2020年江苏省无锡市锡山区天一中学高考数学第一次模拟测试试卷 (解析版)
【附15套精选模拟试卷】江苏省无锡市2020届高三第一次模拟考试数学试卷含解析

江苏省无锡市2020届高三第一次模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示,则该几何体的体积为()A .12B .18C .24D .302.设命题2:,420p x R x x m ∀∈-+≥ (其中m 为常数),则“1m ≥”是“命题p 为真命题”( ) A .充分不必要 B .必要不充分C .充分且必要D .既不充分也不必要3.已知定义在R 上的函数()f x ,()g x 满足()()1g x f x =-,则函数()y g x =的图象关于( )A .直线1x =-对称B .直线1x =对称C .原点对称D .y 轴对称4.记双曲线()2222:10,0x y C a b a b -=>>的左焦点为F ,双曲线C 上的点,M N 关于原点对称,且3904MFN MOF ︒∠=∠=,则22b a=( )A .323+B .423+C .33D .435.为得到函数sin 33y x x =-的图象,只需要将函数2cos3y x =的图象( ) A .向左平行移动6π个单位 B .向右平行移动6π个单位 C .向左平行移动518π个单位 D .向右平行移动518π个单位6.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .7.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .2y x -= B .1y x -= C .2y x = D .13y x = 8.在V ABC 中,sin 32B A =,2BC =4C π=,则AB =( )A 26.5C .33.69.设正数,x y 满足,23x y x y >+=,则195x y x y+-+的最小值为( ) A .83B .3C .32 D .2310.已知双曲线2222:1(0,0)x y C a b a b-=>>的一个焦点为F ,点,A B 是C 的一条渐近线上关于原点对称的两点,以AB 为直径的圆过F 且交C 的左支于,M N 两点,若|MN|=2,ABF ∆的面积为8,则C 的渐近线方程为( ) A .3y x =B .33y x =±C .2y x =±D .12y x=± 11.某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为n 的样本,若从丙车间抽取6件,则n 的值为( ) A .18B .20C .24D .2612.设,x y 满足约束条件010x y a x y ++≥⎧⎨-+≤⎩,且2z x y =+的最小值为2,则a =( )A .-1B .-1C .53-D .53二、填空题:本题共4小题,每小题5分,共20分。
2020年天一大联考高考数学一模试卷(文科)(含答案解析)

2020年天一大联考高考数学一模试卷(文科)一、单项选择题(本大题共12小题,共60.0分)1.已知集合A={x|0≤x≤7},B={x|x2−8x+7≥0},则A∩B=()A. [0,1]B. {7}C. [0,1]∪{7}D. [1,7]2.设复数z=(5+i)(1−i)(为虚数单位),则的虚部是()A. 4iB. −4iC. −4D. 43.如果a<0,b>0,那么下列不等式中正确的是()A. 1a <1bB. √−a<√bC. a2<b2D. |a|>|b|4.供电部门对某社区1000位居民2016年11月份人均用电情况进行统计后,按人均用电量分为0,10),10,20),20,30),30,40),40,50]五组,整理得到如右的频率分布直方图,则下列说法错误的是().A. 11月份人均用电量人数最多的一组有400人。
B. 11月份人均用电量不低于20度的有300人C. 11月份人均用电量为25度D. 在这1000位居民中任选1位协助收费,选到的居民用电量在30,40)一组的概率为5.将函数f(x)=sin(2x+φ),|φ|<π2的图象向左平移π6个单位后的图象关于原点对称,则函数f(x)在[0,π2]上的最小值为()A. √32B. 12C. −12D. −√326.已知数列{a n}为等差数列,其前n项和为S n,2a7−a8=5,则S11为()A. 110B. 55C. 50D. 不能确定7.已知sin(π3−α)=14,则cos(π3+2α)=()A. 58B. −78C. −58D. 788.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,B(0,2b),若直线FB的斜率与C的一条渐近线的斜率的乘积为3,则C的离心率为()A. √2B. 2C. √5D. 39.执行如图所示的程序框图,则输出的结果为()A. 10B. 17C. 24D. 2610.过抛物线x2=4y的焦点作两条互相垂直的弦AB、CD,则1|AB|+1|CD|=()A. 2B. 4C. 12D. 1411.已知函数f(x)=3sin(πx)x2−3x+3,给出三个命题:①f(x)的最小值为−4,②f(x)是轴对称图形,③f(x)≤4π|x|.其中真命题的个数是()A. 0B. 1C. 2D. 312.如图,在正四棱锥P−ABCD中,AB=2√3,侧面积为8√3,则它的体积为()A. 4B. 8C. 12πD. 16π二、填空题(本大题共4小题,共20.0分)13.已知|a⃗|=2,且(a⃗+b⃗ )⊥a⃗,则a⃗⋅b⃗ 的值是______ .14.下面几种推理过程①某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人②根据三角形的性质,可以推测空间四面体的性质③平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分④在数列{a n}中,a1=1,a n+1=2a n2+a n,n∈Ν∗,计算a2,a3,由此归纳出{a n}的通项公式其中是演绎推理的的序号为_________.15.已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球面上,则该圆柱的侧面积为__________.16.在△ABC中,若BC=6,AB=4,cosB=13,那么AC=______.三、解答题(本大题共7小题,共82.0分)17.已知数列{b n}的前n项和为T n,且T n−2b n+3=0,n∈N∗.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)设C n={log2(b n3),n为奇数b n,n为偶数,求数列{c n}的前2n+1项和P2n+1.18.在直三棱柱ABC−A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E,F分别是A1C1,BC的中点.(1)证明:C1F//平面ABE;(2)设P是BE的中点,求三棱锥P−B1C1F的体积.19. 某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得如下数据:(Ⅰ)求回归直线方程y =bt +a ;(Ⅱ)当单价t 为10元时,预测该产品的销量. 附:回归方程y ̂=b ̂t +a ̂中,b ̂=∑(n i−l ti−t −)(yi−y −)∑(n i−l ti−t −)2=∑t n i−l iyi−nt −y −∑t n i−li 2−nt −2,a ̂=y −−b ̂t −.20. 已知椭圆E :x 2a 2+y2b2=1(a >b >0)的左、右焦点分别为,点P 是椭圆E 上的一个动点,△PF 1F 2的周长为6,且存在点P 使得,△PF 1F 为正三角形. (1)求椭圆E 的方程;(2)若A ,B ,C ,D 是椭圆E 上不重合的四个点,AC 与BD 相交于点F 1,且AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0.若AC 的斜率为√3,求四边形ABCD 的面积.21. 已知函数f(x)=ln(ax)x+1,曲线y =f(x)在x =1处的切线与直线x −2y =0平行.(1)求a 的值;(2)若f(x)≤b −2x+1恒成立,求实数b 的最小值.22. 在直角坐标系xOy 中,曲线C :{x =−3+4cosθ,y =4+4sinθ(θ为参数),直线l 1:kx −y +k =0.以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 2的方程为cosθ−2sinθ=4ρ.(1)写出曲线C 的普通方程和直线l 2的直角坐标方程;(2)l 1与曲线C 交于不同的两点M ,N ,MN 的中点为P ,l 1与l 2的交点为Q ,l 2恒过点A ,求|AP|·|AQ|的值.23. 设函数f(x)=|x|.(1)设f(x −1)+f(x +2)<4的解集为A ,求集合A ;(2)已知m为(1)中集合A中的最大整数,且a+b+c=m(其中a,b,c均为正实数),求证:1−a a ⋅1−bb⋅1−cc≥8.【答案与解析】1.答案:C解析:本题主要考查集合的基本运算,以及一元二次不等式的解法,属基础题.求出集合B,根据交集定义进行求解.解:集合A={x|0≤x≤7},B={x|x2−8x+7≥0}={x|x≤1或x≥7},∴A∩B={x|0≤x≤1或x=7}=[0,1]∪{7}.故选C.2.答案:C解析:本题主要考查复数的四则运算,属于基础题.解:z=(5+i)(1−i)=6−4i,∴虚部是−4,故选C.3.答案:A解析:∵a<0∴1a <0∵b>0∴1b>0故1a<1b.若a=−2,b=2,则√−a=√b,故B不正确,同理a2=b2,故C也不正确;|a|=|b|,故D也不正确.4.答案:C解析:本题考查频率分布直方图,逐一判断求解即可.解:根据频率分布直方图知,11月份人均用电量人数最多的一组是[10,20),有1000×0.04×10=400人,A正确;11月份人均用电量不低于20度的频率是(0.03+0.01+0.01)×10=0.5,有1000×0.5=500人,∴B正确;11月份人均用电量为5×0.1+15×0.4+25×0.3+35×0.1+45×0.1=22,∴C错误;在这1000位居民中任选1位协助收费,用电量在[30,40)一组的频率为0.1,估计所求的概率为110,∴D正确.故选C.5.答案:D解析:本题考查了三角函数的图象变换、三角函数的奇偶性及三角函数的值域的应用.由条件利用y=Asin(ωx+φ)的图象变换规律,求出g(x)的解析式,再根据题意求x∈[0,π2]时的最小值即可.解:∵函数f(x)=sin(2x+φ)的图象向左平移π6个单位后所得图象对应的函数解析式为:y=sin[2(x+π6)+φ]=sin(2x+π3+φ)为奇函数,∴π3+φ=kπ,即φ=kπ−π3,k∈Z,∵|φ|<π2,∴φ=−π3,∴f(x)=sin(2x−π3),又x∈[0,π2],∴2x∈[0,π],2x−π3∈[−π3,2π3],∴−√32≤sin(2x+π6)≤1,∴函数f(x)在[0,π2]上的最小值−√32.故选D.6.答案:B 解析:利用等差数列的通项公式与性质及其求和公式即可得出.本题考查了等差数列的通项公式与性质及其求和公式,考查了推理能力与计算能力,属于中档题.解:2a7−a8=2(a1+6d)−(a1+7d)=a1+5d=a6=5,∴S11=11×a1+a112=11a6=55.故选B.7.答案:B解析:解:由sin(π3−α)=14,可得:cos(α+π6)=cos[π2−(π3−α)]=sin(π3−α)=14.那么:cos(π3+2α)=cos2(π6+α)=2cos2(α+π6)−1=2×116−1=−78.故选:B.利用诱导公式和二倍角公式即可计算.本题考查了诱导公式和二倍角公式的灵活运用!属于基础题.8.答案:B解析:解:F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点F(c,0),B(0,2b),若直线FB与C的一条渐近线垂直,可得:得:2b−c ⋅−ba=3,可得2b2=3ac,即2c2−2a2=3ac,可得2e2−3e−2=0,e>1,解得e=2.故选:B.求出双曲线的焦点坐标,利用直线FB与C的一条渐近线乘积,列出方程,然后求解离心率.本题考查双曲线的简单性质的应用,考查计算能力.9.答案:D解析:解:第一次,S=2,i=3,⇒S=5,i=5,⇒S=10,i =7,⇒S =17, i =9,⇒S =26, i =11>10,程序终止, 输出S =26, 故选:D根据程序框图进行模拟计算即可得到结论.本题主要考查程序框图的计算,根据查询进行模拟计算是解决本题的关键.10.答案:D解析:本题主要考查了抛物线的几何性质和直线与抛物线的位置关系,设出直线方程,联立直线与抛物线方程,消去x ,根据根与系数的关系,得到|AB|和|CD|的值,进而求得1|AB |+1|CD |.解:根据题意,抛物线的焦点为(0,1),设直线AB 的方程为y =kx +1(k ≠0),直线CD 的方程为y =−1k x +1,由{y =kx +1x 2=4y ,得y 2−(2+4k 2)y +1=0, 由根与系数的关系得y A +y B =2+4k 2, 所以|AB|=y A +y B +2=4+4k 2, 同理|CD|=y C +y D +2=4+4k 2,所以1|AB|+1|CD|=14k 2+4+k 24k 2+4=14, 故选D .11.答案:D解析:解:①若f(x)的最小值为−4等价为3sin(πx)x 2−3x+3≥−4恒成立,且能取等号, 即4x 2−12x +12+3sin(πx)≥0恒成立,设g(x)=4x 2−12x +12+3sin(πx),则g(x)=4(x −32)2+3+3sin(πx)≥3+3sin(πx)≥0, 当x =32时,g(x)=3+3sin 32π=3−3=0,即0能取到,故①正确, ②∵x =32是y =3sin(πx)和y =x 2−3x +3共同的对称轴, ∴x =32是f(x)的对称轴,即f(x)是轴对称图形,故②正确, ③∵y =x 2−3x +3=(x −32)2+34≥34,∴f(x)≤|f(x)|≤|3sinπx34|=4|sinπx|,只要证明|sinπx|≤π|x|,即可, 设|sint|≤|t|,(t ≥0) 当t ≥1时不等式恒成立, 当0≤t <1时,即证明sint ≤t ,设ℎ(t)=sint −t ,ℎ′(t)=cost −1≤0,即ℎ′(t)在0≤t <1上是减函数, 则ℎ(t)=sint −t ≤ℎ(0)=sin0−0=0, 即sint ≤t 成立,综上,4|sinπx|≤4π|x|成立,故③正确, 故三个命题都是真命题, 故选:D .根据条件分别进行判断即可.本题主要考查命题的真假判断,涉及最小值,对称性以及不等式的证明,涉及的知识点较多,综合性较强,考查学生的运算和推理能力.12.