为α,且tanα=7. ∴cosαsinα∴C(15,75).cos(α+45°)=2(cosα-sinα)=35-.sin(α+45°)=2(sinα+cosα)=45.∴B(35-,45).∵OC mOA nOB=+(m,n∈R),∴1355m n=-,7455n=+,解得n=74,m=54.则m+n=3.答案:3.13.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若PA PB≤20,则点P的横坐标的取值范围是 .解析:根据题意,设P(x0,y0),则有x02+y02=50,PA PB=(-12-x0,-y0)·(-x0,6-y0)=(12+x0)x0-y0(6-y0)=12x0+6y+x02+y02≤20,化为:12x0-6y0+30≤0,即2x0-y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立22000050250x y x y ⎧+=⎪⎨-+=⎪⎩,解可得x 0=-5或x 0=1,结合图形分析可得:点P 的横坐标x 0的取值范围是1], 答案:1].14.设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,()2x x D f x x x D⎧∈=⎨∉⎩,,,其中集合D={x|x=1n n -,n ∈N*},则方程f(x)-lgx=0的解的个数是 .解析:∵在区间[0,1)上,()2x x Df x x x D⎧∈=⎨∉⎩,,,第一段函数上的点的横纵坐标均为有理数, 又f(x)是定义在R 上且周期为1的函数,∴在区间[1,2)上,()()211x x Df x x x D⎧-∈⎪=⎨-∉⎪⎩,,,此时f(x)的图象与y=lgx 有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx 有且只有一个交点; 区间[3,4)上,f(x)的图象与y=lgx 有且只有一个交点; 区间[4,5)上,f(x)的图象与y=lgx 有且只有一个交点; 区间[5,6)上,f(x)的图象与y=lgx 有且只有一个交点; 区间[6,7)上,f(x)的图象与y=lgx 有且只有一个交点; 区间[7,8)上,f(x)的图象与y=lgx 有且只有一个交点; 区间[8,9)上,f(x)的图象与y=lgx 有且只有一个交点; 在区间[9,+∞)上,f(x)的图象与y=lgx 无交点; 故f(x)的图象与y=lgx 有8个交点; 即方程f(x)-lgx=0的解的个数是8.答案:8二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC.(2)AD⊥AC.解析:(1)利用AB∥EF及线面平行判定定理可得结论.(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.答案:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊂平面ABC,AB⊂平面ABC,所以由线面平行判定定理可知:EF∥平面ABC.(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,∵BC⊥BD,所以FG∥BC,又平面ABD⊥平面BCD,∴FG⊥平面ABD,所以FG⊥AD,∵AD⊥EF,且EF∩FG=F,∴AD⊥平面EFG,所以AD⊥EG,∴AD⊥AC.16.已知向量a=(cosx,sinx),b=(3,,x∈[0,π].(1)若a∥b,求x的值.(2)记f(x)=a·b,求f(x)的最大值和最小值以及对应的x的值.解析:(1)根据向量的平行即可得到tanx=3-,问题得以解决. (2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出.答案:(1)∵a =(cosx ,sinx),b =(3,,a ∥b ,∴,∴tanx= ∵x ∈[0,π], ∴x=56π.(2)f(x)1236a b cosx sinx x π⎛⎫===-=+⎫⎪⎪⎭⎭⎪⎝, ∵x ∈[0,π], ∴x+6π∈[6π,76π],∴-1≤cos(x+6π)≤2, 当x=0时,f(x)有最大值,最大值3,当x=56π时,f(x)有最小值,最大值17.如图,在平面直角坐标系xOy 中,椭圆E :22221x y a b+=(a >b >0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程.(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.解析:(1)由椭圆的离心率公式求得a=2c ,由椭圆的准线方程22a x c =±,则2228a c⨯=,即可求得a 和c 的值,则b 2=a 2-c 2=3,即可求得椭圆方程.(2)方法一:设P(x 0,y 0),分别求得直线PF 2的斜率及直线PF 1的斜率,则即可求得l 2及l 1的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得y 02=x 02-1,联立即可求得P 点坐标;方法二:设P(m ,n),当m ≠1时,21PF n k m =-,11PF n k m =+,求得直线l 1及l 1的方程,联立求得Q 点坐标,根据对称性可得221m n n-=±,联立椭圆方程,即可求得P 点坐标. 答案:(1)由题意可知:椭圆的离心率12c e a ==,则a=2c ,① 椭圆的准线方程22a x c =±,则2228a c⨯=,② 由①②解得:a=2,c=1,则b 2=a 2-c 2=3,∴椭圆的标准方程:22143x y +=. (2)方法一:设P(x 0,y 0),则直线PF 2的斜率2001PF y k x =-, 则直线l 2的斜率0201x k y -=-,直线l 2的方程()0011x y x y -=--, 直线PF 1的斜率1001PF y k x =+, 则直线l 1的斜率0101x k y +=-,直线l 1的方程()0011x y x y +=-+, 联立()()00001111x y x y x y x y -⎧=--⎪⎪⎨+⎪=-+⎪⎩,解得:02001x x x y y =-⎧⎪-⎨=⎪⎩,则Q(-x 0,2001x y -), 由P ,Q 在椭圆上,P ,Q 的横坐标互为相反数,纵坐标应相等,则20001x y y -=,∴y 02=x 02-1,则220022001431x y y x ⎧+=⎪⎨⎪=-⎩,解得:202016797x y ⎧=⎪⎪⎨⎪=⎪⎩,则0077x y ⎧=±⎪⎪⎨⎪=±⎪⎩,又P 在第一象限,所以P 的坐标为:方法二:设P(m ,n),由P 在第一象限,则m >0,n >0, 当m=1时,2PF k 不存在,解得:Q 与F1重合,不满足题意,当m ≠1时,21PF n k m =-,11PF n k m =+, 由l 1⊥PF 1,l 2⊥PF 2,则11l m k n +=-,21l m k n-=-,直线l 1的方程()11m y x n +=-+①,直线l 2的方程()11m y x n-=--②,联立解得:x=-m ,则Q(-m ,21m n-),由Q 在椭圆方程,由对称性可得:221m n n-=±, 即m 2-n 2=1,或m 2+n 2=1,由P(m ,n),在椭圆方程,22221143m n m n⎧-=⎪⎨+=⎪⎩,解得:2216797m n ⎧=⎪⎪⎨⎪=⎪⎩,或22221143m n m n ⎧-=⎪⎨+=⎪⎩,无解,又P在第一象限,所以P的坐标为:).18.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度.(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.解析:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=35,由此能求出玻璃棒l没入水中部分的长度.答案:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD-A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC ⊂平面ABCD ,∴CC 1⊥AC ,∴NP ⊥AC ,∴NP=12cm ,且AM 2=AC 2+MC 2,解得MC=30cm , ∵NP ∥MC ,∴△ANP ∽△AMC , ∴124030AN NP AN AM MC ==,,得AN=16cm. ∴玻璃棒l 没入水中部分的长度为16cm.(2)设玻璃棒在GG 1上的点为M ,玻璃棒与水面的交点为N , 在平面E 1EGG 1中,过点N 作NP ⊥EG ,交EG 于点P , 过点E 作EQ ⊥E 1G 1,交E 1G 1于点Q ,∵EFGH-E 1F 1G 1H 1为正四棱台,∴EE 1=GG 1,EG ∥E 1G 1, EG ≠E 1G 1,∴EE 1G 1G 为等腰梯形,画出平面E 1EGG 1的平面图, ∵E 1G 1=62cm ,EG=14cm ,EQ=32cm ,NP=12cm , ∴E 1Q=24cm ,由勾股定理得:E 1E=40cm ,∴sin ∠EE 1G 1=45,sin ∠EGM=sin ∠EE 1G 1=45,cos ∠EGM=35-, 根据正弦定理得:sin sin EM EGEGM EMG =∠∠,∴sin ∠EMG=725,cos ∠EMG=2425,∴sin ∠GEM=sin(∠EGM+∠EMG)=sin ∠EGMcos ∠EMG+cos ∠EGMsin ∠EMG=35, ∴12203sin 5NP EN GEM ===∠ cm.∴玻璃棒l 没入水中部分的长度为20cm.19.对于给定的正整数k ,若数列{a n }满足:a n-k +a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k =2ka n 对任意正整数n(n >k)总成立,则称数列{a n }是“P(k)数列”. (1)证明:等差数列{a n }是“P(3)数列”. (2)若数列{a n }既是“P(2)数列”,又是“P(3)数列”,证明:{a n }是等差数列.解析:(1)由题意可知根据等差数列的性质,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=(a n-3+a n+3)+(a n-2+a n+2)+(a n-1+a n+1)=2×3a n ,根据“P(k)数列”的定义,可得数列{a n }是“P(3)数列”.(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.答案:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n-1)d ,则a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=(a n-3+a n+3)+(a n-2+a n+2)+(a n-1+a n+1) =2a n +2a n +2a n , =2×3a n ,∴等差数列{a n }是“P(3)数列”.(2)证明:当n ≥4时,因为数列{a n }是P(3)数列,则a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n ,①, 因为数列{an}是“P(2)数列”,所以a n-3+a n-2+a n +a n+1=4a n-1,②, a n-1+a n +a n+2+a n+3=4a n+1,③,②+③-①,得2a n =4a n-1+4a n +1-6a n ,即2a n =a n-1+a n+1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4-a 3-a 5-a 6=4(a 3+d)-a 3-(a 3+2d)-(a 3+3d)=a 3-d ,因为a 1+a 2+a 4+a 5=4a 3,所以a 1=4a 3-a 2-a 4-a 5=4(a 2+d)-a 2-(a 2+2d)-(a 2+3d)=a 2-d , 也即前3项满足等差数列的通项公式, 所以{a n }为等差数列.20.已知函数f(x)=x 3+ax 2+bx+1(a >0,b ∈R)有极值,且导函数f ′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域.(2)证明:b 2>3a.(3)若f(x),f ′(x)这两个函数的所有极值之和不小于72-,求a 的取值范围. 解析:(1)通过对f(x)=x 3+ax 2+bx+1求导可知g(x)=f ′(x)=3x 2+2ax+b ,进而再求导可知g ′(x)=6x+2a ,通过令g ′(x)=0进而可知f ′(x)的极小值点为x=3a -,从而f(3a-)=0,整理可知b=2239a a+ (a >0),结合f(x)=x 3+ax 2+bx+1(a >0,b ∈R)有极值可知f ′(x)=0有两个不等的实根,进而可知a >3.(2)通过(1)构造函数()()()423322459134272781381a a h a b a a a a a=-=-+=--,结合a >3可知h(a)>0,从而可得结论.(3)通过(1)可知f ′(x)的极小值为233a a f b ⎛⎫⎪⎭= -⎝'-,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为3422273a ab -+,进而问题转化为解不等式23242723327392a a ab a b a -+-+=-≥-,因式分解即得结论.答案:(1)因为f(x)=x 3+ax 2+bx+1,所以g(x)=f ′(x)=3x 2+2ax+b ,g ′(x)=6x+2a ,令g ′(x)=0,解得x=3a -. 由于当x >3a-时g ′(x)>0,g(x)=f ′(x)单调递增; 当x <3a-时g ′(x)<0,g(x)=f ′(x)单调递减; 所以f ′(x)的极小值点为x=3a-,由于导函数f ′(x)的极值点是原函数f(x)的零点,所以f(3a-)=0,即33102793a a ab -+-+=, 所以2239a b a=+(a >0). 因为f(x)=x 3+ax 2+bx+1(a >0,b ∈R)有极值,所以f ′(x)=3x 2+2ax+b=0的实根,所以4a 2-12b ≥0,即22293a a a-+≥0,解得a ≥3, 所以2239a b a=+(a ≥3). (2)证明:由(1)可知()()()423322459134272781381a a h a b a a a a a=-=-+=--, 由于a >3,所以h(a)>0,即b 2>3a.(3)由(1)可知f ′(x)的极小值为2()33a a fb '-=-,设x 1,x 2是y=f(x)的两个极值点,则x 1+x 2=23a -,x 1x 2=3b, 所以f(x 1)+f(x 2)=x 13+x 23+a(x 12+x 22)+b(x 1+x 2)+2=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]+a[(x 1+x 2)2-2x 1x 2]+b(x 1+x 2)+2=3422273a ab-+, 又因为f(x),f ′(x)这两个函数的所有极值之和不小于72-, 所以23242372327392a a ab a b a -+-+=-≥-, 因为a >3,所以2a 3-63a-54≤0, 所以2a(a 2-36)+9(a-6)≤0,所以(a-6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a-6≤0,解得a≤6,所以a的取值范围是(3,6].[选做题]本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB.(2)AC2=AP·AB.解析:(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.答案:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°-∠ACP,∠CAB=90°-∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴AC AP AB AC=.∴AC2=AP·AB.B.[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=0110⎡⎤⎢⎥⎣⎦,B=1002⎡⎤⎢⎥⎣⎦.(1)求AB.(2)若曲线C1:22182x y+=在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.解析:(1)按矩阵乘法规律计算.(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.答案:(1)AB=011010020210⎛⎫⎛⎫⎪⎪⎝⎭⎝=⎭⎛⎫⎪⎝⎭.(2)设点P(x ,y)为曲线C 1的任意一点,点P 在矩阵AB 的变换下得到点P ′(x 0,y 0), 则02210x y y x ⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,即x 0=2y ,y 0=x , ∴x=y 0,y=2x , ∴2200188y x +=,即x 02+y 02=8, ∴曲线C 2的方程为x 2+y 2=8.C.[选修4-4:坐标系与参数方程](本小题满分10分)23.在平面直角坐标系xOy 中,已知直线l 的参数方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解析:求出直线l 的直角坐标方程,代入距离公式化简得出距离d 关于参数s 的函数,从而得出最短距离.答案:直线l 的直角坐标方程为x-2y+8=0, ∴P 到直线l的距离224d -+==∴当d5=D.[选修4-5:不等式选讲](本小题满分10分)24.已知a ,b ,c ,d 为实数,且a 2+b 2=4,c 2+d 2=16,证明ac+bd ≤8.解析:a 2+b 2=4,c 2+d 2=16,令a=2cos α,b=2sin α,c=4cos β,d=4sin β.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a 2+b 2)(c 2+d 2),即可得出.答案:∵a 2+b 2=4,c 2+d 2=16,令a=2cos α,b=2sin α,c=4cos β,d=4sin β.∴ac+bd=8(cos αcos β+sin αsin β)=8cos(α-β)≤8.当且仅当cos(α-β)=1时取等号. 因此ac+bd ≤8.另解:由柯西不等式可得:(ac+bd)2≤(a 2+b 2)(c 2+d 2)=4×16=64,当且仅当a bc d=时取等号.∴-8≤ac+bd ≤8.[必做题]每小题10分.25.如图,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB=AD=2,AA 1∠BAD=120°.(1)求异面直线A 1B 与AC 1所成角的余弦值. (2)求二面角B-A 1D-A 的正弦值.解析:(1)在平面ABCD 内,过A 作Ax ⊥AD ,由AA 1⊥平面ABCD ,可得AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系.结合已知求出A ,B ,C ,D ,A 1,C 1的坐标,进一步求出1A B ,1AC ,DB ,1DA 的坐标.直接利用两法向量所成角的余弦值可得异面直线A 1B 与AC 1所成角的余弦值.(2)求出平面BA 1D 与平面A 1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角B-A 1D-A 的余弦值,进一步得到正弦值.答案:(1)在平面ABCD 内,过A 作Ax ⊥AD , ∵AA 1⊥平面ABCD ,AD 、Ax ⊂平面ABCD , ∴AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA1所在直线为x 、y 、z 轴建立空间直角坐标系.∵AB=AD=2,AA 1BAD=120°,∴A(0,0,0),-1,0),1,0),D(0,2,0),A 1(0,0,C 111(31A B =-,,,1(31AC =,,(33)0DB =-,,, 1DA=(0,-2∵111111177A B AC A B AC A B A os C c ===-,.∴异面直线A 1B 与AC 1所成角的余弦值为17. (2)设平面BA 1D 的一个法向量为n =(x ,y ,z),由100n DB n DA ⎧=⎪⎨=⎪⎩,得3020y y -=-+=⎪⎩,取12(3n =,,; 取平面A1AD 的一个法向量为m =(1,0,0).∴341m n cos m n m n===⨯,. ∴二面角B-A1D-A 的正弦值为34,则二面角B-A 1D-A 4=.26.已知一个口袋有m 个白球,n 个黑球(m ,n ∈N*,n ≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(k=1,2,3,…,m+n).(1)试求编号为2的抽屉内放的是黑球的概率p.(2)随机变量x 表示最后一个取出的黑球所在抽屉编号的倒数,E(x)是x 的数学期望,证明E(x)<()()1nm n n +-.解析:(1)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p(A 2)=P(A 2|A 1)P(A 1)+P(A 2|1A )P(1A ),由此能求出编号为2的抽屉内放的是黑球的概率.(2)x 的所有可能取值为1111111n k n m n n n n mk C P x C --+⎛⎫⋯== ⎪⎝⎭++,,,,,k=n ,n+1,n+2,…,n+m ,从而E(x)1111111n n n mn mk k n nk k nm n m nC C k C C k --++--==++⎛⎫== ⎪⎝⎭∑∑,由此能证明E(x)<()()1n m n n +-. 答案:(1)设事件A i 表示编号为i 的抽屉里放的是黑球, 则p=P(A 2)=P(A 2|A 1)P(A 1)+P(A 2|1A )P(1A )()()21111n n n m n n mn nm n m n m n m n m n m n m n--+=⨯+⨯==+-++-+++-+. 证明:(2)∵x 的所有可能取值为1111n n n m++⋯,,,,111n k n m n C k P x C --+⎛⎫== ⎪⎝⎭,k=n ,n+1,n+2,…,n+m ,∴E(x)1112111211111111n n n n n mn mn mn mk k k k n nnnk k n k n k n n m n mn mn mC C C C k C C k C k C n ----++++----====++++⎛⎫=== ⎪--⎝⎭∑∑∑∑< ()()()()()2221212111111n n n n n n n m n m n nn m n m n C C C C n C n C m n n ------+-+-++=+++==--+-… ∴E(x)<()()1nm n n +-.。