答案:A解析:解:作PO ⊥平面ABCD ,取BC 中点E ,连结OE ,PE , ∵正四棱锥P −ABCD 中,AB =2√3,侧面积为8√3, ∴O 是四边形ABCD 的中点,E 是BC 的中点,PE ⊥BC , 4×12BC ×PE =8√3,解得PE =2,∴PO=√PE2−OE2=√4−3=1,∴正四棱锥P−ABCD的体积V=13×S正方形ABCD×PO=13×2√3×2√3×1=4.故选:A.作PO⊥平面ABCD,取BC中点E,连结OE,PE,求出PE=2,从而PO=1,由此能求出正四棱锥P−ABCD的体积.本题考查正四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.13.答案:−4解析:本题考查了向量垂直与数量积的关系,属于基础题.由(a⃗+b⃗ )⊥a⃗,可得(a⃗+b⃗ )⋅a⃗=a⃗2+a⃗⋅b⃗ =0,即可得出.解:∵|a⃗|=2,且(a⃗+b⃗ )⊥a⃗,∴(a⃗+b⃗ )⋅a⃗=a⃗2+a⃗⋅b⃗ =0,∴a⃗⋅b⃗ =−a⃗2=−22=−4.故答案为:−4.14.答案:③解析:本题考查简单的演绎推理,推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),合情推理包括类比推理与归纳推理.根据合情推理与演绎推理的概念即可作出判断.解:①选项,某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班都超过60人,属于归纳推理;②选项,由三角形的性质,推测空间四面体性质,属于类比推理;③选项,具有明显的大前提,小前提,结论,属于典型的演绎推理的三段论形式;④选项,在数列{a n}中,a1=1,a n+1=2a n2+a n,n∈N∗,由此归纳出{a n}的通项公式,属于归纳推理;综上,可知,只有③选项为演绎推理.故答案为③.15.答案:4√3π解析:本题主要考查了圆柱的侧面积和球的相关知识,属于基础题.由它的两个底面的圆周在直径为4的同一个球面上,可求出圆柱底面圆的半径r =√22−12=√3,进而求得侧面积.解:∵圆柱的高为2,且它的两个底面的圆周在直径为4的同一个球面上, ∴可得圆柱底面半径r =√22−12=√3, ∴圆柱的侧面积.故答案为4√3π.16.答案:6解析:解:∵BC =6,AB =4,cosB =13,∴AC =√AB 2+BC 2−2AB ⋅BC ⋅cosB =√62+42−2×6×4×13=6.故答案为:6.直接利用余弦定理即可求值得解.本题主要考查了余弦定理在解三角形中的应用,属于基础题.17.答案:解:(Ⅰ)∵T n −2b n +3=0,∴当n =1时,b 1=3,当n ≥2时,S n−1−2b n−1+3=0,两式相减,得b n =2b n−1,(n ≥2) ∴数列{b n }为等比数列,∴b n =3⋅2n−1. (Ⅱ)c n ={n −1, n 为奇数3⋅2n−1 , n 为偶数.令a n =n −1,故P 2n+1=(a 1+a 3+⋯+a 2n+1)+(b 2+b 4+⋯+b 2n )=(0+2n)⋅(n+1)2+6(1−4n )1−4,=22n+1+n 2+n −2.解析:(Ⅰ)当n ≥2时,S n−1−2b n−1+3=0,两式相减,得数列{b n }为等比数列,即可求数列{b n }的通项公式;(Ⅱ)确定数列{c n }的通项,利用分组求和的方法求数列{c n }的前2n +1项和P 2n+1.本题考查数列递推式,考查数列的通项与求和,确定数列{b n }为等比数列是解题的关键.18.答案:(1)证明:取AC 的中点M ,连接C 1M ,FM ,在△ABC 中,FM//AB ,而FM ⊄面ABE ,∴FM//平面ABE , 在矩形ACC 1A 1中,E ,M 都是中点, ∴C 1M//AE ,而C 1M ⊄平面ABE ,∴C 1M//平面ABE , ∵C 1M ∩FM =M , ∴平面FC 1M ⊄平面ABE , ∵C 1F ⊂平面FC 1M , ∴C 1F//平面ABE ,(2)取B 1C 1的中点H ,连接EH , 则EH//AB ,且EH =12AB =√3FM , ∵AB ⊥平面BB 1C 1C , ∴EH ⊥平面BB 1C 1C , ∵P 是BE 的中点,∴V P−B 1C 1F =12V E−B 1C 1F =12×13⋅S △B 1C 1F ⋅EH =12×13×2×√3=√33.解析:(1)根据线面平行的判定定理即可证明:C 1F//平面ABE ; (2)根据三棱锥的体积公式即可求三棱锥P −B 1C 1F 的体积.本题主要考查线面平行的判定以及空间几何体的体积的计算,根据相应的判定定理以及三棱锥的体积公式是解决本题的关键.19.答案:解:(Ⅰ)t −=16(8+8.2+8.4+8.6+8.8+9)=8.5,y −=16(90+84+83+80+75+68)=80,b ̂=∑t i 6i=1y i −6t −y−∑t i 26i=1−6t−2=−20,a ̂=y −−b ̂x −=250,∴回归方程为y =−20t +250;(Ⅱ)在y =−20t +250中,取t =10,可得y =50.∴当单价t 为10元时,预测该产品的销量为50件.解析:(Ⅰ)由已知表格中的数据求得b ^与a ^的值,则线性回归方程可求; (Ⅱ)在(Ⅰ)中求得的回归方程中,取t =10求得y 值得答案. 本题考查线性回归方程的求法,考查计算能力,是基础题.20.答案:解:(1)设c 为椭圆的半焦距,依题意,有:{2a +2c =6a =2c ,解得{a =2c =1,∴b 2=a 2−c 2=3. 故椭圆E 的方程为:x 24+y 23=1.(2)解:由AC ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0⇒AC ⊥BD ,又k AC =√3,则k BD =−√33. 则AC :y =√3(x +1),BD :y =−√33(x +1).联立{x 24+y 23=1y =√3(x +1),得5x 2+8x =0,∴x =0或x =−85, ∴|AC|=√1+(√3)2|0−(−85)|=165.联立{x 24+y 23=1y =−√33(x +1),得13x 2+8x −32=0,∴x =−4±12√313, ∴|BD|=√33)−4+12√313−−4−12√313|=4813.∴S ABCD =12|AC|×|BD|=12×165×4813=38465,故四边形ABCD 面积为38465.解析:(1)由题意列关于a ,c 的方程组,求得a ,c 的值,结合隐含条件求得b ,则椭圆方程可求; (2)由已知向量等式可得AC ⊥BD ,又k AC =√3,则k BD =−√33.分别写出AC 、BD 所在直线方程,联立直线方程与椭圆方程,可得|AC|、|BD|的值,代入四边形面积公式得答案.本题考查椭圆标准方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.答案:解:(1)f′(x)=1x(x+1)−lnax (x+1)2=1+1x−lnax (x+1)2,由f′(1)=2−lna 4=12,解得a =1.(2)∵a =1,∴f(x)=lnx x+1,∴由题得:b ≥2+lnx x+1(x >0)恒成立,设g(x)=2+lnx x+1,则g′(x)=1x−lnx−1(x+1)2,再设ℎ(x)=1x−lnx−1(x+1)2,则ℎ′(x)=−x+1x 2<0,∴ℎ(x)在(0,+∞)上递减, 又ℎ(1)=0,∴当x ∈(0,1)时,ℎ(x)>0,即g′(x)>0,∴g(x)在(0,1)上为增函数; 当x ∈(1,+∞)时,ℎ(x)<0,即g′(x)<0,∴g(x)在(1,+∞)上为减函数; ∴g(x)max =g(1)=1,∴只需b ≥g(x)max =1,即b ≥1, ∴b 的最小值b min =1.解析:(1)求出原函数的导函数,得到函数在x =1处的导数,由导数值等于12,求得实数a 的值; (2)由题得:b ≥2+lnx x+1(x >0)恒成立,构造g(x)=2+lnx x+1,求出g(x)max =1,即可求实数b 的最小值.本题考查了利用导数研究函数在某点处的切线方程,考查函数的最值,正确分离参数是关键,是中档题.22.答案:解:(1)曲线C :{x =−3+4cosθ,y =4+4sinθ(θ为参数),∴(x +3)2+(y −4)2=16.直线l 2:cosθ−2sinθ=4ρ,即ρcosθ−2ρsinθ=4, ∴x −2y =4,即x −2y −4=0. (2)∵直线l 1:kx −y +k =0, 即y =k(x +1),∴直线l 1:{x =−1+tcosα,y =tsinα(t 为参数).代入曲线C :(x +3)2+(y −4)2=16,得t 2+4t(cosα−2sinα)+4=0. 设点M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=4(2sinα−cosα),t 1t 2=4.设点Q 对应的参数为t 3.将l 1:{x =−1+tcosα,y =tsinα(t 为参数)代入直线l 2:x −2y −4=0, 得t 3=5cosα−2sinα.∴|AP|·|AQ|=|t 1+t 22||t 3|=2|2sinα−cosα||5cosα−2sinα|=10.解析:(1)消去θ可得(x +3)2+(y −4)2=16.直线l 2即ρcosθ−2ρsinθ=4,可得x −2y =4; (2)直线l 1:{x =−1+tcosα,y =tsinα(t 为参数).代入曲线C 得t 2+4t(cosα−2sinα)+4=0.设点M ,N 对应的参数分别为t 1,t 2,根据几何意义及根与系数的关系求解.23.答案:解:(1)f(x)=|x|,则f(x −1)+f(x +2)=|x −1|+|x +2| ={2x +1,x >13,−2≤x ≤1−2x −1,x <−2. 因为f(x −1)+f(x +2)<4,可得{2x +1<4x >1或−2≤x ≤1或{−2x −1<4x <−2,所以−52<x <32,所以不等式的解集A ={x|−52<x <32}; (2)由(1)知m =1,则a +b +c =1, 又a ,b ,c 均为正实数,1−a a ·1−b b ·1−cc =b +c a ·a +c b ·a +bc≥2√bca·2√acb·2√ab c=8,当且仅当a =b =a =13时等号成立. 所以1−a a⋅1−b b⋅1−c c≥8.解析:本题考查了绝对值不等式的解法和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.(1)根据f(x)=|x|,可得f(x −1)+f(x +2)={2x +1,x >13,−2≤x ≤1−2x −1,x <−2,然后由f(x −1)+f(x +2)<4,分别解不等式即可;(2)根据(1)可得a+b+c=m=1,然后利用基本不等式可知1−aa ·1−bb·1−cc≥2√bca·2√acb·2√abc=8,从而证明1−aa ·1−bb·1−cc≥8,注意等号成立的条件.。
(附加15套模拟试卷)江苏省无锡市2020届高三第一次模拟考试数学试卷(Word版,含答案)

江苏省无锡市2020届高三第一次模拟考试数学试卷(Word 版,含答案)注意事项:1. 本试卷共160分,考试时间120分钟.2. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 一、 填空题:本大题共14小题,每小题5分,共70分. 1. 设集合A ={x|x>0},B ={x|-2<x<1},则A ∩B =________.2. 设复数z 满足(1+i)z =1-3i(其中i 是虚数单位),则z 的实部为________.3. 有A ,B ,C 三所学校,学生人数的比例为3∶4∶5,现用分层抽样的方法招募n 名志愿者,若在A 学校恰好选出9名志愿者,那么n =________.错误!4. 史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为________.5. 执行如图所示的伪代码,则输出x 的值为________.6. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,2x -y ≤0,x ≥0,则z =x +y 的取值范围是________.7. 在四边形ABCD 中,已知AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a ,b 是不共线的向量,则四边形ABCD 的形状是________.8. 以双曲线x 25-y 24=1的右焦点为焦点的抛物线的标准方程是________.9. 已知一个圆锥的轴截面是等边三角形,侧面积为6π,则该圆锥的体积等于________.10. 设公差不为零的等差数列{a n }满足a 3=7,且a 1-1,a 2-1,a 4-1成等比数列,则a 10=________. 11. 已知θ是第四象限角,则cos θ=45,那么sin ⎝⎛⎭⎫θ+π4cos (2θ-6π)的值为________.12. 已知直线y =a(x +2)(a>0)与函数y =|cos x|的图象恰有四个公共点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),D(x 4,y 4),其中x 1<x 2<x 3<x 4,则x 4+1tan x 4=________. 13. 已知点P 在圆M :(x -a)2+(y -a +2)2=1上,A ,B 为圆C :x 2+(y -4)2=4上两动点,且AB =23,则PA →·PB →的最小值是________.14. 在锐角三角形ABC 中,已知2sin 2A +sin 2B =2sin 2C ,则1tan A +1tan B +1tan C的最小值为________. 二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤. 15. (本小题满分14分)在△ABC 中,设a ,b ,c 分别是角A ,B ,C 的对边,已知向量m =(a ,sin C -sin B),n =(b +c ,sin A +sin B),且m ∥n.(1) 求角C 的大小;(2) 若c =3,求△ABC 周长的取值范围.16. (本小题满分14分)在四棱锥PABCD中,锐角三角形PAD所在平面垂直于平面PAB,AB⊥AD,AB⊥BC.(1) 求证:BC∥平面PAD;(2) 求证:平面PAD⊥平面ABCD.(第16题)17. (本小题满分14分)十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元,扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈,1≤x≤9)从事水果包装、销售.经测算,剩下从事水果种植农户的年纯收入每户平均比上一年提高x20,而从事包装、销售农户的年纯收入每户平均为⎝⎛⎭⎫3-14x万元.(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728)(1) 至2020年底,为使从事水果种植农户能实现脱贫(每户年均纯收入不低于1万6千元),至少抽出多少户从事包装、销售工作?(2) 至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.18. (本小题满分16分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为32,且过点⎝⎛⎭⎫3,12,点P 在第四象限,A 为左顶点,B 为上顶点,PA 交y 轴于点C ,PB 交x 轴于点D. (1) 求椭圆C 的标准方程; (2) 求△PCD 面积的最大值.(第18题)19. (本小题满分16分)已知函数f(x)=e x -a2x 2-ax(a>0).(1) 当a =1时,求证:对于任意x>0,都有f(x)>0成立; (2) 若y =f(x)恰好在x =x 1和x =x 2两处取得极值,求证:x 1+x 22<ln a.20. (本小题满分16分)设等比数列{a n }的公比为q(q>0,q ≠1),前n 项和为S n ,且2a 1a 3=a 4,数列{b n }的前n 项和T n 满足2T n =n(b n -1),n ∈N *,b 2=1.(1) 求数列{a n },{b n }的通项公式;(2) 是否存在常数t ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列?请说明理由;(3) 设c n =1b n +4,对于任意给定的正整数k(k ≥2),是否存在正整数l ,m(k<l<m),使得c k ,c l ,c m成等差数列?若存在,求出l ,m(用k 表示);若不存在,请说明理由.数学附加题 注意事项:1. 附加题供选修物理的考生使用.2. 本试卷共40分,考试时间30分钟.3. 答题前,考生务必将自己的学校、班级、姓名写在密封线内. 说明:解答时应写出必要的文字说明、证明过程或演算步骤. 21. (本小题满分10分)选修4-2:矩阵与变换 设旋转变换矩阵A =⎣⎢⎡⎦⎥⎤0-11 0,若⎣⎢⎡⎦⎥⎤ab 1 2·A =⎣⎢⎡⎦⎥⎤34c d ,求ad -bc 的值.22. (本小题满分10分)选修4-4 坐标系与参数方程自极点O 作射线与直线ρcos θ=3相交于点M ,在OM 上取一点P ,使OM·OP =12,若Q 为曲线⎩⎨⎧x =-1+22t ,y =2+22t(t 为参数)上一点,求PQ 的最小值.23. (本小题满分10分)在平面直角坐标系xOy 中,曲线C 上的动点M(x ,y)(x>0)到点F(2,0)的距离减去M 到直线x =-1的距离等于1.(1) 求曲线C 的方程;(2) 若直线y =k(x +2)与曲线C 交于A ,B 两点,求证:直线FA 与直线FB 的倾斜角互补.24. (本小题满分10分)已知数列{a n }满足a 1=23,1a n -1=2-a n -1a n -1-1(n ≥2).(1) 求数列{a n }的通项公式;(2 )设数列{a n }的前n 项和为S n ,用数学归纳法证明:S n <n +12-ln.数学参考答案及评分标准1. {x|0<x<1}2. -13. 364. 13 5. 256. [0,3]7. 梯形8. y 2=12x9. 3π 10. 21 11.5214 12. -2 13. 19-122 14. 13215. (1) 由m ∥n 及m =(a ,sin C -sin B),n =(b +c ,sin A +sin B), 得a(sin A +sin B)-(b +c)(sin C -sin B)=0,(2分) 由正弦定理,得a ⎝⎛⎭⎫a 2R +b 2R -(b +c)⎝⎛⎭⎫c 2R -b2R =0, 所以a 2+ab -(c 2-b 2)=0,得c 2=a 2+b 2+ab , 由余弦定理,得c 2=a 2+b 2-2abcos C , 所以a 2+b 2+ab =a 2+b 2-2abcos C , 所以ab =-2abcos C ,(5分) 因为ab>0,所以cos C =-12,又因为C ∈(0,π),所以C =2π3.(7分) (2) 在△ABC 中,由余弦定理,得c 2=a 2+b 2-2abcos C , 所以a 2+b 2-2abcos 2π3=9,即(a +b)2-ab =9,(9分)所以ab =(a +b)2-9≤⎝⎛⎭⎫a +b 22,所以3(a +b )24≤9,即(a +b)2≤12,所以a +b ≤23,(12分)又因为a +b>c ,所以6<a +b +c ≤23+3,即周长l 满足6<l ≤3+23, 所以△ABC 周长的取值范围是(6,3+23].(14分) 16. (1) 因为AB ⊥AD ,AB ⊥BC ,且A ,B ,C ,D 共面, 所以AD ∥BC.(3分)(第16题)因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以BC ∥平面PAD.(5分)(2) 如图,过点D 作DH ⊥PA 于点H ,因为△PAD 是锐角三角形,所以H 与A 不重合.(7分)因为平面PAD ⊥平面PAB ,平面PAD ∩平面PAB =PA ,DH ⊂平面PAD , 所以DH ⊥平面PAD.(9分)因为AB ⊂平面PAB ,所以DH ⊥AB.(11分)因为AB ⊥AD ,AD ∩DH =D ,AD ,DH ⊂平面PAD , 所以AB ⊥平面PAD.因为AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD.(14分) 17. (1) 由题意得1×⎝⎛⎭⎫1+x203≥1.6, 因为5x<100-5x ,所以x<10且x ∈.(2分) 因为y =⎝⎛⎭⎫1+x203在x ∈[1,9]上单调递增, 由数据知,1.153≈1.521<1.6,1.23=1.728>1.6, 所以x20≥0.2,得x ≥4.(5分)又x <10且x ∈,故x =4,5,6,7,8,9. 答:至少抽取20户从事包装、销售工作.(7分)(2) 假设该村户均纯收入能达到1.35万元,由题意得,不等式1100[5x ⎝⎛⎭⎫3-14x +⎝⎛⎭⎫1+x 20(100-5x)]≥1.35有正整数解,(8分)化简整理得3x 2-30x +70≤0,(10分) 所以-153≤x -5≤153.(11分) 因为3<15<4,且x ∈,所以-1≤x -5≤1,即4≤x ≤6. (13分)答:至2018年底,该村户均纯收入能达到1万3千5百元,此时从事包装、销售的农户数为20户,25户,30户.(14分)18. (1) 由题意得⎩⎨⎧3a 2+14b 2=1,c a =32,a 2=b 2+c 2,得a 2=4,b 2=1,(4分) 故椭圆C 的标准方程为x 24+y 2=1.(5分)(2) 由题意设l AP :y =k(x +2),-12<k<0,所以C(0,2k),由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,消去y 得(1+4k 2)x 2+16k 2x +16k 2-4=0,所以x A x P =16k 2-41+4k 2,由x A =-2得x P =2-8k 21+4k 2,故y P =k(x P +2)=4k 1+4k 2, 所以P ⎝ ⎛⎭⎪⎫2-8k 21+4k 2,4k 1+4k 2,(8分)设D(x 0,0),因为B(0,1),P ,B ,D 三点共线,所以k BD =k PB ,故1-x 0=4k1+4k 2-12-8k 21+4k 2,解得x D =2(1+2k )1-2k, 得D ⎝ ⎛⎭⎪⎫2(1+2k )1-2k ,0,(10分) 所以S △PCD =S △PAD -S △CAD =12×AD ×|y P -y C |=12⎣⎢⎡⎦⎥⎤2(1+2k )1-2k +2⎪⎪⎪⎪4k 1+4k 2-2k =4|k (1+2k )|1+4k 2,(12分)因为-12<k<0,所以S △PCD =-8k 2-4k 1+4k 2=-2+2×1-2k 1+4k 2,令t =1-2k ,1<t<2,所以2k =1-t , 所以g(t)=-2+2t 1+(1-t )2=-2+2t t 2-2t +2=-2+2t +2t-2≤-2+222-2=2-1,(14分) 当且仅当t =2时取等号,此时k =1-22,所以△PCD 面积的最大值为2-1.(16分)19. (1) 由f(x)=e x -12x 2-x ,则f′(x)=e x -x -1,令g(x)=f′(x),则g′(x)=e x -1,(3分)当x>0时,g′(x)>0,则f′(x)在(0,+∞)上单调递增, 故f′(x)>f′(0)=0,所以f(x)在(0,+∞)上单调递增,(5分) 进而f(x)>f(0)=1>0,即对任意x>0,都有f(x)>0.(6分) (2) f′(x)=e x -ax -a ,因为x 1,x 2为f(x)的两个极值点,所以⎩⎪⎨⎪⎧f′(x 1)=0,f′(x 2)=0,即⎩⎪⎨⎪⎧ex 1-ax 1-a =0,ex 2-ax 2-a =0.两式相减,得a =ex 1-ex 2x 1-x 2,(8分)则所证不等式等价于x 1+x 22<ln ex 1-ex 2x 1-x 2,即e x 1+x 22<ex 1-ex 2x 1-x 2,(10分)不妨设x 1>x 2,两边同时除以ex 2可得:e x 1-x 22<ex 1-x 2-1x 1-x 2,(12分)令t =x 1-x 2,t>0,所证不等式只需证明: e t 2<e t -1t⇔te t 2-e t +1<0.(14分)设φ(t)=te t 2-e t+1,则φ′(t)=-e t 2·⎣⎢⎡⎦⎥⎤e t2-⎝⎛⎭⎫t 2+1,因为e x ≥x +1,令x =t 2,可得e t2-⎝⎛⎭⎫t 2+1≥0,所以φ′(t)≤0,所以φ(t)在(0,+∞)上单调递减,φ(t)<φ(0)=0, 所以x 1+x 22<ln a .(16分) 20. (1) 因为2a 1a 3=a 4,所以2a 1·a 1q 2=a 1q 3, 所以a 1=q 2,所以a n =q 2q n -1=12q n .(2分)因为2T n =n(b n -1),n ∈N *,① 所以2T n +1=(n +1)(b n +1-1),n ∈N ,②②-①,得2T n +1-2T n =(n +1)b n +1-nb n -(n +1)+n ,n ∈N *, 所以2b n +1=(n +1)b n +1-nb n -(n +1)+n , 所以(n -1)b n +1=nb n +1,n ∈N *,③(4分) 所以nb n +2=(n +1)b n +1+1,n ∈N ,④④-③得nb n +2-(n -1)b n +1=(n +1)b n +1-nb n ,n ∈N *, 所以nb n +2+nb n =2nb n +1,n ∈N *,所以b n +2+b n =2b n +1, 所以b n +2-b n +1=b n +1-b n ,所以{b n }为等差数列. 因为n =1时b 1=-1,又b 2=1, 所以公差为2,所以b n =2n -3.(6分)(2) 由(1)得S n =q 2(1-q n )1-q ,所以S n +12t =q2(1-q n )1-q +12t =q n +t 2(q -1)+q 2(1-q )+12t ,要使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列,则通项必须满足指数型函数,即q 2(1-q )+12t=0,解得t =q -1q .(9分)此时S n +1+12t S n +12t =q n +22(q -1)q n +12(q -1)=q , 所以存在t =q -1q ,使得⎩⎨⎧⎭⎬⎫S n +12t 为等比数列.(10分) (3) c n =1b n +4=12n +1,设对于任意给定的正整数k(k ≥2),存在正整数l ,m(k<l<m),使得c k ,c l ,c m成等差数列,所以2c l =c k +c m ,所以22l +1=12k +1+12m +1.所以12m +1=22l +1-12k +1=4k -2l +1(2l +1)(2k +1). 所以m =2kl -k +2l4k -2l +1=(-4k +2l -1)(k +1)+(2k +1)24k -2l +1=-k -1+(2k +1)24k -2l +1.所以m +k +1=(2k +1)24k -2l +1.因为给定正整数k(k ≥2),所以4k -2l +1能整除(2k +1)2且4k -2l +1>0, 所以4k -2l +1=1或2k +1或(2k +1)2.(14分)若4k -2l +1=1,则l =2k ,m =4k 2+3k ,此时m -l =4k 2+k>0,满足(k<l<m); 若4k -2l +1=2k +1,则k =l ,矛盾(舍去);若4k -2l +1=(2k +1)2,则l =2k 2,此时m +k =0(舍去).综上,任意给定的正整数k(k ≥2),存在正整数l =2k ,m =4k 2+3k ,使得c k ,c l ,c m 成等差数列.(16分)数学附加题 参考答案及评分标准21. 因为A =⎣⎢⎡⎦⎥⎤0-110,所以⎣⎢⎡⎦⎥⎤a b 12⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤34c d ,得⎩⎪⎨⎪⎧b =3,-a =4,2=c ,-1=d ,(6分) 即a =-4,b =3,c =2,d =-1,(8分) 所以ad -bc =(-4)×(-1)-2×3=-2.(10分)22. 以极点O 为直角坐标原点,以极轴为x 轴的正半轴,建立直角坐标系,设P(ρ,θ),M(ρ′,θ), 因为OM·OP =12,所以ρρ′=12.因为ρ′cos θ=3,所以12ρcos θ=3,即ρ=4cos θ,(3分)化为直角坐标方程为x 2+y 2-4x =0, 即(x -2)2+y 2=4.(5分)由⎩⎨⎧x =-1+22t ,y =2+22t(t 为参数)得普通方程为x -y +3=0,(7分)所以PQ 的最小值为圆上的点到直线距离的最小值, 即PQ min =d -r =|2-0+3|2-2=522-2.(10分)23. (1) 由题意得(x -2)2+y 2-|x +1|=1,(2分)即(x -2)2+y 2=|x +1|+1. 因为x>0,所以x +1>0, 所以(x -2)2+y 2=x +2,两边平方,整理得曲线C 的方程为y 2=8x.(4分)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +2,得k 2x 2+(4k 2-8)x +4k 2=0,所以x 1x 2=4.(6分) 由k FA +k FB =y 1x 1-2+y 2x 2-2=k (x 1+2)x 1-2+k (x 2+2)x 2-2=k (x 1+2)(x 2-2)+k (x 1-2)(x 2+2)(x 1-2)(x 2-2)=2k (x 1x 2-4)(x 1-2)(x 2-2).(8分)将x 1x 2=4代入,得k FA +k FB =0,所以直线FA 和直线FB 的倾斜角互补.(10分) 24. (1) 因为n ≥2,由1a n -1=2-a n -1a n -1-1, 得1a n -1=1-a n -1a n -1-1+1a n -1-1, 所以1a n -1-1a n -1-1=-1,(1分) 所以⎩⎨⎧⎭⎬⎫1a n -1是首项为-3,公差为-1的等差数列,且1a n -1=-n -2,所以a n =n +1n +2.(3分) (2) 下面用数学归纳法证明:S n <n -ln ⎣⎡⎦⎤n +32+12. ①当n =1时,左边=S 1=a 1=23,右边=32-ln 2,因为e 3>16⇔3ln e>4ln 2⇔ln 2<34,32-ln 2>32-34=34>23, 所以命题成立;(5分)②假设当n =k(k ≥1,k ∈N *)时成立, 即S k <k -lnk +32+12, 则当n =k +1,S k +1=S k +a k +1<k -lnk +32+12+k +2k +3, 要证S k +1<(k +1)-ln (k +1)+32+12,只要证k -ln k +32+12+k +2k +3<(k +1)-ln (k +1)+32+12,只要证ln k +4k +3<1k +3,即证ln ⎝⎛⎭⎫1+1k +3<1k +3.(8分) 考查函数F(x)=ln(1+x)-x(x>0), 因为x>0,所以F′(x)=11+x -1=-x 1+x<0, 所以函数F(x)在(0,+∞)上为减函数, 所以F(x)<F(0)=0,即ln(1+x)<x ,所以ln ⎝⎛⎭⎫1+1k +3<1k +3,也就是说,当n =k +1时命题也成立. 综上所述,S n <n -ln n +32+12.(10分)高考模拟数学试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共21题,共150分。