2020年天一大联考高考数学一模试卷(文科)(含答案解析)

2020年天一大联考高考数学一模试卷(文科)(含答案解析)

2020年天一大联考高考数学一模试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={x|0≤x≤7},B={x|x2−8x+7≥0},则A∩B=()A. [0,1]B. {7}C. [0,1]∪{7}D. [1,7]2.设复数z=(5+i)(1−i)(为虚数单位),则的虚部是()A. 4iB. −4iC. −4D. 43.如果a<0,b>0,那么下列不等式中正确的是()A. 1a <1bB. √−a<√bC. a2<b2D. |a|>|b|4.供电部门对某社区1000位居民2016年11月份人均用电情况进行统计后,按人均用电量分为0,10),10,20),20,30),30,40),40,50]五组,整理得到如右的频率分布直方图,则下列说法错误的是().A. 11月份人均用电量人数最多的一组有400人。

B. 11月份人均用电量不低于20度的有300人C. 11月份人均用电量为25度D. 在这1000位居民中任选1位协助收费,选到的居民用电量在30,40)一组的概率为5.将函数f(x)=sin(2x+φ),|φ|<π2的图象向左平移π6个单位后的图象关于原点对称,则函数f(x)在[0,π2]上的最小值为()A. √32B. 12C. −12D. −√326.已知数列{a n}为等差数列,其前n项和为S n,2a7−a8=5,则S11为()A. 110B. 55C. 50D. 不能确定7.已知sin(π3−α)=14,则cos(π3+2α)=()A. 58B. −78C. −58D. 788.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,B(0,2b),若直线FB的斜率与C的一条渐近线的斜率的乘积为3,则C的离心率为()A. √2B. 2C. √5D. 39.执行如图所示的程序框图,则输出的结果为()A. 10B. 17C. 24D. 2610.过抛物线x2=4y的焦点作两条互相垂直的弦AB、CD,则1|AB|+1|CD|=()A. 2B. 4C. 12D. 1411.已知函数f(x)=3sin(πx)x2−3x+3,给出三个命题:①f(x)的最小值为−4,②f(x)是轴对称图形,③f(x)≤4π|x|.其中真命题的个数是()A. 0B. 1C. 2D. 312.如图,在正四棱锥P−ABCD中,AB=2√3,侧面积为8√3,则它的体积为()A. 4B. 8C. 12πD. 16π二、填空题(本大题共4小题,共20.0分)13.已知|a⃗|=2,且(a⃗+b⃗ )⊥a⃗,则a⃗⋅b⃗ 的值是______ .14.下面几种推理过程①某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人②根据三角形的性质,可以推测空间四面体的性质③平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分④在数列{a n}中,a1=1,a n+1=2a n2+a n,n∈Ν∗,计算a2,a3,由此归纳出{a n}的通项公式其中是演绎推理的的序号为_________.15.已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球面上,则该圆柱的侧面积为__________.16.在△ABC中,若BC=6,AB=4,cosB=13,那么AC=______.三、解答题(本大题共7小题,共82.0分)17.已知数列{b n}的前n项和为T n,且T n−2b n+3=0,n∈N∗.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设C n={log2(b n3),n为奇数b n,n为偶数,求数列{c n}的前2n+1项和P2n+1.18.在直三棱柱ABC−A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E,F分别是A1C1,BC的中点.(1)证明:C1F//平面ABE;(2)设P是BE的中点,求三棱锥P−B1C1F的体积.19. 某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得如下数据:(Ⅰ)求回归直线方程y =bt +a ;(Ⅱ)当单价t 为10元时,预测该产品的销量. 附:回归方程y ̂=b ̂t +a ̂中,b ̂=∑(n i−l ti−t −)(yi−y −)∑(n i−l ti−t −)2=∑t n i−l iyi−nt −y −∑t n i−li 2−nt −2,a ̂=y −−b ̂t −.20. 已知椭圆E :x 2a 2+y2b2=1(a >b >0)的左、右焦点分别为,点P 是椭圆E 上的一个动点,△PF 1F 2的周长为6,且存在点P 使得,△PF 1F 为正三角形. (1)求椭圆E 的方程;(2)若A ,B ,C ,D 是椭圆E 上不重合的四个点,AC 与BD 相交于点F 1,且AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0.若AC 的斜率为√3,求四边形ABCD 的面积.21. 已知函数f(x)=ln(ax)x+1,曲线y =f(x)在x =1处的切线与直线x −2y =0平行.(1)求a 的值;(2)若f(x)≤b −2x+1恒成立,求实数b 的最小值.22. 在直角坐标系xOy 中,曲线C :{x =−3+4cosθ,y =4+4sinθ(θ为参数),直线l 1:kx −y +k =0.以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 2的方程为cosθ−2sinθ=4ρ.(1)写出曲线C 的普通方程和直线l 2的直角坐标方程;(2)l 1与曲线C 交于不同的两点M ,N ,MN 的中点为P ,l 1与l 2的交点为Q ,l 2恒过点A ,求|AP|·|AQ|的值.23. 设函数f(x)=|x|.(1)设f(x −1)+f(x +2)<4的解集为A ,求集合A ;(2)已知m为(1)中集合A中的最大整数,且a+b+c=m(其中a,b,c均为正实数),求证:1−a a ⋅1−bb⋅1−cc≥8.【答案与解析】1.答案:C解析:本题主要考查集合的基本运算,以及一元二次不等式的解法,属基础题.求出集合B,根据交集定义进行求解.解:集合A={x|0≤x≤7},B={x|x2−8x+7≥0}={x|x≤1或x≥7},∴A∩B={x|0≤x≤1或x=7}=[0,1]∪{7}.故选C.2.答案:C解析:本题主要考查复数的四则运算,属于基础题.解:z=(5+i)(1−i)=6−4i,∴虚部是−4,故选C.3.答案:A解析:∵a<0∴1a <0∵b>0∴1b>0故1a<1b.若a=−2,b=2,则√−a=√b,故B不正确,同理a2=b2,故C也不正确;|a|=|b|,故D也不正确.4.答案:C解析:本题考查频率分布直方图,逐一判断求解即可.解:根据频率分布直方图知,11月份人均用电量人数最多的一组是[10,20),有1000×0.04×10=400人,A正确;11月份人均用电量不低于20度的频率是(0.03+0.01+0.01)×10=0.5,有1000×0.5=500人,∴B正确;11月份人均用电量为5×0.1+15×0.4+25×0.3+35×0.1+45×0.1=22,∴C错误;在这1000位居民中任选1位协助收费,用电量在[30,40)一组的频率为0.1,估计所求的概率为110,∴D正确.故选C.5.答案:D解析:本题考查了三角函数的图象变换、三角函数的奇偶性及三角函数的值域的应用.由条件利用y=Asin(ωx+φ)的图象变换规律,求出g(x)的解析式,再根据题意求x∈[0,π2]时的最小值即可.解:∵函数f(x)=sin(2x+φ)的图象向左平移π6个单位后所得图象对应的函数解析式为:y=sin[2(x+π6)+φ]=sin(2x+π3+φ)为奇函数,∴π3+φ=kπ,即φ=kπ−π3,k∈Z,∵|φ|<π2,∴φ=−π3,∴f(x)=sin(2x−π3),又x∈[0,π2],∴2x∈[0,π],2x−π3∈[−π3,2π3],∴−√32≤sin(2x+π6)≤1,∴函数f(x)在[0,π2]上的最小值−√32.故选D.6.答案:B 解析:利用等差数列的通项公式与性质及其求和公式即可得出.本题考查了等差数列的通项公式与性质及其求和公式,考查了推理能力与计算能力,属于中档题.解:2a7−a8=2(a1+6d)−(a1+7d)=a1+5d=a6=5,∴S11=11×a1+a112=11a6=55.故选B.7.答案:B解析:解:由sin(π3−α)=14,可得:cos(α+π6)=cos[π2−(π3−α)]=sin(π3−α)=14.那么:cos(π3+2α)=cos2(π6+α)=2cos2(α+π6)−1=2×116−1=−78.故选:B.利用诱导公式和二倍角公式即可计算.本题考查了诱导公式和二倍角公式的灵活运用!属于基础题.8.答案:B解析:解:F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点F(c,0),B(0,2b),若直线FB与C的一条渐近线垂直,可得:得:2b−c ⋅−ba=3,可得2b2=3ac,即2c2−2a2=3ac,可得2e2−3e−2=0,e>1,解得e=2.故选:B.求出双曲线的焦点坐标,利用直线FB与C的一条渐近线乘积,列出方程,然后求解离心率.本题考查双曲线的简单性质的应用,考查计算能力.9.答案:D解析:解:第一次,S=2,i=3,⇒S=5,i=5,⇒S=10,i =7,⇒S =17, i =9,⇒S =26, i =11>10,程序终止, 输出S =26, 故选:D根据程序框图进行模拟计算即可得到结论.本题主要考查程序框图的计算,根据查询进行模拟计算是解决本题的关键.10.答案:D解析:本题主要考查了抛物线的几何性质和直线与抛物线的位置关系,设出直线方程,联立直线与抛物线方程,消去x ,根据根与系数的关系,得到|AB|和|CD|的值,进而求得1|AB |+1|CD |.解:根据题意,抛物线的焦点为(0,1),设直线AB 的方程为y =kx +1(k ≠0),直线CD 的方程为y =−1k x +1,由{y =kx +1x 2=4y ,得y 2−(2+4k 2)y +1=0, 由根与系数的关系得y A +y B =2+4k 2, 所以|AB|=y A +y B +2=4+4k 2, 同理|CD|=y C +y D +2=4+4k 2,所以1|AB|+1|CD|=14k 2+4+k 24k 2+4=14, 故选D .11.答案:D解析:解:①若f(x)的最小值为−4等价为3sin(πx)x 2−3x+3≥−4恒成立,且能取等号, 即4x 2−12x +12+3sin(πx)≥0恒成立,设g(x)=4x 2−12x +12+3sin(πx),则g(x)=4(x −32)2+3+3sin(πx)≥3+3sin(πx)≥0, 当x =32时,g(x)=3+3sin 32π=3−3=0,即0能取到,故①正确, ②∵x =32是y =3sin(πx)和y =x 2−3x +3共同的对称轴, ∴x =32是f(x)的对称轴,即f(x)是轴对称图形,故②正确, ③∵y =x 2−3x +3=(x −32)2+34≥34,∴f(x)≤|f(x)|≤|3sinπx34|=4|sinπx|,只要证明|sinπx|≤π|x|,即可, 设|sint|≤|t|,(t ≥0) 当t ≥1时不等式恒成立, 当0≤t <1时,即证明sint ≤t ,设ℎ(t)=sint −t ,ℎ′(t)=cost −1≤0,即ℎ′(t)在0≤t <1上是减函数, 则ℎ(t)=sint −t ≤ℎ(0)=sin0−0=0, 即sint ≤t 成立,综上,4|sinπx|≤4π|x|成立,故③正确, 故三个命题都是真命题, 故选:D .