2020年江苏省高考数学模拟试卷含答案解析

2020年江苏省高考数学模拟试卷一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=.2.已知复数,则z的共轭复数的模为.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.4.运行如图所示的伪代码,其结果为.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为.7.若函数是偶函数,则实数a的值为.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是.10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为.11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是.12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为.14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?2020年江苏省高考数学模拟试卷参考答案与试题解析一、填空题:本大题共14个小题,每小题5分,共计70分,请把答案直接填写在答题卡相应的位置上.1.已知U=R,集合A={x|﹣1<x<1},B={x|x2﹣2x<0},则A∩(∁U B)=(﹣1,0] .【考点】交、并、补集的混合运算.【分析】求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可【解答】解:由A={x|﹣1<x<1}=(﹣1,1),B={x|x2﹣2x<0}=(0,2),∴C u B=(﹣∞,0]∪[2,+∞),∴A∩∁U B=(﹣1,0],故答案为:(﹣1,0].2.已知复数,则z的共轭复数的模为.【考点】复数求模.【分析】根据复数与它的共轭复数的模相等,即可求出结果.【解答】解:复数,则z的共轭复数的模为||=|z|====.故答案为:.3.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是.【考点】等可能事件的概率.【分析】求出所有基本事件,两数之积为偶数的基本事件,即可求两数之积为偶数的概率.【解答】解:从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,基本事件共有4×4=16个,∵两数之积为偶数,∴两数中至少有一个是偶数,A中取偶数,B中有4种取法;A中取奇数,B中必须取偶数,故基本事件共有2×4+2×2=12个,∴两数之积为偶数的概率是=.故答案为:.4.运行如图所示的伪代码,其结果为.【考点】伪代码.【分析】根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,用裂项法即可求值得解.【解答】解:根据伪代码所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是累加并输出S=++…+的值,所以S=S=++…+=×(1﹣+﹣…+﹣)=(1﹣)=.故答案为:.5.在平面直角坐标系xOy中,与双曲线有相同渐近线,且一条准线方程为的双曲线的标准方程为﹣=1.【考点】双曲线的简单性质.【分析】求得已知双曲线的渐近线方程,设出所求双曲线的方程为﹣=1(a,b>0),求出渐近线方程和准线方程,由题意可得=,=,结合a,b,c的关系,解方程可得a,b,进而得到双曲线的方程.【解答】解:双曲线的渐近线为y=±x,设所求双曲线的方程为﹣=1(a,b>0),渐近线方程为y=±x,准线方程为y=±,由题意可得=,=,又a2+b2=c2,解得a=2,b=,即有所求双曲线的方程为﹣=1.故答案为:﹣=1.6.已知存在实数a,使得关于x的不等式恒成立,则a的最大值为﹣2.【考点】函数恒成立问题.【分析】由题意可得a≤f(x)的最小值,运用单调性,可得f(0)取得最小值,即可得到a的范围,进而得到a的最大值.【解答】解:由,可得0≤x≤4,由f(x)=﹣,其中y=在[0,4]递增,y=﹣在[0,4]递增,可得f(x)在[0,4]递增,可得f(0)取得最小值﹣2,可得a≤﹣2,即a的最大值为﹣2.故答案为:﹣2.7.若函数是偶函数,则实数a的值为﹣.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】由题意可得,f(﹣)=f(),从而可求得实数a的值.【解答】解:∵f(x)=asin(x+)+sin(x﹣)为偶函数,∴f(﹣x)=f(x),∴f(﹣)=f(),即﹣=a,∴a=﹣.故答案为:﹣.8.已知正五棱锥底面边长为2,底面正五边形中心到侧面斜高距离为3,斜高长为4,则此正五棱锥体积为20.【考点】棱柱、棱锥、棱台的体积.【分析】求出底面中心到边的距离,棱锥的高,然后求解棱锥的体积.【解答】解:设正五棱锥高为h,底面正五边形的角为108°,底面正五边形中心到边距离为:tan54°,h=,则此正五棱锥体积为:×=20.故答案为:20.9.已知函数,则不等式f(x2﹣2x)<f(3x﹣4)的解集是(1,3).【考点】分段函数的应用.【分析】判断f(x)在R上递增,由f(x2﹣2x)<f(3x﹣4),可得或,解不等式即可得到所求解集.【解答】解:当x<3时,f(x)=﹣x2+6x=﹣(x﹣3)2+9,即有f(x)递增;故f(x)在R上单调递增.由f(x2﹣2x)<f(3x﹣4),可得或,解得或,即为1<x≤或<x<3,即1<x<3.即有解集为(1,3).故答案为:(1,3).10.在△ABC中,AB=3,AC=4,N是AB的中点,边AC(含端点)上存在点M,使得BM⊥CN,则cosA的取值范围为[,1).【考点】余弦定理.【分析】设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.由于⊥,可得•=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).利用函数的单调性即可得出.【解答】解:设=t(0≤t≤1),=﹣=t﹣,=﹣=﹣.∴•=(t﹣)•(﹣)=﹣t2+(+1)•﹣2.∵⊥,∴•=﹣t2+(+1)•﹣2=0.化为:﹣16t+12(+1)cos∠BAC﹣=0,整理可得:cos∠BAC==(32﹣)=f(t),(0≤t≤1).由于f(t)是[0,1]是的单调递增函数,∴f(0)≤f(t)≤f(1),即:≤f(t)≤,即:≤cosA≤,∵A∈(0,π),∴cosA<1,∴cosA的取值范围是:[,1).故答案为:[,1).11.设不等式组表示的平面区域为D,若指数函数y=a x(a>0,a≠1)的图象上存在区域D上的点,则a的取值范围是(0,1)∪[3,+∞).【考点】简单线性规划的应用.【分析】由题意作平面区域,从而结合图象可知y=a x的图象过点(3,1)时为临界值a=3,从而解得.【解答】解:由题意作平面区域如下,,结合图象可知,y=a x的图象过点(3,1)时为临界值a=3,且当0<a<1时,一定成立;故答案为:(0,1)∪[3,+∞).12.已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是{a|a≤﹣4或a≥0} .【考点】利用导数研究函数的极值.【分析】函数f(x)=x2+2x+alnx在区间(0,1)内无极值点⇔函数f(x)在(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(01,)内恒成立.再利用导数的运算法则、分离参数法、函数的单调性即可得出.【解答】解:函数f(x)=x2+2x+alnx在区间(0,1)内无极值⇔函数f(x)=x2+2x+alnx 在区间(0,1)内单调⇔函数f′(x)≥0或f′(x)≤0a∈R)在(0,1)内恒成立.由f′(x)=2x+2≥0在(0,1)内恒成立⇔a≥(﹣2x﹣2x2)max,x∈(0,1).即a≥0,由f′(x)=2x+2≤0在(0,1)内恒成立⇔a≤(﹣2x﹣2x2)min,x∈(0,1).即a≤﹣4,故答案为:a≤﹣4或a≥0.故答案为:{a|a≤﹣4或a≥0}.13.若函数同时满足以下两个条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(﹣1,1),f(x)g(x)<0.则实数a的取值范围为(2,4).【考点】全称命题;特称命题.【分析】由①可得当x≤﹣1时,g(x)<0,根据②可得g(1)=a(1﹣a+3)>0,由此解得实数a的取值范围.【解答】解:∵已知函数,根据①∀x∈R,f(x)<0,或g(x)<0,即函数f(x)和函数g(x)不能同时取非负值.由f(x)≥0,求得x≤﹣1,即当x≤﹣1时,g(x)<0恒成立,故,解得:a>2;根据②∃x∈(﹣1,1),使f(x)•g(x)<0成立,∴g(1)=a(1﹣a+3)>0,解得:0<a<4,综上可得:a∈(2,4),故答案为:(2,4)14.若b m为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为64或65.【考点】数列递推式.【分析】由题意可得:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,则2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得d<4,d为正整数,得出d=1,2,3,分类讨论后求得满足条件的正整数A的值.【解答】解:依题意:,f(1)=A,f(2)=8A,f(5)=125A,设b1=t,即数列{a n}中,不超过A的项恰有t项,∴2t≤A<2t+1,同理:2t+d≤8A<2t+d+1,2t+2d≤125A<2t+2d+1,可得:2t≤A<2t+1,2t+d﹣3≤A<2t+d﹣2,,故max{}≤A<min{},由以下关系:2t+d﹣3<2t+1,,得d<4,∵d为正整数,∴d=1,2,3.当d=1时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=2时,max{}=max{}=2t,min{}=min{}=<2t,不合题意,舍去;当d=3时,max{}=max{}=2t,min{}=min{}=>2t,适合题意.此时2t≤A<,b1=t,b2=t+3,b5=t+6,∴t+3≤b3≤t+6.∵b3=10,∴4≤t≤7,∵t为整数,∴t=4,t=5,t=6或t=7.∵f(3)=27A,b3=10,∴210≤27A<211,∴≤A<.当t=4时,24≤A<,∴无解.当t=5时,25≤A<,∴无解.当t=6时,26≤A<,∴64≤A<.当t=7时,27≤A<,∴无解.则26≤A<.∵A∈N*,∴A=64或A=65.综上:A=64或65.故答案为:64或65.二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.已知角α终边逆时针旋转与单位圆交于点,且.(1)求的值,(2)求的值.【考点】三角函数的化简求值;任意角的三角函数的定义.【分析】(1)利用已知条件求出sin()与cos(),然后利用二倍角公式以及两角和的正弦函数化简求解即可.(2)求出正切函数的二倍角的值,利用两角和的正切函数化简求解即可.【解答】解:(1)角α终边逆时针旋转与单位圆交于点,可得sin()=,cos()=,sin(2)=2sin()cos()==,cos(2)=2×=.=sin(2﹣)=sin(2)cos﹣sin cos(2)==.(2)∵,∴tan(2α+2β)===.sin(2)=,cos(2)=.tan(2)=.tan(2α+2β)=tan[()+(2)]==,解得=.16.在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D 一个平面角.(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.【考点】直线与平面平行的判定;直线与平面垂直的判定.【分析】(1)由已知得PA⊥AB,PA⊥AD,从而BD⊥PA,由四边形ABCD是菱形,得AC ⊥BD,由此能证明BD⊥平面PAC.(2)由四边形ABCD是梯形,且平面PAB∩平面PCD=l,得CD与AB有交点P,从而直线l∩平面ABCD=P,由此得到直线l不能与平面ABCD平行.【解答】证明:(1)∵在四棱锥P﹣ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B﹣PA﹣D一个平面角,∴PA⊥AB,PA⊥AD,又AB∩AD=A,∴PA⊥平面ABCD,∵BD⊥PA,∵四边形ABCD是菱形,∴AC⊥BD,∵AC∩PA=A,∴BD⊥平面PAC.解:(2)直线l不能与平面ABCD平行.理由如下:∵四边形ABCD是梯形,且平面PAB∩平面PCD=l,∴CD与AB有交点P,∴P∈l,∴直线l∩平面ABCD=P,∴直线l不能与平面ABCD平行.17.在平面直角坐标系xOy中,已知P点到两定点D(﹣2,0),E(2,0)连线斜率之积为.(1)求证:动点P恒在一个定椭圆C上运动;(2)过的直线交椭圆C于A,B两点,过O的直线交椭圆C于M,N两点,若直线AB与直线MN斜率之和为零,求证:直线AM与直线BN斜率之和为定值.【考点】椭圆的简单性质.【分析】(1)设P(x,y),由题意可得k PD•k PE=﹣,运用直线的斜率公式,化简即可得到所求轨迹方程;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,设A(x1,y1),B(x2,y2),运用韦达定理,点满足直线方程,再由过O的直线x=﹣my交椭圆C于M,N两点,求得M,N的坐标,运用直线的斜率公式,化简整理,即可得到直线AM与直线BN斜率之和为定值0.【解答】解:(1)设P(x,y),由题意可得k PD•k PE=﹣,即有•=﹣,化为+=1;(2)设过F的直线为x=my+,代入椭圆方程x2+2y2=4,可得(2+m2)y2+2my﹣2=0,设A(x1,y1),B(x2,y2),即有y1+y2=﹣,y1y2=﹣,x1=my1+,x2=my2+,由题意可得,过O的直线x=﹣my交椭圆C于M,N两点,解得M(﹣,),N(,﹣),可得k AM+k BN=+,通分后的分子=x2y1﹣x2﹣y1+x1y2+x1+y2+=2my1y2+(y1+y2)+(x1﹣x2)+(y2﹣y1)+=﹣﹣+(y1﹣y2)+(y2﹣y1)+=0.即有直线AM与直线BN斜率之和为定值0.18.将一个半径为3分米,圆心角为α(α∈(0,2π))的扇形铁皮焊接成一个容积为V立方分米的圆锥形无盖容器(忽略损耗).(1)求V关于α的函数关系式;(2)当α为何值时,V取得最大值;(3)容积最大的圆锥形容器能否完全盖住桌面上一个半径为0.5分米的球?请说明理由.【考点】旋转体(圆柱、圆锥、圆台);基本不等式在最值问题中的应用.【分析】(1)根据面积得出圆锥的底面半径,利用勾股定理求出圆锥的高,代入体积公式即可;(2)利用基本不等式得出体积的最值及取得最值得条件;(3)求出圆锥内切球的半径,与0.5比较大小.【解答】解:(1)由题意知圆锥的母线l=3,设圆锥的底面半径为r,则2πr=3α,∴r=,∴圆锥的高h===.∴V==.(2)V==≤=2.当且仅当4π2﹣α2=即α=时,取等号.∴当α=时,体积V取得最大值.(3)当圆锥体积最大时,圆锥的底面半径r=.设圆锥轴截面△ABC的内切圆⊙O半径为R,如图所示,则OD=R,CD=CE=,AC=3,∴AE=,AD=3﹣.由△AOD∽△ACE得,∴,解得R=3≈0.8.∵0.8>0.5,∴容积最大的圆锥形容器能完全盖住桌面上一个半径为0.5分米的球.19.设首项为1的正项数列{a n}的前n项和为S n,且S n+1﹣3S n=1.(1)求证:数列{a n}为等比数列;(2)数列{a n}是否存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和?请说明理由;(3)设,试问是否存在正整数p,q(1<p<q)使b1,b p,b q成等差数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.【考点】数列的求和;等比关系的确定.=1作差可知a n+1=3a n(n≥2),进而可知数列{a n}【分析】(1)通过S n+1﹣3S n=1与S n﹣3S n﹣1是首项为1、公比为3的等比数列;(2)通过(1)可知a n=3n﹣1、S n=(3n﹣1),假设存在满足题意的项a k,则3k﹣1=S r+t﹣S t,进而化简可知不存在r满足3r﹣x﹣=2,进而可得结论;(3)通过(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,通过化简可知q=3q﹣p(2p﹣3p﹣1),利用当p≥3时2p﹣3p﹣1<0可知当p≥3时不满足题意,进而验证当p=2时是否满足题意即可.【解答】(1)证明:∵S n+1﹣3S n=1,=1,∴当n≥2时,S n﹣3S n﹣1两式相减得:a n+1=3a n,又∵S n+1﹣3S n=1,a1=1,∴a2=S2﹣S1=2a1+1=3满足上式,∴数列{a n}是首项为1、公比为3的等比数列;(2)解:结论:不存在满足题意的项a k;理由如下:由(1)可知a n=3n﹣1,S n==(3n﹣1),假设数列{a n}中存在一项a k,使得a k恰好可以表示为该数列中连续r(r∈N*,r≥2)项的和,则3k﹣1=S r+t﹣S t=(3r+t﹣1)﹣(3t﹣1)=(3r+t﹣3t)=•3t(3r﹣1),于是(3r﹣1)=3x(其中x为大于1的自然数),整理得:3r﹣x﹣=2,显然r无解,故假设不成立,于是不存在满足题意的项a k;(3)解:结论:存在唯一的数组(p,q)=(2,3)满足题意;理由如下:由(1)可知b n=,假设存在正整数p,q(1<p<q)使b1,b p,b q成等差数列,则2b p=b1+b q,即2=+,整理得:2p•3q﹣p=3q﹣1+q,∴q=2p•3q﹣p﹣3q﹣1=3q﹣p(2p﹣3p﹣1),∵当p≥3时2p﹣3p﹣1<0,∴当p≥3时不满足题意,当p=2时,2=+即为:=+,整理得:=,解得:q=3,综上所述,存在唯一的数组(p,q)=(2,3)满足题意.20.(1)若ax>lnx恒成立,求实数a的取值范围;(2)证明:∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.【考点】函数恒成立问题.【分析】(1)首先求出函数的导数,然后根据导数与单调区间的关系确定函数的单调区间,(2)先求出当直线和y=lnx相切时a的取值,然后进行讨论求解即可.【解答】解:(1)若ax>lnx恒成立,则a>,在x>0时恒成立,设h(x)=,则h′(x)==,由h′(x)>0得1﹣lnx>0,即lnx<1,得0<x<e,由h′(x)<0得1﹣lnx<0,即lnx>1,得x>e,即当x=e时,函数h(x)取得极大值同时也是最大值h(e)==.即a>.(2)设f(x)=lnx,g(x)=ax,(x>0),则f′(x)=,当g(x)与f(x)相切时,设切点为(m,lnm),则切线斜率k=,则过原点且与f(x)相切的切线方程为y﹣lnm=(x﹣m)=x﹣1,即y=x﹣1+lnm,∵g(x)=ax,∴,得m=e,a=.即当a>时,ax>lnx恒成立.当a=时,当x0≥时,要使ax>lnx恒成立.得当x>x0时,ax>lnx恒成立.当0<a<时,f(x)与g(x)有两个不同的交点,不妨设较大的根为x1,当x0≥x1时,当x>x0时,ax>lnx恒成立.∴∀a>0,∃x0∈R,使得当x>x0时,ax>lnx恒成立.三.数学Ⅱ附加题部分【理科】[选做题](本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤)A[选修4-1几何证明选讲](本小题满分10分)21.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交BA的延长线于点C,若DB=DC,求证:CA=AO.【考点】与圆有关的比例线段.【分析】连结OD、AD,证出△ADB≌△ODC,得到AB=CO,从而证出结论.【解答】证明:如图示:,连结OD、AD,∵AB是圆O的直径,∴∠ADB=90°,AB=2AO,∵DC是⊙O的切线,∴∠CDO=90°,∵DB=DC,∴∠B=∠C,∴△ADB≌△ODC,∴AB=CO,即2OA=OA+CA,∴CA=AO.B[选修4-2:矩阵与变换](本小题满分10分)22.已知矩阵A=,B=,求矩阵A﹣1B.【考点】几种特殊的矩阵变换.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C[选修4-4:坐标系与参数方程](本小题满分0分)23.在极坐标系中,设直线l过点,且直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点,求实数a的值.【考点】简单曲线的极坐标方程.【分析】求出点A,B的直角坐标,利用点斜式方程得出直线l的直角坐标方程,再求出曲线C的普通方程,求出圆心和半径,利用d=r构建出a的方程,解出a的值.【解答】解:由直线l过点,可得A,B的直角坐标为A(,),B(0,3),直线AB的斜率k==,即有直线l的方程为:y﹣3=x,即y=x+3,由曲线C:ρ=asinθ(a>0),可得曲线C的普通方程为x2+y2﹣ay=0,即有圆心C(0,),r==,直线l与曲线C:ρ=asinθ(a>0)有且只有一个公共点即直线和圆相切,可得,解得a=2或﹣6,由a>0,可得a=2.D[选修4-5:不等式选讲](本小题满分0分)24.求函数的最大值.【考点】函数的最值及其几何意义.【分析】根据条件利用平方关系结合一元二次函数的性质进行求解即可.【解答】解:由得,即5≤x≤7,由平方得y2=x﹣5+7﹣x+2=2+2,∵5≤x≤7,∴当x=6时,函数y2=2+2取得最大值为y2=2+2=4,当x=5或7时,函数y2=2+2取得最小值为y2=2,即2≤y2≤4,则≤y≤2,即函数的最大值为2.四.[必做题](第25题、第26题,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤)25.在四棱锥P﹣ABCD中,直线AP,AB,AD两两相互垂直,且AD∥BC,AP=AB=AD=2BC.(1)求异面直线PC与BD所成角的余弦值;(2)求钝二面角B﹣PC﹣D的大小.【考点】二面角的平面角及求法;异面直线及其所成的角.【分析】(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PC与BD所成角的余弦值.(2)求出平面PBC的法向量和平面PCD的法向量,利用向量法能求出钝二面角B﹣PC﹣D的大小.【解答】解:(1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,设AP=AB=AD=2BC=2,则P(0,0,2),C(2,1,0),B(2,0,0),D(0,2,0),=(2,1,﹣2),=(﹣2,2,0),设异面直线PC与BD所成角为θ,则cosθ===.∴异面直线PC与BD所成角的余弦值为.(2)=(2,0,﹣2),=(2,1,﹣2),=(0,2,﹣2),设平面PBC的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PCD的法向量=(a,b,c),则,取b=1,得=(1,2,2),设钝二面角B﹣PC﹣D的平面角为θ,cosθ=﹣|cos<>|=﹣||=﹣,∴θ=135°,∴钝二面角B﹣PC﹣D的大小为135°.26.设数列{a n}按三角形进行排列,如图,第一层一个数a1,第二层两个数a2和a3,第三层三个数a4,a5和a6,以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3,a2=a4+a5,a3=a5+a6,….(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?【考点】归纳推理.【分析】(1)若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得a7,a10中一个为1,一个为0,进而得到答案;(2)若第十一层十一个数为0或1,a1为5的倍数,则a56,a66中一个为1,一个为0,且a57+a58+…+a65=2,或a57+a58+…+a65=7,进而得到答案.【解答】解:(1)若第二层的两个数为0或1,则a1=a2+a3,由a1为奇数,可得第二层的两个数有2种不同的取法;若第三层的三个数为0或1,则a1=a4+2a5+a6,由a1为奇数,可得第三层的三个数有4种不同的取法;若第四层四个数为0或1,则a1=a7+2a8+2a9+a10,由a1为奇数,可得第四层的四个数有8种不同的取法;(2)根据(1)中结论,若第十一层十一个数为0或1,则a1=a56+2(a57+a58+…+a65)+a66,若a1为5的倍数,则a56,a66中一个为1,一个为0,a57+a58+…+a65=2,或a57+a58+…+a65=7,即a57,a58,…,a65中有2个1或2个0,则第十一层十一个数共有=144种不同取法.2020年8月12日。
2020年江苏省无锡市天一中学高二数学理模拟试卷含解析

2020年江苏省无锡市天一中学高二数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设,,,则a、b、c的大小关系是()A. B. C. D.参考答案:C【分析】利用指数函数和对数函数的单调性比较、、三个数与和的大小关系,进而可得出、、三个数的大小关系.【详解】对数函数为上的减函数,则,即;指数函数为上的增函数,则;对数函数为上的增函数,则.因此,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.2. 如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有()种.A.72 B.60 C.48 D.24参考答案:A【考点】D8:排列、组合的实际应用.【分析】根据题意,分2种情况讨论:若选3种颜色时,就是②④同色,③⑤同色;若4种颜色全用,只能②④或③⑤用一种颜色,其它不相同;求出每种情况的着色方法数目,由加法原理求解即可.【解答】解:由题意,分2种情况讨论:(1)、选用3种颜色时,必须是②④同色,③⑤同色,与①进行全排列,涂色方法有C43?A33=24种(2)、4色全用时涂色方法:是②④同色或③⑤同色,有2种情况,涂色方法有C21?A44=48种所以不同的着色方法共有48+24=72种;故选:A.3. 在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高为A. B. C. D.参考答案:A解:如图所示,在Rt△ABC中,AB=200,∠BAC=300,所以,在△ADC中,由正弦定理得,,故选择A.4. 下列数据中,拟合效果最好的回归直线方程,其对应的相关指数为()A. 0.27B. 0.85C. 0.96D. 0.5参考答案:C越大,拟合效果越好,故选C。
2020届江苏省高三高考全真模拟(一)数学试题(含答案解析)

6.为了践行“健康中国”理念更好地开展群众健身活动,某社区对居民的健身情况进行调查,统计数据显示,每天健身时间(单位:min)在 , , , , 内的共有600人,绘制成如图所示的频率分布直方图,则这600名居民中每天健身时间在 内的人数为_____________.