根据条件分别进行判断即可.本题主要考查命题的真假判断,涉及最小值,对称性以及不等式的证明,涉及的知识点较多,综合性较强,考查学生的运算和推理能力.12.答案:A解析:解:作PO ⊥平面ABCD ,取BC 中点E ,连结OE ,PE , ∵正四棱锥P −ABCD 中,AB =2√3,侧面积为8√3, ∴O 是四边形ABCD 的中点,E 是BC 的中点,PE ⊥BC , 4×12BC ×PE =8√3,解得PE =2,∴PO=√PE2−OE2=√4−3=1,∴正四棱锥P−ABCD的体积V=13×S正方形ABCD×PO=13×2√3×2√3×1=4.故选:A.作PO⊥平面ABCD,取BC中点E,连结OE,PE,求出PE=2,从而PO=1,由此能求出正四棱锥P−ABCD的体积.本题考查正四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.13.答案:−4解析:本题考查了向量垂直与数量积的关系,属于基础题.由(a⃗+b⃗ )⊥a⃗,可得(a⃗+b⃗ )⋅a⃗=a⃗2+a⃗⋅b⃗ =0,即可得出.解:∵|a⃗|=2,且(a⃗+b⃗ )⊥a⃗,∴(a⃗+b⃗ )⋅a⃗=a⃗2+a⃗⋅b⃗ =0,∴a⃗⋅b⃗ =−a⃗2=−22=−4.故答案为:−4.14.答案:③解析:本题考查简单的演绎推理,推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),合情推理包括类比推理与归纳推理.根据合情推理与演绎推理的概念即可作出判断.解:①选项,某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班都超过60人,属于归纳推理;②选项,由三角形的性质,推测空间四面体性质,属于类比推理;③选项,具有明显的大前提,小前提,结论,属于典型的演绎推理的三段论形式;④选项,在数列{a n}中,a1=1,a n+1=2a n2+a n,n∈N∗,由此归纳出{a n}的通项公式,属于归纳推理;综上,可知,只有③选项为演绎推理.故答案为③.15.答案:4√3π解析:本题主要考查了圆柱的侧面积和球的相关知识,属于基础题.由它的两个底面的圆周在直径为4的同一个球面上,可求出圆柱底面圆的半径r =√22−12=√3,进而求得侧面积.解:∵圆柱的高为2,且它的两个底面的圆周在直径为4的同一个球面上, ∴可得圆柱底面半径r =√22−12=√3, ∴圆柱的侧面积.故答案为4√3π.16.答案:6解析:解:∵BC =6,AB =4,cosB =13,∴AC =√AB 2+BC 2−2AB ⋅BC ⋅cosB =√62+42−2×6×4×13=6.故答案为:6.直接利用余弦定理即可求值得解.本题主要考查了余弦定理在解三角形中的应用,属于基础题.17.答案:解:(Ⅰ)∵T n −2b n +3=0,∴当n =1时,b 1=3,当n ≥2时,S n−1−2b n−1+3=0,两式相减,得b n =2b n−1,(n ≥2) ∴数列{b n }为等比数列,∴b n =3⋅2n−1. (Ⅱ)c n ={n −1, n 为奇数3⋅2n−1 , n 为偶数.令a n =n −1,故P 2n+1=(a 1+a 3+⋯+a 2n+1)+(b 2+b 4+⋯+b 2n )=(0+2n)⋅(n+1)2+6(1−4n )1−4,=22n+1+n 2+n −2.解析:(Ⅰ)当n ≥2时,S n−1−2b n−1+3=0,两式相减,得数列{b n }为等比数列,即可求数列{b n }的通项公式;(Ⅱ)确定数列{c n }的通项,利用分组求和的方法求数列{c n }的前2n +1项和P 2n+1.本题考查数列递推式,考查数列的通项与求和,确定数列{b n }为等比数列是解题的关键.18.答案:(1)证明:取AC 的中点M ,连接C 1M ,FM ,在△ABC 中,FM//AB ,而FM ⊄面ABE ,∴FM//平面ABE , 在矩形ACC 1A 1中,E ,M 都是中点, ∴C 1M//AE ,而C 1M ⊄平面ABE ,∴C 1M//平面ABE , ∵C 1M ∩FM =M , ∴平面FC 1M ⊄平面ABE , ∵C 1F ⊂平面FC 1M , ∴C 1F//平面ABE ,(2)取B 1C 1的中点H ,连接EH , 则EH//AB ,且EH =12AB =√3FM , ∵AB ⊥平面BB 1C 1C , ∴EH ⊥平面BB 1C 1C , ∵P 是BE 的中点,∴V P−B 1C 1F =12V E−B 1C 1F =12×13⋅S △B 1C 1F ⋅EH =12×13×2×√3=√33.解析:(1)根据线面平行的判定定理即可证明:C 1F//平面ABE ; (2)根据三棱锥的体积公式即可求三棱锥P −B 1C 1F 的体积.本题主要考查线面平行的判定以及空间几何体的体积的计算,根据相应的判定定理以及三棱锥的体积公式是解决本题的关键.19.答案:解:(Ⅰ)t −=16(8+8.2+8.4+8.6+8.8+9)=8.5,y −=16(90+84+83+80+75+68)=80,b ̂=∑t i 6i=1y i −6t −y−∑t i 26i=1−6t−2=−20,a ̂=y −−b ̂x −=250,∴回归方程为y =−20t +250;(Ⅱ)在y =−20t +250中,取t =10,可得y =50.∴当单价t 为10元时,预测该产品的销量为50件.解析:(Ⅰ)由已知表格中的数据求得b ^与a ^的值,则线性回归方程可求; (Ⅱ)在(Ⅰ)中求得的回归方程中,取t =10求得y 值得答案. 本题考查线性回归方程的求法,考查计算能力,是基础题.20.答案:解:(1)设c 为椭圆的半焦距,依题意,有:{2a +2c =6a =2c ,解得{a =2c =1,∴b 2=a 2−c 2=3. 故椭圆E 的方程为:x 24+y 23=1.(2)解:由AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0⇒AC ⊥BD ,又k AC =√3,则k BD =−√33. 则AC :y =√3(x +1),BD :y =−√33(x +1).联立{x 24+y 23=1y =√3(x +1),得5x 2+8x =0,∴x =0或x =−85, ∴|AC|=√1+(√3)2|0−(−85)|=165.联立{x 24+y 23=1y =−√33(x +1),得13x 2+8x −32=0,∴x =−4±12√313, ∴|BD|=√33)−4+12√313−−4−12√313|=4813.∴S ABCD =12|AC|×|BD|=12×165×4813=38465,故四边形ABCD 面积为38465.解析:(1)由题意列关于a ,c 的方程组,求得a ,c 的值,结合隐含条件求得b ,则椭圆方程可求; (2)由已知向量等式可得AC ⊥BD ,又k AC =√3,则k BD =−√33.分别写出AC 、BD 所在直线方程,联立直线方程与椭圆方程,可得|AC|、|BD|的值,代入四边形面积公式得答案.本题考查椭圆标准方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.答案:解:(1)f′(x)=1x(x+1)−lnax (x+1)2=1+1x−lnax (x+1)2,由f′(1)=2−lna 4=12,解得a =1.(2)∵a =1,∴f(x)=lnx x+1,∴由题得:b ≥2+lnx x+1(x >0)恒成立,设g(x)=2+lnx x+1,则g′(x)=1x−lnx−1(x+1)2,再设ℎ(x)=1x−lnx−1(x+1)2,则ℎ′(x)=−x+1x 2<0,∴ℎ(x)在(0,+∞)上递减, 又ℎ(1)=0,∴当x ∈(0,1)时,ℎ(x)>0,即g′(x)>0,∴g(x)在(0,1)上为增函数; 当x ∈(1,+∞)时,ℎ(x)<0,即g′(x)<0,∴g(x)在(1,+∞)上为减函数; ∴g(x)max =g(1)=1,∴只需b ≥g(x)max =1,即b ≥1, ∴b 的最小值b min =1.解析:(1)求出原函数的导函数,得到函数在x =1处的导数,由导数值等于12,求得实数a 的值; (2)由题得:b ≥2+lnx x+1(x >0)恒成立,构造g(x)=2+lnx x+1,求出g(x)max =1,即可求实数b 的最小值.本题考查了利用导数研究函数在某点处的切线方程,考查函数的最值,正确分离参数是关键,是中档题.22.答案:解:(1)曲线C :{x =−3+4cosθ,y =4+4sinθ(θ为参数),∴(x +3)2+(y −4)2=16.直线l 2:cosθ−2sinθ=4ρ,即ρcosθ−2ρsinθ=4, ∴x −2y =4,即x −2y −4=0. (2)∵直线l 1:kx −y +k =0, 即y =k(x +1),∴直线l 1:{x =−1+tcosα,y =tsinα(t 为参数).代入曲线C :(x +3)2+(y −4)2=16,得t 2+4t(cosα−2sinα)+4=0. 设点M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=4(2sinα−cosα),t 1t 2=4.设点Q 对应的参数为t 3.将l 1:{x =−1+tcosα,y =tsinα(t 为参数)代入直线l 2:x −2y −4=0, 得t 3=5cosα−2sinα.∴|AP|·|AQ|=|t 1+t 22||t 3|=2|2sinα−cosα||5cosα−2sinα|=10.解析:(1)消去θ可得(x +3)2+(y −4)2=16.直线l 2即ρcosθ−2ρsinθ=4,可得x −2y =4; (2)直线l 1:{x =−1+tcosα,y =tsinα(t 为参数).代入曲线C 得t 2+4t(cosα−2sinα)+4=0.设点M ,N 对应的参数分别为t 1,t 2,根据几何意义及根与系数的关系求解.23.答案:解:(1)f(x)=|x|,则f(x −1)+f(x +2)=|x −1|+|x +2| ={2x +1,x >13,−2≤x ≤1−2x −1,x <−2. 因为f(x −1)+f(x +2)<4,可得{2x +1<4x >1或−2≤x ≤1或{−2x −1<4x <−2,所以−52<x <32,所以不等式的解集A ={x|−52<x <32}; (2)由(1)知m =1,则a +b +c =1, 又a ,b ,c 均为正实数,1−a a ·1−b b ·1−cc =b +c a ·a +c b ·a +bc≥2√bca·2√acb·2√ab c=8,当且仅当a =b =a =13时等号成立. 所以1−a a⋅1−b b⋅1−c c≥8.解析:本题考查了绝对值不等式的解法和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.(1)根据f(x)=|x|,可得f(x −1)+f(x +2)={2x +1,x >13,−2≤x ≤1−2x −1,x <−2,然后由f(x −1)+f(x +2)<4,分别解不等式即可;(2)根据(1)可得a+b+c=m=1,然后利用基本不等式可知1−aa ·1−bb·1−cc≥2√bca·2√acb·2√abc=8,从而证明1−aa ·1−bb·1−cc≥8,注意等号成立的条件.。