2020届江苏省高三高考全真模拟(一)数学试题
学校:___________姓名:___________班级:___________考号:___________
一、填空题
1.已知集合 , ,则 _____________.
2.已知复数 (i为数单位)为纯虚数,则实数a的值为_____________.
(3)设 ,数列 为数列 的“偏差数列”, 、 且 ,若 ,( )对任意的 恒成立,求 的最小值.
21.已知矩阵 ,对应的变换把点 变成点 .
(1)求a,b的特征值;
(2)求矩阵M的特征值.
22.已知极坐标系的极点与平面直角坐标系的原点重合,极轴与x轴的正半轴重合.若曲线 的极坐标方程为 、直线 的极坐标方程为 .
(1)求函数 的极值;
(2)若函数 有2个不同的零点,求实数a的取值范围;
(3)若对任意的 , 恒成立,求实数a的最大值.
20.若数列 , 满足 ,则称数列 是数列 的“偏差数列”.
(1)若常数列 是数列 的“偏差数列”,试判断数列 是否一定为等差数列,并说明理由;
(2)若无穷数列 是各项均为正整数的等比数列,且 ,数列 为数列 的“偏差数列”,数列 为递减数列,求数列 的通项公式;
7.如图,在四棱锥 中,四边形 是矩形, 平面 ,E为PD的中点,已知 , , ,则三棱锥 的体积为_____________.
2019-2020学年江苏省无锡市锡山区天一中学高三(上)10月调研数学试卷

2019-2020学年江苏省无锡市锡山区天一中学高三(上)10月调研数学试卷试题数:20.满分:1601.(填空题.5分)设全集U={1.2.3.4.5.6}.集合A={3.4}.B={2.4.5}.则(∁U A)∪B=___ .2.(填空题.5分)若复数z满足条件(3-i)z=5(其中i为虚数单位).则|z|=___ .3.(填空题.5分)执行如图所示的程序框图.则输出s的值为___ .4.(填空题.5分)某地区教育主管部门为了对该地区模拟考试成绩进行分析.随机抽取了150分到450分之间的1000名学生的成绩.并根据这1000名学生的成绩画出样本的频率分布直方图(如图).则成绩在[250.400)内的学生共有___ 人.5.(填空题.5分)口袋中有形状和大小完全相同的4个球.球的编号分别为1.2.3.4.若从袋中一次随机摸出2个球.则摸出的2个球的编号之和大于4的概率为___ .6.(填空题.5分)已知f(x)=2x+a2x 为奇函数. g(x)=log2(2x+1)−12bx−1为偶函数.则f(ab)=___ .7.(填空题.5分)若函数f(x)=sin(ωx+π6)(ω>0)图象的两条相邻的对称轴之间的距离为π2 .且该函数图象关于点(x0.0)成中心对称. x0∈[0,π2] .则x0=___ .8.(填空题.5分)在等差数列{a n}中.S n为前n项和.已知a5+a7+a10=15.S15=45.则公差d的值为___ .9.(填空题.5分)设甲、乙两个圆柱的底面积分别为S1.S2.体积分别为V1.V2.若它们的侧面积相等.且S1S2 = 94.则V1V2的值是 ___ .10.(填空题.5分)向量a⃗,b⃗⃗均为非零向量. (a⃗+2b⃗⃗)⊥a⃗,(b⃗⃗+2a⃗)⊥b⃗⃗ .则a⃗与b⃗⃗的夹角为___ .11.(填空题.5分)已知α∈(0,π2),cos(α+π3)=13.则cos(2α+π6) =___ .12.(填空题.5分)已知定义在(0.+∞)上的可导函数f(x)的导函数为f'(x).满足f(x)<x•f'(x).且f(1)=0.则关于x的不等式f(x)<0的解集为___ .13.(填空题.5分)如图.A.B.C是直线l上的三点.P是直线l外一点.已知AB= 12BC=1 .∠CPB=90°.tan ∠APB=43.则PA⃗⃗⃗⃗⃗⃗•PC⃗⃗⃗⃗⃗⃗ =___ .14.(填空题.5分)已知实数x.y>0.则(2x+1)(y+1)2x2+5y2+7的最大值为___ .15.(问答题.14分)设向量a⃗=(sinx,√3cosx),b⃗⃗=(−1,1),c⃗=(1,1).(其中x∈[0.π])(1)若(a⃗+b⃗⃗)∥c⃗ .求实数x的值;(2)若a⃗•b⃗⃗=12 .求函数sin(x+π6)的值.16.(问答题.14分)如图.已知A.B.C.D四点共面.且CD=1.BC=2.AB=4.∠ABC=120°.cos∠BDC=2√77.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.17.(问答题.14分)在如图所示的空间几何体中.四边形ABCD为正方形.四边形ABEF为直角梯形.已知AF || BE.AB⊥BE.平面ABEF⊥平面ABCD.AB=BE=2AF.点P为棱DE上一点.且DP=2PE.(1)求证:AC || 平面DEF;(2)求证:BP⊥平面DEF.18.(问答题.16分)政府部门为加快实现塌陷区域整治和资源枯竭城市转型发展.对一片半径为1km的圆形采煤塌陷区进行生态修复和景观建设.将其开发为湿地景区.一期工程对塌陷区水面及周边整治已结束.二期工程是进行湖面观光曲桥建设.设计方案如下:在圆形水面上建设由线段AB、AP、BP、CD组成的环湖观光曲桥.其中A、B、P是湖面观光曲桥的出入口.出入口A建在湖面东西方向的正东的湖边.出入口B建在湖面南北方向方向的正北的湖边.出入口P 建在圆形湖面南偏西的某处湖边.C、D分别在东西和南北方向的轴线上.满足P、C、B共线.P、D、A共线.(1)求曲桥AB、BC、CD、DA围成的水域的面积;(2)试确定P点的位置.使得曲桥CD、DP、PC围成的水域面积最大.19.(问答题.16分)对于无穷数列{a n}与{b n}.记A={x|x=a n.n∈N*}.B={x|x=b n.n∈N*}.若同时满足条件:① {a n}.{b n}均单调递增;② A∩B=∅且A∪B=N*.则称{a n}与{b n}是无穷互补数列.(1)若a n=2n-1.b n=4n-2.判断{a n}与{b n}是否为无穷互补数列.并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列.求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列.{a n}为等差数列且a16=36.求{a n}与{b n}的通项公式.20.(问答题.16分)已知函数f(x)=a2x2+x+1e x−1.(1)若a=2.求函数f(x)的极小值;(2)若f(x)在x∈[0.+∞)的最小值为0.求实数a的取值范围;(3)证明:当a≥1时.证明不等式f(x)≤x+1对x∈R恒成立.2019-2020学年江苏省无锡市锡山区天一中学高三(上)10月调研数学试卷参考答案与试题解析试题数:20.满分:1601.(填空题.5分)设全集U={1.2.3.4.5.6}.集合A={3.4}.B={2.4.5}.则(∁U A)∪B=___ .【正确答案】:[1]{1.2.4.5.6}【解析】:进行并集和补集的运算即可.【解答】:解:∵U={1.2.3.4.5.6}.A={3.4}.B={2.4.5}.∴∁U A={1.2.5.6}.(∁U A)∪B={1.2.4.5.6}.故答案为:{1.2.4.5.6}.【点评】:考查列举法的定义.以及并集和补集的运算.2.(填空题.5分)若复数z满足条件(3-i)z=5(其中i为虚数单位).则|z|=___ .【正确答案】:[1] √102【解析】:把已知等式变形.再由复数代数形式的乘除运算化简.然后利用复数模的计算公式求解.【解答】:解:由(3-i)z=5.得z= 53−i =5(3+i)(3−i)(3+i)=32+12i .∴|z|= √(32)2+(12)2=√102.故答案为:√102.【点评】:本题考查复数代数形式的乘除运算.考查复数模的求法.是基础题.3.(填空题.5分)执行如图所示的程序框图.则输出s的值为___ .【正确答案】:[1]20【解析】:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值.模拟程序的运行过程.分析循环中各变量值的变化情况.可得答案.【解答】:解:第一次满足循环的条件.执行循环体后.S=5.a=4;第二次满足循环的条件.执行循环体后.S=20.a=3;第三次不满足循环的条件.不执行循环体.故输出S值为20.故选答案为:20.【点评】:本题考查了程序框图的应用问题.解题时应模拟程序框图的运行过程.以便得出正确的结论.是基础题4.(填空题.5分)某地区教育主管部门为了对该地区模拟考试成绩进行分析.随机抽取了150分到450分之间的1000名学生的成绩.并根据这1000名学生的成绩画出样本的频率分布直方图(如图).则成绩在[250.400)内的学生共有___ 人.【正确答案】:[1]750【解析】:由样本的频率分布直方图求出a.从而成绩在[250.400)内的频率为0.75.由此能求出成绩在[250.400)内的学生人数.【解答】:解:由样本的频率分布直方图得:(0.001+0.001+0.004+a+0.005+0.003)×50=1.解得a=0.006.∴成绩在[250.400)内的频率为(0.004+0.006+0.005)×50=0.75.∴成绩在[250.400)内的学生共有1000×0.75=750.故答案为:750.【点评】:本题考查频数的求法.考查频率分布直方图等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.5.(填空题.5分)口袋中有形状和大小完全相同的4个球.球的编号分别为1.2.3.4.若从袋中一次随机摸出2个球.则摸出的2个球的编号之和大于4的概率为___ .【正确答案】:[1] 23【解析】:从袋中一次随机摸出2个球.基本事件总数n= C42 =6.利用列举法求出摸出的2个球的编号之和大于4包含的基本事件个数.由此能求出摸出的2个球的编号之和大于4的概率.【解答】:解:口袋中有形状和大小完全相同的4个球.球的编号分别为1.2.3.4.从袋中一次随机摸出2个球.基本事件总数n= C42 =6.摸出的2个球的编号之和大于4包含的基本事件有:(1.4).(2.3).(2.4).(3.4).共4个.∴摸出的2个球的编号之和大于4的概率为p= 46=23.故答案为:23.【点评】:本题考查概率的求法.考查古典概型、列举法等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.6.(填空题.5分)已知f(x)=2x+a2x 为奇函数. g(x)=log2(2x+1)−12bx−1为偶函数.则f(ab)=___ .【正确答案】:[1] −32【解析】:由f(x)=2x+a2x为奇函数.可得f(0)=1+a=0.可求a.然后由g(x)为偶函数.结合g(-x)=g(x).可求b.然后代入即可求解.【解答】:解:由f(x)=2x+a2x为奇函数.可得f(0)=1+a=0.∴a=-1.∵ g(x)=log2(2x+1)−12bx−1为偶函数.∴g(-x)=g(x).∴ log2(2x+1)−12bx−1=log2(2−x+1)+12bx−1 .整理可得.2bx=2x. ∴b=1.∴f(ab)=f(-1)= 2−1−12−1 =- 32故答案为:- 32.【点评】:本题主要考查了利用函数的奇偶性求解函数解析式及求解函数值.属于基础知识的灵活应用.7.(填空题.5分)若函数f(x)=sin(ωx+π6)(ω>0)图象的两条相邻的对称轴之间的距离为π2 .且该函数图象关于点(x0.0)成中心对称. x0∈[0,π2] .则x0=___ .【正确答案】:[1] 5π12【解析】:利用两角和的正弦公式化简f(x).然后由f(x0)=0求得[0. π2]内的x0的值.【解答】:解:∵函数f(x)=sin(ωx+π6)(ω>0)图象的两条相邻的对称轴之间的距离为π2.∴ 2πω=π.∴ω=2∴f(x)=sin(2x+ π6).∵f(x)的图象关于点(x0.0)成中心对称.∴f(x0)=0.即sin(2x0+ π6)=0.∴2x0+ π6=kπ.∴x0= kπ2 - π12.k∈Z.∵x0∈[0. π2].∴x0= 5π12.故答案为:5π12.【点评】:本题考查两角和与差的正弦函数.考查了正弦函数的对称中心的求法.属于基本知识的考查.8.(填空题.5分)在等差数列{a n}中.S n为前n项和.已知a5+a7+a10=15.S15=45.则公差d的值为___ .【正确答案】:[1]-3【解析】:将a5+a7+a10=15.S15=45.用基本量a1和d表示出来.消去a1即可求d.【解答】:解:根据题意.a5+a7+a10=15.所以3a1+19d=15 ① .又S15=45=15a8=45.所以a8=a1+7d=3 ② .联立① ② 得d=-3.故答案为:-3.【点评】:本题考查了等差数列的基本量的运算.属于基础题.9.(填空题.5分)设甲、乙两个圆柱的底面积分别为S1.S2.体积分别为V1.V2.若它们的侧面积相等.且S1S2 = 94.则V1V2的值是 ___ .【正确答案】:[1] 32【解析】:设出两个圆柱的底面半径与高.通过侧面积相等.推出高的比.然后求解体积的比.【解答】:解:设两个圆柱的底面半径分别为R.r;高分别为H.h;∵ S1 S2 = 94.∴ R r =32.它们的侧面积相等. 2πRH2πrℎ=1∴ H ℎ=23.∴ V1 V2 = πR2Hπr2ℎ= (32)2•23= 32.故答案为:32.【点评】:本题考查柱体体积公式以及侧面积公式的直接应用.是基础题目.10.(填空题.5分)向量a⃗,b⃗⃗均为非零向量. (a⃗+2b⃗⃗)⊥a⃗,(b⃗⃗+2a⃗)⊥b⃗⃗ .则a⃗与b⃗⃗的夹角为___ .【正确答案】:[1] 2π3【解析】:由平面向量垂直时数量积为0.列方程求出a⃗、b⃗⃗的夹角余弦值.从而求出向量a⃗,b⃗⃗的夹角.【解答】:解:由(a⃗ +2 b⃗⃗)⊥ a⃗ .得(a⃗ +2 b⃗⃗)• a⃗ = a⃗2 +2 a⃗• b⃗⃗ =0.∴ |a⃗|2 +2| a⃗ |×| b⃗⃗|×cosθ=0;… ①又(b⃗⃗ +2 a⃗)⊥ b⃗⃗ .得(b⃗⃗ +2 a⃗)• b⃗⃗ = b⃗⃗2 +2 a⃗• b⃗⃗ =0.∴ |b⃗⃗|2 +2| a⃗ |×| b⃗⃗|×cosθ=0;… ②又向量a⃗,b⃗⃗均为非零向量.则| a⃗ |=| b⃗⃗ |.且cosθ=- 12.由θ∈[0.π].得θ= 2π3.即a⃗与b⃗⃗的夹角为2π3.故答案为:2π3.【点评】:本题考查了平面向量的数量积与夹角计算问题.是基础题.11.(填空题.5分)已知α∈(0,π2),cos(α+π3)=13.则cos(2α+π6) =___ .【正确答案】:[1] 4√29【解析】:由已知利用诱导公式可求sin(α- π6).根据同角三角函数基本关系式可求cos(α- π6)的值.进而根据诱导公式.二倍角的正弦函数公式化简所求即可求解.【解答】:解:∵ α∈(0,π2),cos(α+π3)=13.∴sin[ π2 -(α+π3)]=sin(π6-α)= 13.可得sin(α- π6)=- 13.∵α- π6∈(- π6. π3).∴cos(α- π6)= √1−sin2(α−π6) = 2√23.∴ cos(2α+π6) =sin[ π2-(2α+ π6)]=sin(π3-2α)=-sin(2α- π3)=-sin2(α- π6)=-2sin(α- π6)cos(α- π6)=-2×(- 13)× 2√23= 4√29.故答案为:4√29.【点评】:本题主要考查了诱导公式.同角三角函数基本关系式.二倍角的正弦函数公式在三角函数化简求值中的应用.考查了计算能力和转化思想.属于基础题.12.(填空题.5分)已知定义在(0.+∞)上的可导函数f(x)的导函数为f'(x).满足f(x)<x•f'(x).且f(1)=0.则关于x的不等式f(x)<0的解集为___ .【正确答案】:[1](0.1)【解析】:构造函数g(x)= f(x)x.利用函数的导数判断函数的单调性.然后转化不等式f(x)<0.求解即可得到答案.【解答】:解:函数f(x)的定义域为x>0.xf'(x)>f(x).令g(x)= f(x)x.g′(x)= xf′(x)−f(x)x2>0.所以函数g(x)在(0.+∞)上为增函数.∵f(1)=0.关于x的不等式f(x)<0.f(x)x<0 .可得g(x)<g(1).解得0<x<1.故答案为:(0.1).【点评】:本题主要考查函数的单调性与其导函数之间的关系.考查了学生的计算能力.属基础题.13.(填空题.5分)如图.A.B.C是直线l上的三点.P是直线l外一点.已知AB= 12BC=1 .∠CPB=90°.tan ∠APB=43.则PA⃗⃗⃗⃗⃗⃗•PC⃗⃗⃗⃗⃗⃗ =___ .【正确答案】:[1] −3217【解析】:设∠PBC=θ.利用三角函数的定义以及余弦定理.以及向量数量积的公式进行计算即可.【解答】:解:设∠PBC=θ.∵tan ∠APB =43 .∴cos∠APB= 35 .sin∠APB= 45 .则由AB= 12 BC=1.可得|PC|=2sinθ.|PB|=2cosθ.|PA|=sin (π-θ) •1sin∠APB = 54 sinθ. 且|PA|2=|AB|2+|PB|2-2|PB||AB|cos (π-θ)=1+4cos 2θ+4cos 2θ=1+8cos 2θ. ∴ 2516 sin 2θ=1+8cos 2θ得sin 2θ= 1617 .则 PA ⃗⃗⃗⃗⃗⃗ •PC ⃗⃗⃗⃗⃗⃗ =| PA ⃗⃗⃗⃗⃗⃗ || PC ⃗⃗⃗⃗⃗⃗ |cos∠APC= 54 sinθ•2sinθcos (90°+∠APB )= 52sin 2θ(-sin∠APB )=- 52×1617×45 =- 3217 .故答案为:- 3217 .【点评】:本题主要考查向量数量积的应用.结合三角函数的定义以及余弦定理建立方程是解决本题的关键.14.(填空题.5分)已知实数x.y >0.则 (2x+1)(y+1)2x 2+5y 2+7 的最大值为___ . 【正确答案】:[1] 12【解析】:构造新的不等式.引入参数t. (2x+1)(y+1)2x 2+5y 2+7+t = 2tx+2(y+1)x+5ty 2+y+7t+12x 2+5y 2+7.然后令分子等于0.△=0.即(10t 2-1)y 2+2(t-1)y+14t 2+2t-1=0.再令△=0.t 2(2t+1)(14t-5)=0解得t=0或t=- 12 或t= 514 .进而求解.【解答】:解:构造新的不等式.引入参数t. (2x+1)(y+1)2x 2+5y 2+7+t = 2tx 2+2(y+1)x+5ty 2+y+7t+12x 2+5y 2+7 . 令分子等于0.△=0.即(10t 2-1)y 2+2(t-1)y+14t 2+2t-1=0. 再令△=0.t 2(2t+1)(14t-5)=0解得t=0或t=- 12 或t= 514 . ① (2x+1)(y+1)2x 2+5y 2+7 - 12 =−2x 2+4(y+1)x−5y 2−5+2y 2(2x 2+5y 2+7) = −2(x−y−1)2−3(y−1)22(2x 2+5y 2+7)≤0. 当且仅当 {x −y −1=0y −1=0 即 {x =2y =1 时等号成立;② (2x+1)(y+1)2x 2+5y 2+7 + 514 =10x 2+28(y+1)x+25y 2+14y+4914(2x 2+5y 2+7) = 2(5x+7y+7)2+3(3y−7)270(2x 2+5y 2+7)≥0. 当且仅当 {5x +7y +7=03y −7=0 即 {x =−143y =73 时等号成立;综上.(2x+1)(y+1)2x 2+5y 2+7最大值为 12.故答案为: 12【点评】:考查转化思想.不等式成立的条件.15.(问答题.14分)设向量a⃗=(sinx,√3cosx),b⃗⃗=(−1,1),c⃗=(1,1).(其中x∈[0.π])(1)若(a⃗+b⃗⃗)∥c⃗ .求实数x的值;(2)若a⃗•b⃗⃗=12 .求函数sin(x+π6)的值.【正确答案】:【解析】:(1)利用(a⃗+b⃗⃗)∥c⃗ .列出方程即可求实数x的值;(2)由已知条件a⃗•b⃗⃗=12和辅助角公式得到sin(x+2π3)=14.然后由同角三角函数关系来求sin(x+π6)的值.【解答】:解:(1)∵ (a⃗+b⃗⃗)∥c⃗⇒(sinx−1)−(√3cosx+1)=0 .∴ sinx−√3cosx=2⇒2(12sinx−√32cosx)=2⇒sin(x−π3)=1 .又x∈[0,π]⇒x−π3∈[−π3,2π3] .∴ x−π3=π2⇒x=5π6.(2)∵ a⃗•b⃗⃗=−sinx+√3cosx=12⇒2(−12sinx+√32cosx)=12.∴ sin(x+2π3)=14.∴ sin(x+π6)=sin((x+2π3)−π2)=−cos(x+2π3).又x∈[0.π]且sin(x+2π3)=14>0⇒x+2π3∈(2π3,π) .∴ cos(x+2π3)=−√154即sin(x+π6)=√154.【点评】:本题考查向量的共线与数量积的运算.三角函数的恒等变换应用.基本知识的考查.16.(问答题.14分)如图.已知A.B.C.D四点共面.且CD=1.BC=2.AB=4.∠ABC=120°.cos∠BDC=2√77.(Ⅰ)求sin∠DBC;(Ⅱ)求AD.【正确答案】:【解析】:(Ⅰ)利用已知及同角三角函数基本关系式可求sin∠BDC=√217.进而利用正弦定理即可求得sin∠DBC的值.(Ⅱ)在△BDC中.由余弦定理可求DB的值.利用同角三角函数基本关系式可求cos∠DBC=5√714.进而利用两角差的余弦函数公式可求cos∠ABD的值.在△ABD中.由余弦定理可求AD的值.【解答】:(本小题满分13分)解:(Ⅰ)在△BDC中.因为cos∠BDC=2√77.所以sin∠BDC=√217.由正弦定理DCsin∠DBC =BCsin∠BDC得. sin∠DBC=DC•sin∠BDCBC=√2114.…(5分)(Ⅱ)在△BDC中.由BC2=DC2+DB2-2DC•DBcos∠BDC. 得. 4=1+DB2−2DB2√77.所以DB2−4√77DB−3=0.解得DB=√7或DB=−3√77(舍).由已知得∠DBC是锐角.又sin∠DBC=√2114.所以cos∠DBC=5√714.所以cos∠ABD=cos(120°-∠DBC)=cos120°•cos∠DBC+sin120°•sin∠DBC= −12•5√714+√32•√2114= −√714.在△ABD中.