2019年9月15日高2020届高2017级江苏省2020届百校大联考高三年级第一次考试数学试题及参考答案

2019年9月15日高2020届高2017级江苏省2020届百校大联考高三年级第一次考试数学试题及参考答案
3 16. (本小题满分 14 分)
在直三棱柱 ABC A1B1C1 中,D 是棱 A1B1 的中点. ⑵ 证明:直线 B1C 平面 AC1D . ⑵若 AC AA1, A1B1 A1C1 ,证明:平面 AC1D 平面 A1B1C .
17.(本小题满分 14 分)
如图,在平面直角坐标系 xOy 中,已知椭圆 C :
直方图(如下图).若要从身高在
三组内的学生中,用
分层抽样的方法选取 24 人参加一项活动,则从身高在[140 ,150]内的学生中选取的
人数应为

7.已知圆
x2

y2

4 过椭圆 C
:
x2 a2

y2 b2
1(a

0, b
0) 的焦点与短轴端点,则椭圆C
的标
准方程为
.
8.如右图,在体积为 12 的三棱锥 A-BCD 中,点 M 在上,且 AM 2MB ,点 N 为 CD 的
为.
11.若非零向量 a 与 b 满足 2a b a 2b 3 a ,则 a 与 b 的夹角为
.
12 .若 5cos 2 6sin( ) 0, ( , ) ,则 sin 2
.
4
2
x2 (2m 3)x m2 3m 2, x 0
.
1 i
3. 函数: y lg(1 x) 的定义域是
_.
4. 执行如图所示的伪代码,其结果为 ____________. 5. 在甲、乙两个盒子中都各有大小相同的红、黄、白三个小球,现从甲、乙两个盒子
中各取一个小球,则两个小球颜色相同的概率为

6. 从某小学随机抽取 100 名同学,将他们的身高(单位:厘米)数据绘制成频率分布

江苏省普通高等学校2017年高三招生考试20套模拟测试数学试题一 含解析 精品

江苏省普通高等学校2017年高三招生考试20套模拟测试数学试题一 含解析 精品

江苏省普通高等学校招生考试高三模拟测试卷(一)数 学(满分160分,考试时间120分钟)一、 填空题:本大题共14小题,每小题5分,共70分.1. 设集合A ={x|-1≤x ≤2},B ={x|0≤x ≤4},则A ∩B =____________.2. 函数y =ln(x 2-x -2)的定义域是____________.3. 已知sin α=14,且α∈⎝⎛⎭⎫π2,π,则tan α=____________.4. 定义在R 上的奇函数f(x),当x >0时,f(x)=2x -x 2,则f(-1)+f(0)+f(3)=____________.5. 函数y =3sinx -cosx -2(x >0)的值域是____________.6. 等差数列{a n }中,前n 项和为S n ,若S 4=8a 1,a 4=4+a 2,则S 10=__________.7. 设函数f(x)=⎩⎪⎨⎪⎧2x -4,x >0,-x -3,x <0,若f(a)>f(1),则实数a 的取值范围是______________.8. 等比数列{a n }的公比大于1,a 5-a 1=15,a 4-a 2=6,则a 3=____________. 9. 将函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,得到函数f(x)的图象,若函数f(x)是偶函数,则φ的值等于________.10. 已知函数f(x)=ax +bx (a ,b ∈R ,b >0)的图象在点P(1,f(1))处的切线与直线x +2y-1=0垂直,且函数f(x)在区间⎣⎡⎭⎫12,+∞上单调递增,则b 的最大值等于__________.11. 已知f(m)=(3m -1)a +b -2m ,当m ∈[0,1]时,f(m)≤1恒成立,则a +b 的最大值是__________.12. △ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若tanA =2tanB ,a 2-b 2=13c ,则c =____________.13. 已知x +y =1,y >0,x >0,则12x +xy +1的最小值为____________.14. 设f′(x)和g′(x)分别是函数f(x)和g(x)的导函数,若f′(x)·g′(x)≤0在区间I 上恒成立,则称函数f(x)和g(x)在区间I 上单调性相反.若函数f(x)=13x 3-2ax 与函数g(x)=x 2+2bx 在开区间(a ,b)(a >0)上单调性相反,则b -a 的最大值等于____________.二、 解答题:本大题共6小题,共90分. 解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)已知函数f(x)=2cos ωx2⎝⎛⎭⎫3cos ωx 2-sin ωx 2(ω>0)的最小正周期为2π.(1) 求函数f(x)的表达式;(2) 设θ∈⎝⎛⎭⎫0,π2,且f(θ)=3+65,求cos θ的值.16.(本小题满分14分)设数列{a n }的前n 项和为S n ,满足2S n =a n +1-2n +1+1,且a 1,a 2+5,a 3成等差数列.(1) 求a 1,a 2的值;(2) 求证:数列{a n +2n }是等比数列,并求数列{a n }的通项公式.17. (本小题满分14分) 已知函数f(x)=x 2-2ax +1.(1) 若函数g(x)=log a [f(x)+a](a >0,a ≠1)的定义域是R ,求实数a 的取值范围; (2) 当x >0时,恒有不等式f (x )x>lnx 成立,求实数a 的取值范围.18. (本小题满分16分)如图,在海岸线l一侧C处有一个美丽的小岛,某旅游公司为方便游客,在l上设立了A,B两个报名点,满足A,B,C中任意两点间的距离为10 km.公司拟按以下思路运作:先将A,B两处游客分别乘车集中到AB之间的中转点D处(点D异于A,B两点),然后乘同一艘游轮前往C岛.据统计,每批游客A处需发车2辆,B处需发车4辆,每辆汽车每千米耗费2a元,游轮每千米耗费12a元.(其中a是正常数)设∠CDA=α,每批游客从各自报名点到C岛所需运输成本为S元.(1) 写出S关于α的函数表达式,并指出α的取值范围;(2) 问:中转点D距离A处多远时,S最小?19. (本小题满分16分)设函数f(x)=x|x-1|+m,g(x)=lnx.(1) 当m>1时,求函数y=f(x)在[0,m]上的最大值;(2) 记函数p(x)=f(x)-g(x),若函数p(x)有零点,求实数m的取值范围.20. (本小题满分16分)已知数列{a n}的奇数项是公差为d1的等差数列,偶数项是公差为d2的等差数列,S n是数列{a n}的前n项和,a1=1,a2=2.(1) 若S5=16,a4=a5,求a10;(2) 已知S15=15a8,且对任意n∈N*,有a n<a n+1恒成立,求证:数列{a n}是等差数列;(3) 若d1=3d2(d1≠0),且存在正整数m,n(m≠n),使得a m=a n.求当d1最大时,数列{a n}的通项公式.(一)1. {x|0≤x ≤2} 解析:本题主要考查集合的概念与运算等基础知识.本题属于容易题.2. (-∞,-1)∪(2,+∞) 解析:由x 2-x -2>0,则x >2或x<1.本题主要考查对数式中真数大于0,以及一元二次不等式的解法.本题属于容易题.3. -1515 解析:由sin α=14,α∈⎝⎛⎭⎫π2,π,得cos α=-154,则tan α=sin αcos α=-1515.本题主要考查同角三角函数关系.本题属于容易题. 4. -2 解析:由函数f(x)在R 上是奇函数,则f(0) =0,又x >0时,f(x)=2x -x 2,则f(3)=-1,f(-1)=-f(1)=-1,则f(-1)+f(0)+f(3)=-2.本题主要考查奇函数的性质.本题属于容易题.5. [-4,0] 解析:由y =3sinx -cosx -2=2sin ⎝⎛⎭⎫x -π6-2,则-4≤y ≤0.本题主要考查三角函数的值域,以及和差角公式的逆用.本题属于容易题.6. 120 解析:由S 4=8a 1,a 4=4+a 2得d =2,a 1=3,则S 10=10a 1+45d =120.本题主要考查等差数列通项公式以及求和公式.本题属于容易题.7. a <-1或a >1 解析:由f(1)=-2,则f(a)>-2.当a>0时,有2a -4>-2,则a>1;当a <0时,-x -3>-2,则a <-1.所以实数a 的取值范围是a <-1或a >1. 本题主要考查分段函数,以及简单不等式的解法.本题属于容易题.8. 4 解析:由a 5-a 1=15,a 4-a 2=6(q>1),得q =2,a 1=1,则a 3=4. 本题主要考查等比数列通项公式.本题属于容易题.9. π3 解析:由函数y =sin ⎝⎛⎭⎫2x +π6的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后,得到函数f(x)=sin(2x +π6-2φ)的图象,函数f(x)是偶函数,π6-2φ=π2+k π,而φ为锐角,则k =-1时φ=π3.本题主要考查三角函数的图象变换,以及三角函数的奇偶性.本题属于容易题.10. 23 解析:函数f(x)=ax +bx(a ,b ∈R ,b >0)的图象在点P(1,f(1))处的切线斜率为2, f ′(1)=2,得a -b =2,由函数f(x)在区间⎣⎡⎭⎫12,+∞上单调递增,f ′(x)≥0在区间⎣⎡⎭⎫12,+∞上恒成立,得a 4≥b ,又a =2+b ,则b ≤23.本题主要考查导数的几何意义,导数在单调性中的运用以及恒成立问题.本题属于中等题.11. 73 解析:将已知条件变形f(m)=m(3a -2)+b -a ,当3a -2=0时,即a =23,则有b -a ≤1,即b ≤a +1,所以a +b ≤2a +1=2×23+1=73;当3a -2>0,即a >23时,函数f(m)在[0,1]上单调递增,f(m)max =f(1)=3a -2+b -a =2a +b -2≤1,则b ≤3-2a ,所以a +b ≤a+3-2a =3-a <73;当3a -2<0,即a <23时,函数f(m)在[0,1]上单调递减,f(m)max =f(0)=b -a ≤1,则b ≤a +1,所以a +b ≤2a +1<73.综上所述,a +b 的最大值为73.本题主要考查在多元变量中如何变换主元以及借助单调性求最值来解决不等式的恒成立问题.本题属于中等题.12. 1 解析:由tanA =2tanB sinA cosA =2sinBcosB,结合正、余弦定理转化为边的关系,有2abc b 2+c 2-a 2=2×2abc a 2+c 2-b2,化简有a 2-b 2=13c 2,结合已知条件有c =1.本题主要考查利用正、余弦定理解三角形以及三角函数中遇切化弦.本题属于中等题.13. 54 解析:将x +y =1代入12x +x y +1中,得x +y 2x +x x +2y =12+y 2x +11+2y x,设yx=t >0,则原式=1+t 2+11+2t =2t 2+3t +32(1+2t )=14·(1+2t )2+2t +1+41+2t =14[(1+2t)+41+2t+1]≥14×2(1+2t )·41+2t +14=54,当且仅当t =12时,即x =23,y =13时,取“=”.本题主要考查利用代数式变形,以及利用基本不等式求最值.本题属于难题.14. 12 解析:因为g(x)=x 2+2bx 在区间(a ,b)上为单调增函数,所以f(x)=13x 3-2ax在区间(a ,b)上单调减,故x ∈(a ,b),f ′(x)=x 2-2a ≤0,即a ≥b22,而b >a ,所以b ∈(0,2),b -a ≤b -b 22=-12(b -1)2+12,当b =1时,b -a 的最大值为12.本题主要考查二次函数的单调性、最值问题和导数在单调性中的运用以及恒成立问题.本题属于难题.15. 解:(1) f(x)=2cos ωx 2⎝⎛⎭⎫3cos ωx 2-sin ωx 2=23cos 2ωx 2-2cos ωx 2sin ωx2=3(1+cos ωx)-sin ωx(2分)=3-2sin ⎝⎛⎭⎫ωx -π3.(4分)∵ 函数f(x)的最小正周期为2π,∴ 2πω=2π,ω=1.(6分)∴ f(x)=3-2sin ⎝⎛⎭⎫x -π3.(7分)(2) 由f(θ)=3+65,得sin ⎝⎛⎭⎫θ-π3=-35.∵ θ∈⎝⎛⎭⎫0,π2,∴ θ-π3∈⎝⎛⎭⎫-π3,π6,∴ cos ⎝⎛⎭⎫θ-π3=45.(9分)∴ cos θ=cos ⎝⎛⎭⎫θ-π3+π3=cos ⎝⎛⎭⎫θ-π3cos π3-sin ⎝⎛⎭⎫θ-π3sin π3(12分)=45×12-⎝⎛⎭⎫-35×32=4+3310.(14分)16. (1) 解:由已知,得2a 1=a 2-3 ①, 2(a 1+a 2)=a 3-7 ②.(2分) 又a 1,a 2+5,a 3成等差数列, 所以a 1+a 3=2a 2+10 ③.(3分) 解①②③,得a 1=1,a 2=5.(5分)(2) 证明:由已知,n ∈N *时,2(S n +1-S n )=a n +2-a n +1-2n +2+2n +1,即a n +2=3a n +1+2n+1,即a n +1=3a n +2n (n ≥2),(7分)由(1)得,a 2=3a 1+2,∴ a n +1=3a n +2n (n ∈N *),(9分)从而有a n +1+2n +1=3a n +2n +2n +1=3a n +3×2n =3(a n +2n ).(11分)又a 1+2>0,∴ a n +2n>0,∴ a n +1+2n +1a n +2n=3,∴ 数列{a n +2n }是等比数列,且公比为3.(12分)∴ a n +2n =(a 1+2)×3n -1=3n ,即a n =3n -2n .(14分)[注:① 不说明a 2=3a 1+2,就得a n +1=3a n +2n (n ∈N *),扣1分;② 仅由a n +1+2n +1=3(a n +2n ),就得到数列{a n +2n }是等比数列,扣1分.]17. 解:(1) 由题意得,对任意x ∈R ,恒有f(x)+a >0,即恒有x 2-2ax +1+a >0,(2分)于是Δ=4a 2-4(1+a)<0,(3分)即a 2-a -1<0,解得1-52<a <1+52.(3分)因为a >0,a ≠1,所以实数a 的取值范围是(0,1)∪⎝⎛⎭⎪⎫1,1+52.(5分)(2) 当x >0时,不等式f (x )x >lnx 等价于x -2a +1x >lnx ,即2a <x +1x-lnx ,(7分)设g(x)=x +1x -lnx ,则g′(x)=1-1x 2-1x =x 2-x -1x 2.(9分)令g′(x)=0,得x =1+52,当0<x <1+52时,g ′(x)<0,g(x)单调减,当x >1+52时,g ′(x)>0,g(x)单调增,(11分)故当x =1+52时,g(x)min =g ⎝ ⎛⎭⎪⎫1+52=5-ln 1+52,(13分)所以2a <5-ln 1+52,所以实数a 的取值范围是⎝⎛⎭⎪⎫-∞,52-12ln 1+52.(14分) 18. 解:(1) 由题知在△ACD 中,∠CAD =π3,∠CDA =α,AC =10,∠ACD =2π3-α.由正弦定理知CD sin π3=AD sin ⎝⎛⎭⎫2π3-α=10sin α,(2分)即CD =53sin α,AD =10sin ⎝⎛⎭⎫2π3-αsin α,(3分)所以S =4aAD +8aBD +12aCD =(12CD -4AD +80)a =⎣⎢⎢⎡⎦⎥⎥⎤603-40sin ⎝⎛⎭⎫2π3-αsin αa +80a(5分) =203(3-cos α)·a sin α+60a ⎝⎛⎭⎫π3<α<2π3.(6分)(2) S′=203·1-3cos αsin 2α·a ,(8分)令S′=0得cos α=13,(10分)当cos α>13时,S ′<0;当cos α<13时,S ′>0,(12分)所以当cos α=13时,S 取得最小值,(13分)此时sin α=223,AD =53cos α+5sin αsin α=5+564,(15分)所以中转点D 距A 处20+564km 时,运输成本S 最小.(16分)19. 解:(1) 当x ∈[0,1]时,f(x)=x(1-x)+m =-x 2+x +m =-⎝⎛⎭⎫x -122+m +14, 当x =12时,f(x)max =m +14.(2分)当x ∈(1,m]时,f(x)=x(x -1)+m =x 2-x +m =⎝⎛⎭⎫x -122+m -14, 因为函数y =f(x)在(1,m]上单调递增,所以f(x)max =f(m)=m 2.(4分) 由m 2≥m +14得m 2-m -14≥0,又m >1,所以m ≥1+22.(6分)所以当m ≥1+22时,f(x)max =m 2;当1<m <1+22时,f(x)max =m +14.(8分)(2) 函数p(x)有零点,即方程f(x)-g(x)=x|x -1|-lnx +m =0有解, 即m =lnx -x|x -1|有解.令h(x)=lnx -x|x -1|, 当x ∈(0,1]时,h(x)=x 2-x +lnx.因为h′(x)=2x +1x-1≥22-1>0,(10分)所以函数h(x)在(0,1]上是增函数,所以h(x)≤h(1)=0.(11分) 当x ∈(1,+∞)时,h(x)=-x 2+x +lnx.因为h′(x)=-2x +1x +1=-2x 2+x +1x=-(x -1)(2x +1)x<0,(12分)所以函数h(x)在(1,+∞)上是减函数, 所以h(x)<h(1)=0.(14分)所以方程m =lnx -x|x -1|有解时m ≤0.即函数p(x)有零点时实数m 的取值范围是(-∞,0].(16分)20. (1) 解:由题意,得a 1=1,a 2=2,a 3=a 1+d 1=1+d 1,a 4=a 2+d 2=2+d 2,a 5=a 3+d 1=1+2d 1.(2分)因为S 5=16,a 4=a 5,所以a 1+a 2+a 3+a 4+a 5=7+3d 1+d 2=16,2+d 2=1+2d 1.所以d 1=2,d 2=3,(4分)所以a 10=2+4d 2=14.(5分)(2) 证明:当n 为偶数时,因为a n <a n +1恒成立,即2+⎝⎛⎭⎫n 2-1d 2<1+n 2d 1,n2(d 2-d 1)+1-d 2<0恒成立,所以d 2-d 1≤0且d 2>1.(7分) 当n 为奇数时,因为a n <a n +1恒成立,即1+n -12d 1<2+⎝⎛⎭⎫n +12-1d 2,(1-n)(d 1-d 2)+2>0恒成立,所以d 1-d 2≤0,于是有d 1=d 2.(9分)因为S 15=15a 8,所以8+8×72d 1+14+7×62d 2=30+45d 2,所以d 1=d 2=2,a n =n ,所以数列{a n }是等差数列.(11分)(3) 解:若d 1=3d 2(d 1≠0),且存在正整数m ,n(m ≠n),使得a m =a n ,由题意得,在m ,n 中必然一个是奇数,一个是偶数,不妨设m 为奇数,n 为偶数.因为a m =a n ,所以1+m -12d 1=2+⎝⎛⎭⎫n 2-1d 2.(13分) 因为d 1=3d 2,所以d 1=63m -n -1.因为m 为奇数,n 为偶数,所以3m -n -1的最小正值为2,此时d 1=3,d 2=1.(15分)所以数列{a n}的通项公式为a n=⎩⎨⎧32n -12,n 为奇数,12n +1,n 为偶数.(16分)。

【试卷】江苏省苏州市2017届高三数学一模试卷Word版含解析

【试卷】江苏省苏州市2017届高三数学一模试卷Word版含解析

【关键字】试卷2017年江苏省苏州市高考数学一模试卷一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁UM=.2.若复数z满足z+i=,其中i为虚数单位,则|z|=.3.函数f(x)=的定义域为.4.如图是给出的一种算法,则该算法输出的结果是5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l的右焦点,则双曲线的离心率为.9.设等比数列{an}的前n项和为Sn,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且=2,则直线l的方程为.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.12.已知sinα=3sin(α+),则tan(α+)=.13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为.二.解答题:本大题共6小题,共计90分15.在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B= (1)求边c的长;(2)求角B的大小.16.如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.17.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.18.在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.19.己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递加,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.20.己知n为正整数,数列{an}满足an>0,4(n+1)an2﹣nan+12=0,设数列{bn}满足bn= (1)求证:数列{}为等比数列;(2)若数列{bn}是等差数列,求实数t的值:(3)若数列{bn}是等差数列,前n项和为Sn,对任意的n∈N*,均存在m∈N*,使得8a12Sn ﹣a14n2=16bm成立,求满足条件的所有整数a1的值.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].2017年江苏省苏州市高考数学一模试卷参考答案与试题解析一.填空题:本大題共14小败,每小題5分,共70分.不需要写出解答过程1.已知集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z},则∁U M= {6,7} .【考点】补集及其运算.【分析】解不等式化简集合M,根据补集的定义写出运算结果即可.【解答】解:集合U={1,2,3,4,5,6,7},M={x|x2﹣6x+5≤0,x∈Z}={x|1≤x≤5,x∈Z}={1,2,3,4,5},则∁U M={6,7}.故答案为:{6,7}.2.若复数z满足z+i=,其中i为虚数单位,则|z|=.【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z,再由复数求模公式计算得答案.【解答】解:由z+i=,得=,则|z|=.故答案为:.3.函数f(x)=的定义域为{x|x>且x≠1} .【考点】函数的定义域及其求法.【分析】根据对数函数的性质以及分母不是0,得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x>且x≠1,故函数的定义域是{x|x>且x≠1},故答案为:{x|x>且x≠1}.4.如图是给出的一种算法,则该算法输出的结果是24【考点】伪代码.【分析】模拟程序代码的运行过程,可知程序的功能是利用循环结构计算并输出变量t的值,由于循环变量的初值为2,终值为4,步长为1,故循环体运行只有3次,由此得到答案.【解答】解:当i=2时,满足循环条件,执行循环t=1×2=2,i=3;当i=3时,满足循环条件,执行循环t=2×3=6,i=4;当i=4时,满足循环条件,执行循环t=6×4=24,i=5;当i=5时,不满足循环条件,退出循环,输出t=24.故答案为:24.5.某高级中学共有900名学生,现用分层抽样的方法从该校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人,则该校高二年级学生人数为300.【考点】分层抽样方法.【分析】用分层抽样的方法抽取一个容量为45的样本,根据高一年级抽20人,高三年级抽10人,得到高二年级要抽取的人数,根据该高级中学共有900名学生,算出高二年级学生人数.【解答】解:∵用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,∴高二年级要抽取45﹣20﹣10=15,∵高级中学共有900名学生,∴每个个体被抽到的概率是=∴该校高二年级学生人数为=300,故答案为:300.6.已知正四棱锥的底面边长是2,侧棱长是,则该正四棱锥的体积为.【考点】棱柱、棱锥、棱台的体积.【分析】正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,求出PO,由此能求出该正四棱锥的体积.【解答】解:如图,正四棱锥P﹣ABCD中,AB=2,PA=,设正四棱锥的高为PO,连结AO,则AO=AC=.在直角三角形POA中,PO===1.所以VP﹣ABCD=•SABCD•PO=×4×1=.故答案为:.7.从集合{1,2,3,4}中任取两个不同的数,则这两个数的和为3的倍数的槪率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n==6,再利用列举法求出这两个数的和为3的倍数包含的基本事件个数,由此能求出这两个数的和为3的倍数的槪率.【解答】解:从集合{1,2,3,4}中任取两个不同的数,基本事件总数n==6,这两个数的和为3的倍数包含的基本事件有:(1,2),(2,4),共2个,∴这两个数的和为3的倍数的槪率p=.故答案为:.8.在平面直角坐标系xOy中,已知抛物线y2=8x的焦点恰好是双曲线﹣=l 的右焦点,则双曲线的离心率为2.【考点】双曲线的简单性质.【分析】求得抛物线的焦点坐标,可得c=2,由双曲线的方程可得a=1,由离心率公式可得所求值.【解答】解:抛物线y2=8x的焦点为(2,0),则双曲线﹣=l的右焦点为(2,0),即有c==2,不妨设a=1,可得双曲线的离心率为e==2.故答案为:2.9.设等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,则a8的值为2.【考点】等比数列的通项公式.【分析】利用等比数列的前n项和公式和通项公式列出方程组,求出,由此能求出a8的值.【解答】解:∵等比数列{a n}的前n项和为S n,若S3,S9,S6成等差数列.且a2+a5=4,∴,解得,∴a8==(a1q)(q3)2=8×=2.故答案为:2.10.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B 两点,其中A点在第一象限,且=2,则直线l的方程为x﹣y﹣1=0.【考点】直线与圆的位置关系.【分析】由题意,设直线x=my+1与圆x2+y2=5联立,利用韦达定理,结合向量知识,即可得出结论.【解答】解:由题意,设直线x=my+1与圆x2+y2=5联立,可得(m2+1)y2+2my ﹣4=0,设A(x1,y1),B(x2,y2),则y1=﹣2y2,y1+y2=﹣,y1y2=﹣联立解得m=1,∴直线l的方程为x﹣y﹣1=0,故答案为:x﹣y﹣1=0.11.在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为﹣或1.【考点】平面向量数量积的运算.【分析】根据题意,利用平面向量的线性运算,把、用、与λ表示出来,再求•即可.【解答】解:△ABC中,AB=1,AC=2,∠A=60°,点P满足=+,∴﹣=λ,∴=λ;又=﹣=(+λ)﹣=+(λ﹣1),∴•=λ•[+(λ﹣1)]=λ•+λ(λ﹣1)=λ×2×1×cos60°+λ(λ﹣1)×22=1,整理得4λ2﹣3λ﹣1=0,解得λ=﹣或λ=1,∴实数λ的值为﹣或1.故答案为:﹣或1.12.已知sinα=3sin(α+),则tan(α+)=2﹣4.【考点】两角和与差的正切函数;两角和与差的正弦函数.【分析】利用同角三角的基本关系、两角和差的三角公式求得tanα、tan的值,可得tan(α+)的值.【解答】解:sinα=3sin(α+)=3sinαcos+3cosαsin=sinα+cosα,∴tanα=.又tan=tan(﹣)===2﹣,∴tan(α+)====﹣=2﹣4,故答案为:2﹣4.13.若函数f(x)=,则函数y=|f(x)|﹣的零点个数为4.【考点】根的存在性及根的个数判断.【分析】利用分段函数,对x≥1,通过函数的零点与方程根的关系求解零点个数,当x<1时,利用数形结合求解函数的零点个数即可.【解答】解:当x≥1时,=,即lnx=,令g(x)=lnx﹣,x≥1时函数是连续函数,g(1)=﹣<0,g(2)=ln2﹣=ln>0,g(4)=ln4﹣2<0,由函数的零点判定定理可知g(x)=lnx﹣,有2个零点.(结合函数y=与y=可知函数的图象由2个交点.)当x<1时,y=,函数的图象与y=的图象如图,考查两个函数由2个交点,综上函数y=|f(x)|﹣的零点个数为:4个.故答案为:4.14.若正数x,y满足15x﹣y=22,则x3+y3﹣x2﹣y2的最小值为1.【考点】函数的最值及其几何意义.【分析】由题意可得x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),求出y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,求出导数和单调区间、极值和最值,即可得到所求最小值.【解答】解:由正数x,y满足15x﹣y=22,可得y=15x﹣22>0,则x>,y>0,又x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2),其中y3﹣y2+y=y(y2﹣y+)=y(y﹣)2≥0,即y3﹣y2≥﹣y,当且仅当y=时取得等号,设f(x)=x3﹣x2,f(x)的导数为f′(x)=3x2﹣2x=x(3x﹣2),当x=时,f(x)的导数为×(﹣2)=,可得f(x)在x=处的切线方程为y=x﹣.由x3﹣x2≥x﹣⇔(x﹣)2(x+2)≥0,当x=时,取得等号.则x3+y3﹣x2﹣y2=(x3﹣x2)+(y3﹣y2)≥x﹣﹣y≥﹣=1.当且仅当x=,y=时,取得最小值1.故答案为:1.二.解答题:本大题共6小题,共计90分15.在△ABC中,a,b,c分别为角A,B,C的对边.若acosB=3,bcosA=l,且A﹣B=(1)求边c的长;(2)求角B的大小.【考点】余弦定理;正弦定理.【分析】(1)由acosB=3,bcosA=l,利用余弦定理化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加即可得出c.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,可得A=B+,C=,可得sinC=sin.代入可得﹣16sin2B=,化简即可得出.【解答】解:(1)∵acosB=3,bcosA=l,∴a×=3,b×=1,化为:a2+c2﹣b2=6c,b2+c2﹣a2=2c.相加可得:2c2=8c,解得c=4.(2)由(1)可得:a2﹣b2=8.由正弦定理可得:==,又A﹣B=,∴A=B+,C=π﹣(A+B)=,可得sinC=sin.∴a=,b=.∴﹣16sin2B=,∴1﹣﹣(1﹣cos2B)=,即cos2B﹣=,∴﹣2═,∴=0或=1,B∈.解得:B=.16.如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1(1)求证:E是AB中点;(2)若AC1⊥A1B,求证:AC1⊥BC.【考点】空间中直线与直线之间的位置关系;直线与平面平行的性质.【分析】(1)利用同一法,首先通过连接对角线得到中点,进一步利用中位线,得到线线平行,进一步利用线面平行的判定定理,得到结论.(2)利用菱形的对角线互相垂直,进一步利用线面垂直的判定定理,得到线面垂直,最后转化成线线垂直.【解答】证明:(1)连结BC1,取AB中点E′,∵侧面AA1C1C是菱形,AC1与A1C交于点O,∴O为AC1的中点,∵E′是AB的中点,∴OE′∥BC1;∵OE′⊄平面BCC1B1,BC1⊂平面BCC1B1,∴OE′∥平面BCC1B1,∵OE∥平面BCC1B1,∴E,E′重合,∴E是AB中点;(2)∵侧面AA1C1C是菱形,∴AC1⊥A1C,∵AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,∴AC1⊥平面A1BC,∵BC⊂平面A1BC,∴AC1⊥BC.17.某单位将举办庆典活动,要在广场上竖立一形状为等腰梯形的彩门BADC (如图),设计要求彩门的面积为S (单位:m2)•高为h(单位:m)(S,h为常数),彩门的下底BC固定在广场地面上,上底和两腰由不锈钢支架构成,设腰和下底的夹角为α,不锈钢支架的长度和记为l.(1)请将l表示成关于α的函数l=f(α);(2)问当α为何值时l最小?并求最小值.【考点】函数模型的选择与应用.【分析】(1)求出上底,即可将l表示成关于α的函数l=f(α);(2)求导数,取得函数的单调性,即可解决当α为何值时l最小?并求最小值.【解答】解:(1)设上底长为a,则S=,∴a=﹣,∴l=﹣+(0<α<);(2)l′=h,∴0<α<,l′<0,<α<,l′>0,∴时,l取得最小值m.18.在平面直角坐标系xOy中,已知椭圆+=l (a>b>0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭圆的方程:(2)过点D(,﹣)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值.【考点】直线与椭圆的位置关系.【分析】(1)由题意可知2c=2,c=1,离心率e=,求得a=2,则b2=a2﹣c2=1,即可求得椭圆的方程:(2)则直线PQ的方程:y=k(x﹣)﹣,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的率之和为定值.【解答】解:(1)由题意可知:椭圆+=l (a>b>0),焦点在x轴上,2c=1,c=1,椭圆的离心率e==,则a=,b2=a2﹣c2=1,则椭圆的标准方程:;(2)证明:设P(x1,y1),Q(x2,y2),A(,0),由题意PQ的方程:y=k(x﹣)﹣,则,整理得:(2k2+1)x2﹣(4k2+4k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=,x1x2=,则y1+y2=k(x1+x2)﹣2k﹣2=,则k AP+k AQ=+=,由y1x2+y2x1=[k(x1﹣)﹣]x2+[k(x2﹣)﹣]x1=2kx1x2﹣(k+)(x1+x2)=﹣,k AP+k AQ===1,∴直线AP,AQ的斜率之和为定值1.19.己知函数f(x)=(x+l)lnx﹣ax+a (a为正实数,且为常数)(1)若f(x)在(0,+∞)上单调递增,求a的取值范围;(2)若不等式(x﹣1)f(x)≥0恒成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数f(x)的导数,问题转化为a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),根据函数的单调性求出a的范围即可;(2)问题转化为(x﹣1)[(x+1)lnx﹣a]≥0恒成立,通过讨论x的范围,结合函数的单调性求出a的范围即可.【解答】解:(1)f(x)=(x+l)lnx﹣ax+a,f′(x)=lnx++1﹣a,若f(x)在(0,+∞)上单调递增,则a≤lnx++1在(0,+∞)恒成立,(a>0),令g(x)=lnx++1,(x>0),g′(x)=,令g′(x)>0,解得:x>1,令g′(x)<0,解得:0<x<1,故g(x)在(0,1)递减,在(1,+∞)递增,故g(x)min=g(1)=2,故0<a≤2;(2)若不等式(x﹣1)f(x)≥0恒成立,即(x﹣1)[(x+1)lnx﹣a]≥0恒成立,①x≥1时,只需a≤(x+1)lnx恒成立,令m(x)=(x+1)lnx,(x≥1),则m′(x)=lnx++1,由(1)得:m′(x)≥2,故m(x)在[1,+∞)递增,m(x)≥m(1)=0,故a≤0,而a为正实数,故a≤0不合题意;②0<x<1时,只需a≥(x+1)lnx,令n(x)=(x+1)lnx,(0<x<1),则n′(x)=lnx++1,由(1)n′(x)在(0,1)递减,故n′(x)>n(1)=2,故n(x)在(0,1)递增,故n(x)<n(1)=0,故a≥0,而a为正实数,故a>0.2=0,设数列{b n} 20.己知n为正整数,数列{a n}满足a n>0,4(n+1)a n2﹣na n+1满足b n=(1)求证:数列{}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,求满足条件的所有整数a1的值.【考点】数列的求和;等比数列的通项公式.【分析】(1)数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,化为:=2×,即可证明.(2)由(1)可得:=,可得=n•4n﹣1.数列{b n}满足b n=,可得b1,b2,b3,利用数列{b n}是等差数列即可得出t.(3)根据(2)的结果分情况讨论t的值,化简8a12S n﹣a14n2=16b m,即可得出a1.【解答】(1)证明:数列{a n}满足a n>0,4(n+1)a n2﹣na n+12=0,,即=2,∴=a n+1∴数列{}是以a1为首项,以2为公比的等比数列.(2)解:由(1)可得:=,∴=n•4n﹣1.∵b n=,∴b1=,b2=,b3=,∵数列{b n}是等差数列,∴2×=+,∴=+,化为:16t=t2+48,解得t=12或4.(3)解:数列{b n}是等差数列,由(2)可得:t=12或4.①t=12时,b n==,S n=,∵对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴=,n=1时,化为:﹣=>0,无解,舍去.②t=4时,b n==,S n=,对任意的n∈N*,均存在m∈N*,使得8a12S n﹣a14n2=16b m成立,∴×﹣a14n2=16×,∴n=4m,∴a1=.∵a1为正整数,∴=k,k∈N*.∴满足条件的所有整数a1的值为{a1|a1=2,n∈N*,m∈N*,且=k,k∈N*}.四.选做题本题包括A,B,C,D四个小题,请选做其中两题,若多做,则按作答的前两题评分.A.[选修4一1:几何证明选讲]21.如图,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A 作l的垂线AD,AD分别与直线l、圆交于点D、E.求∠DAC的度数与线段AE的长.【考点】弦切角.【分析】连接OC,先证得三角形OBC是等边三角形,从而得到∠DCA=60°,再在直角三角形ACD中得到∠DAC的大小;考虑到直角三角形ABE中,利用角的关系即可求得边AE的长.【解答】解:如图,连接OC,因BC=OB=OC=3,因此∠CBO=60°,由于∠DCA=∠CBO,所以∠DCA=60°,又AD⊥DC得∠DAC=30°;又因为∠ACB=90°,得∠CAB=30°,那么∠EAB=60°,从而∠ABE=30°,于是.[选修4-2:矩阵与变换]22.已知二阶矩阵M有特征值λ=8及对应的一个特征向量=[],并且矩阵M对应的变换将点(﹣1,2)变换成(﹣2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值.【考点】特征值与特征向量的计算;几种特殊的矩阵变换.【分析】(1)先设矩阵A=,这里a,b,c,d∈R,由二阶矩阵M有特征值λ=8及对应的一个特征向量e1及矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).得到关于a,b,c,d的方程组,即可求得矩阵M;(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,从而求得另一个特征值为2.【解答】解:(1)设矩阵A=,这里a,b,c,d∈R,则=8=,故,由于矩阵M对应的变换将点(﹣1,2)换成(﹣2,4).则=,故联立以上两方程组解得a=6,b=2,c=4,d=4,故M=.(2)由(1)知,矩阵M的特征多项式为f(λ)=(λ﹣6)(λ﹣4)﹣8=λ2﹣10λ+16,故矩阵M的另一个特征值为2.[选修4-4:坐标系与参数方程]23.已知圆O1和圆O2的极坐标方程分别为ρ=2,.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程.【考点】简单曲线的极坐标方程;相交弦所在直线的方程.【分析】(1)先利用三角函数的差角公式展开圆O2的极坐标方程的右式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆O2的直角坐标方程及圆O1直角坐标方程.(2)先在直角坐标系中算出经过两圆交点的直线方程,再利用直角坐标与极坐标间的关系求出其极坐标方程即可.【解答】解:(1)ρ=2⇒ρ2=4,所以x2+y2=4;因为,所以,所以x2+y2﹣2x﹣2y﹣2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即.[选修4-5:不等式选讲]24.已知a,b,c为正数,且a+b+c=3,求++的最大值.【考点】二维形式的柯西不等式.【分析】利用柯西不等式,结合a+b+c=3,即可求得++的最大值.【解答】解:由柯西不等式可得(++)2≤[12+12+12][()2+()2+()2]=3×12∴++≤3,当且仅当==时取等号.∴++的最大值是6,故最大值为6.四.必做题:每小题0分,共计20分25.如图,已知正四棱锥P﹣ABCD中,PA=AB=2,点M,N分别在PA,BD上,且==.(1)求异面直线MN与PC所成角的大小;(2)求二面角N﹣PC﹣B的余弦值.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.利用向量法能求出异面直线MN与PC所成角.(2)求出平面PBC的法向量和平面PNC的法向量,利用向量法能求出二面角N ﹣PC﹣B的余弦值.【解答】解:(1)设AC与BD的交点为O,AB=PA=2.以点O为坐标原点,,,方向分别是x轴、y轴、z轴正方向,建立空间直角坐标系O﹣xyz.则A(1,﹣1,0),B(1,1,0),C(﹣1,1,0),D(﹣1,﹣1,0),…设P(0,0,p),则=(﹣1,1,p),又AP=2,∴1+1+p2=4,∴p=,∵===(),=(),∴=(﹣1,1,﹣),=(0,,﹣),设异面直线MN与PC所成角为θ,则cosθ===.θ=30°,∴异面直线MN与PC所成角为30°.(2)=(﹣1,1,﹣),=(1,1,﹣),=(,﹣),设平面PBC的法向量=(x,y,z),则,取z=1,得=(0,,1),设平面PNC的法向量=(a,b,c),则,取c=1,得=(,2,1),设二面角N﹣PC﹣B的平面角为θ,则cosθ===.∴二面角N﹣PC﹣B的余弦值为.26.设|θ|<,n为正整数,数列{a n}的通项公式a n=sin tan nθ,其前n项和为S n(1)求证:当n为偶函数时,a n=0;当n为奇函数时,a n=(﹣1)tan nθ;(2)求证:对任何正整数n,S2n=sin2θ•[1+(﹣1)n+1tan2nθ].【考点】数列的求和.【分析】(1)利用sin=,即可得出.+a2k=(﹣1)tan nθ.利用等比数列的求和公式即可得出.(2)a2k﹣1【解答】证明:(1)a n=sin tan nθ,当n=2k(k∈N*)为偶数时,a n=sinkπ•tan nθ=0;当n=2k﹣1为奇函数时,a n=•tan nθ=(﹣1)k﹣1tan nθ=(﹣1)tan nθ.+a2k=(﹣1)tan nθ.∴奇数项成等比数列,首项为tanθ,公比为(2)a2k﹣1﹣tan2θ.∴S2n==sin2θ•[1+(﹣1)n+1tan2nθ].2017年4月18日此文档是由网络收集并进行重新排版整理.word可编辑版本!。

江苏省天一中学2020届高三第一次模拟考试数学试题II卷

江苏省天一中学2020届高三第一次模拟考试数学试题II卷

2020届江苏省天一中学高三年级第一次模拟考试
数学II(附加题)21.【选做题】本题包括A 、B 、C 三小题,请选定其中两题......,.并在相应的答题区域内作答.............若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A .[选修4-2:矩阵与变换](本小题满分10分)
已知矩阵231t ⎡⎤=⎢⎥⎣⎦
M 的一个特征值为4,求矩阵M 的逆矩阵1-M .B .[选修4—4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy 中,已知直线l 的参数方程为⎪⎪⎩
⎪⎪⎨⎧+==22321t y t x (t 为参数),在以坐
标原点O 为极点,x 轴的非负半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是)4
sin(24θπρ+=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;
(2)若直线l 与曲线C 相交于两点B A ,,求线段AB 的长.
C .[选修4—5:不等式选讲
]已知()123,,0,x x x ∈+∞,且满足1231233x x x x x x ++=,证明:1223313x x x x x x ++≥注意事项
考生在答题前请认真阅读本注意事项及各题答题要求
1.本试卷共2页,均为非选择题(第21~23题)。

本卷满分为40分,考试时间为30分钟。

考试结束后,请将答题卡交回。

2.答题前,请您务必将自己的姓名、考试证号等用书写黑色字迹的0.5毫米签字笔填写在
答题卡上,并用2B 铅笔正确填涂考试号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又由右准线方程为 x 2 ,得到 a2 2 , c
解得 a 2, c 1 ,所以 b2 a2 c2 1
所以,椭圆 C 的方程为 x2 y2 1 2
(2)①设
B
x1,
y1
,而
A0,1
,则
M
x1 2
,
1
y1 2


ON
6
OM


2
N
6x1 , 4
6
1
4
y1
因为点 B, N 都在椭圆上,所以
2 e
,
4 5
1 2
14.
DE // 平面 AB1C1 ……………………5 分 (2) ABC 为正三角形,且 D 是 AC 的中点
BD AC ……………………6 分 平面 AA1C1C 平面 ABC ,且平面 AA1C1C 平面 ABC AC
BD 平面 ABC BD 平面 AA1C1C ……………………9 分
3t
.…………2

因为矩阵 M 的一个特征值为 4,所以 f (4) 6 3t 0 ,所以 t 2 .…………5 分
2020届江苏省天一中学2017级高三一模考试数学试卷参考答案
所以
M
2 2
1
3 1
,所以
M
1
21 3
2 21 3
2 2
2 2
3 1 3
2 1 3
2 2
1 4
1 2
所以当
时,
恒成立.
函数
的对称轴为


,即
时,


,解之得
,解集为空集;

,即
时,
2020届江苏省天一中学2017级高三一模考试数学试卷参考答案

,解之得
,所以

,即
时,

,解之得
,所以
综上所述,当
函数 在区间
上单调递增.
(2)∵ 有两个极值点


是方程
的两个根,且函数 在区间

上单调递增,在 ∵
上单调递减.
∴函数 也是在区间

上单调递增,在

,∴ 是函数 的一个零点.
由题意知:

,∴
,∴


上单调递减 ,∴

是方程
的两个根,


,

∵函数 图像连续,且在区间
上单调递增,在
上单调递减,在
上单
调递增
∴当
时,
,当

,当


∴函数 有两个零点 和 .
21.A.矩阵
M
的特征多项式为
f
()
2 t
3 1
(
2)(
1)
A1E 平面 AA1C1C
BD A1E A1E AC1 且 DE // AC1
A1E DE ……………………11 分
DE , BD 平面 BDE 且 DE BD D A1E 平面 BDE ……………………14 分
16.(1)在 △ABC 中,由余弦定理 b2 c2 2bc cos A a2 得,
cos C 10
10
所以 tan 2C
2 tan C 1 tan2 C
23 1 32
3 4
.………………………………………14 分
17. 过程略
答:每天排除 A 型卡车 8 辆,B 型卡车 0 辆,运输队所花的成本最低,最低成本为 1920 元。
18.(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以 a 2c ,
并且当
4 5
时, S
22 5
,当
5 6
时, S
10 , 6
所以
OAB
的面积
S
的范围为
10 , 2
2 .
6 5
19.(1).a=-2,m=0………………………………………2 分
4
(2).(-∞,
)………………………………………16 分
ln4 - ln3
20.(1)当
时,
,因为函数 在
上单调递增,
1 2k2
1 2k2
所以
k2
1 2 1
OAB 的面积 S 1 1 AB 1
2
2
1 k2
x1 x2
1 2
1 k2
x1 x2 2 4x1x2
1 1 k 2 2
8k 2 1 2k 2 2
2
1 k2 k2
1 2k 2 2
2 1 ,
因为 S
2
1

4 5
,
5 6
为单调减函数,
3
4 1
2
.……10

B.(1)由题意可得直线 l : 3x y 2 0 ,
……………………2 分
由 4
2 sin(
) ,得 2
4 cos
4 sin
,即
x2
y2
4x 4y,
4
所以曲线 C : (x 2)2 ( y 2)2 8 .
0
OA OB
x1x2
y1 y2
x1x2
kx1
m kx2
m
1 k2
x1x2 km x1 x2 m2
1 k 2
2m2 2 1 2k2
4k 2m2 1 2k2
m2
2m2
2
2k 2m2
2k 2 4k 2m2 1 2k2
m2
2k 2m2
3m2 2 2k 2 1 k 2 ,
3x12 16
x12 2
y12
1
3 1 y1 2 8
8
,将下式两边同时乘以
3 1
再减去上式,解得
y1
1 3
, x12
16 9
所以 OB
x12 y12
16 9
1 3
2
17 3
②由原点 O 到直线 l 的距离为1,得
m 1 k2
1 ,化简得:1 k 2 m2
y kx m
b2 20 2 2 5 5 b 25 ,即 b2 4b 5 0 , …………………………4 分 5
解得 b 5 或 b 1 (舍),所以 b 5 . ………………………………………6 分
(2)由 cos A
5 及 0 A 得, sin A 1 cos2 A 1 (
2020 届江苏省天一中学高三年级第一次模拟考试 参考答案
3
1. [0,1] 2. 1
3.[4,+∞]
4.
5
5.y= 3 x 4
1
1
6.
7.
2
4
-3 8. 4
9.-42
5 10.3 11. 3
22 12. 9
13. 3
15.证明:
(1) D , E 分别是 AC , CC1 的中点
DE // AC1 ……………………2 分 DE 平面 AB1C1 , AC1 平面 AB1C1
5)2 2
5
,…8 分
5
5
5
所以
cos C
cos(
(
A
B))
cos( A
)
2 (cos A sin A)
10

42
10
又因为 0 C ,所以 sin C
1 cos2 C
1(
10 )2
3
10

10
10
3 10 从而 tan C sin C 10 3 ,………………………………………………12 分
联立直线 l 的方程与椭圆 C 的方程: x2 2
y2
,得
1
1 2k 2
x2 4kmx 2m2 2 0
2020届江苏省天一中学2017级高三一模考试数学试卷参考答案

A x1,
y1 , B x2,y2ຫໍສະໝຸດ ,则x1x2
4km 1 2k2
, x1x2
2m2 2 1 2k2
,且
8k 2
相关文档
最新文档