因为AD2=AB2+BD2-2AB•BDcos∠ABD= 16+7−2×4×√7×(−√714)=27 .所以AD=3√3.…(13分)【点评】:本题主要考查了同角三角函数基本关系式.正弦定理.余弦定理.两角差的余弦函数公式在解三角形中的综合应用.考查了计算能力和转化思想.数形结合思想.属于中档题.17.(问答题.14分)在如图所示的空间几何体中.四边形ABCD为正方形.四边形ABEF为直角梯形.已知AF || BE.AB⊥BE.平面ABEF⊥平面ABCD.AB=BE=2AF.点P为棱DE上一点.且DP=2PE.(1)求证:AC || 平面DEF;(2)求证:BP⊥平面DEF.【正确答案】:【解析】:(1)连结BD.设AC∩BD=O.推导出O为BD中点.设G为DE的中点.连结OG.FG.推导出四边形AOGF是平行四边形.由此能证明AC || 平面DEF.(2)设AF=x.则AB=BE=2x.推导出△PEB∽△BED.BP⊥DE.PF⊥PB.由此能证明PB⊥平面DEF.【解答】:证明:(1)连结BD.设AC∩BD=O.∵四边形ABCD为正方形.∴O为BD中点.设G为DE的中点.连结OG.FG.BE.则OG || BE.且OG= 12∵AF || BE.且AF= 12BE.∴AF || OG.OG=AF.∴四边形AOGF是平行四边形.∴AO || FG.∴AC || FG.∵AC⊄平面DEF.FG⊂平面DEF.∴AC || 平面DEF.(2)设AF=x.则AB=BE=2x.Rt△BDE中.DE2=BD2+BE2=12x2.∴DE=2 √3x .∵DP=2PE.∴PE= 2√33x.∵ PE BE =√33. BEDE= √33.∴ PEBE=BEDE.∵∠BEP=∠DEB.∴△PEB∽△BED. ∴∠BPE=∠DBE=90°.∴BP⊥DE.在△DEF中.cos∠FED= EF 2+DE2−DF2 2•EF•DE= √155.解得PF= √213x.∵BF= √5 x.∴PF2+PB2= 219x2+249x2 =5x2=BF2.∴PF⊥PB.∵PF∩DE=P.∴PB⊥平面DEF.【点评】:本题考查线面平行、线面垂直的证明.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是中档题.18.(问答题.16分)政府部门为加快实现塌陷区域整治和资源枯竭城市转型发展.对一片半径为1km的圆形采煤塌陷区进行生态修复和景观建设.将其开发为湿地景区.一期工程对塌陷区水面及周边整治已结束.二期工程是进行湖面观光曲桥建设.设计方案如下:在圆形水面上建设由线段AB、AP、BP、CD组成的环湖观光曲桥.其中A、B、P是湖面观光曲桥的出入口.出入口A建在湖面东西方向的正东的湖边.出入口B建在湖面南北方向方向的正北的湖边.出入口P 建在圆形湖面南偏西的某处湖边.C、D分别在东西和南北方向的轴线上.满足P、C、B共线.P、D、A共线.(1)求曲桥AB、BC、CD、DA围成的水域的面积;(2)试确定P点的位置.使得曲桥CD、DP、PC围成的水域面积最大.【正确答案】:【解析】:(1)以圆形湖面的东西方向的轴线为x轴.南北方向的轴线为y轴建立直角坐标系.由题意可得.圆O的方程为x2+y2=1.A(1.0).B(0.1).设P(m.n)(m<0.n<0).则m2+n2=1.求出D.C的坐标.代入求出面积S;(2)由S△PAB=12AB•d=12•|m+n−1| .设m=cosα.n=sinα(π<α<3π2).利用三角函数的性质.求出最值即可.【解答】:解:以圆形湖面的东西方向的轴线为x轴.南北方向的轴线为y轴建立直角坐标系. 由题意可得.圆O的方程为x2+y2=1.A(1.0).B(0.1).设P(m.n)(m<0.n<0).则m2+n2=1.(1)由拱桥AB.BC.CD.DA所围成的水面的面积为S.直线PA的方程为y=nm−1(x−1) .令x=0.得D(0. n1−m) .直线PB的方程为y=1−n−m x+1 .令y=0.得C(m1−n,0).则S= 12AC•BD = 12|1−m1−n||1−n1−m|=(1−m−n)22(1−m)(1−n)= 1−2m−2n+m2+n2+2mn2(1−m)(1−n)=1 .所以曲桥AB、BC、CD、DA围成的水域的面积为1km2;(2)由(1)曲桥AB、BC、CD、DA围成的水域的面积为1km2.要使CD.DP.PC所围成的面积最大.只需要确定P的位置使得△PAB的面积最大.易知.直线AB的方程为x+y-1=0.AB= √2 km.点P(m.n)到直线AB的距离d=√2.所以S△PAB=12AB•d=12•|m+n−1| .因为m<0.n<0.所以S△PAB=1−m−n2.设m=cosα.n=sinα(π<α<3π2).所以S△PAB=1−cosα−sinα2 = 1−√2sin(α+π4)2.当且仅当α=5π4时.S△PAB面积最大为1+√22km2 .此时又CD.DP.PC所围成的水面的面积最大.且最大值为1+√22−1=√2−12(km2) .所以当入口P位于湖面的正西南方向时.CD.DP.PC所围成的水面的面积最大.【点评】:考查直线与圆的位置关系.三角函数求最值.解三角形等.难度较大.综合性高.19.(问答题.16分)对于无穷数列{a n}与{b n}.记A={x|x=a n.n∈N*}.B={x|x=b n.n∈N*}.若同时满足条件:① {a n}.{b n}均单调递增;② A∩B=∅且A∪B=N*.则称{a n}与{b n}是无穷互补数列.(1)若a n=2n-1.b n=4n-2.判断{a n}与{b n}是否为无穷互补数列.并说明理由;(2)若a n=2n且{a n}与{b n}是无穷互补数列.求数量{b n}的前16项的和;(3)若{a n}与{b n}是无穷互补数列.{a n}为等差数列且a16=36.求{a n}与{b n}的通项公式.【正确答案】:【解析】:(1){a n}与{b n}不是无穷互补数列.由4∉A.4∉B.4∉A∪B=N*.即可判断;(2)由a n=2n.可得a4=16.a5=32.再由新定义可得b16=16+4=20.运用等差数列的求和公式.计算即可得到所求和;(3)运用等差数列的通项公式.结合首项大于等于1.可得d=1或2.讨论d=1.2求得通项公式.结合新定义.即可得到所求数列的通项公式.【解答】:解:(1){a n }与{b n }不是无穷互补数列. 理由:由a n =2n-1.b n =4n-2.可得4∉A .4∉B .即有4∉A∪B=N *.即有{a n }与{b n }不是无穷互补数列; (2)由a n =2n .可得a 4=16.a 5=32.由{a n }与{b n }是无穷互补数列.可得b 16=16+4=20. 即有数列{b n }的前16项的和为 (1+2+3+…+20)-(2+4+8+16)=1+202×20-30=180; (3)设{a n }为公差为d (d 为正整数)的等差数列且a 16=36.则a 1+15d=36. 由a 1=36-15d≥1.可得d=1或2.若d=1.则a 1=21.a n =n+20.b n =n (1≤n≤20). 与{a n }与{b n }是无穷互补数列矛盾.舍去; 若d=2.则a 1=6.a n =2n+4.b n = {n ,n ≤52n −5,n >5.综上可得.a n =2n+4.b n = {n ,n ≤52n −5,n >5 .【点评】:本题考查新定义的理解和运用.考查等差数列的通项公式和求和公式的运用.考查运算和推理能力.属于中档题.20.(问答题.16分)已知函数 f (x )=a2x 2+x+1e x−1 .(1)若a=2.求函数f (x )的极小值;(2)若f (x )在x∈[0.+∞)的最小值为0.求实数a 的取值范围; (3)证明:当a≥1时.证明不等式f (x )≤x+1对x∈R 恒成立.【正确答案】:【解析】:(1)求出 f′(x ).求出函数的单调区间.得出极值;(2)分a 的符号讨论函数f (x )的单调性.从而得出取最值的情况.得到参数a 的取值范围; (3)用分析法当x≥0时.要证明 e x −a 2x 2e |x|≤x +1 成立;构造函数g (x )= a 2x 2+x+1e x.讨论函数g(x)的单调性.得出最值从而证明.同理去证明x<0的情况.【解答】:解:(1)因为a=2.所以f(x)=x2+x+1e x −1 .∴ f′(x)=(2e x−1)xe x.所以 f(x)极小值=f(0)=0;(2)f'(x)= x(a−1e x) .∵x≥0.则e x≥1∴ 0<1e x≤1 .① 若a≤0.则当x>0时.f'(x)<0.f(x)为减函数.而f(0)=0.从而f'(x)<0.不符合题意.舍去;② 若0<a<1.则当x<-lna时.f'(x)<0.f(x)为减函数.而f(0)=0.从而f'(x)<0.不符合题意.舍去;③ 若a≥1.则当x<0时.f'(x)>0.f(x)为增函数.而f(0)=0.从而当x≥0时.f(x)≥0.综上:实数a的取值范围是[1.+∞);(3)由题可知f(x)≤x+1即为e x−a2x2e|x|≤x+1;① 当x≥0时.要证明e x−a2x2e|x|≤x+1成立;只需证e x≤a2x2e x+x+1 .即证a2x2+x+1e x≥1 ① ;令g(x)= a2x2+x+1e x.得g′(x)=ax+e x−(x+1)e x(e x)2=ax−xe x;整理得g′(x)=x(a−1e x)∵x≥0 时. 1e x≤1结合a≥1.得g′(x)≥0;∴g(x)在[0.+∞)上是增函数.故g(x)≥g(0)=1;所以① 得证;② 当x<0时.要证明e x−a2x2e|x|≤x+1成立;只需证e x≤a2x2e−x+x+1 .即证a2x2e−2x+(x+1)e−x≥1 ② ;令m(x)= a2x2e−2x+(x+1)e−x .得m′(x)=-xe-2x[e x+a(x-1)];而 h(x)=e x+a(x-1)在x≤0时为增函数;故h(x)≤h(0)=1-a≤0.从而m′(x)≤0;∴m(x)在x≤0时为减函数.则m(x)≥m(0)=1.从而② 式得证;故当a≥1时.不等式f(x)≤x+1对x∈R恒成立.【点评】:本题考查函数的极值.根据最值求参数范围.构造函数利用导数证明不等式.考查分类讨论的思想和构造法.属于难题.。
【附加15套高考模拟试卷】江苏省无锡市2020届高三第一次模拟考试数学试卷含答案

江苏省无锡市2020届高三第一次模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,x y满足约束条件340,{340,80,x yx yx y--≥-+≤+-≤则1yx+的取值范围是A.12 [,]23B.15[,]24C.25[,]34D.5[,)4+∞2.已知函数2()lnf x x ax=-,若()f x恰有两个不同的零点,则a的取值范围为()A.1,2e⎛⎫+∞⎪⎝⎭B.1,2e⎡⎫+∞⎪⎢⎣⎭C.10,2e⎛⎫⎪⎝⎭D.1,2e⎛⎫-∞⎪⎝⎭3.已知数列都是公差为1的等差数列,其首项分别为,,>,且,,设,则数列的前100项和等于()A.4950 B.5250 C.5350 D.103004.已知()sin()(0,0,)2f x A x B Aπωϕωϕ=++>><的图象如图所示,则函数()f x的对称中心可以为()A.,06π⎛⎫⎪⎝⎭B.,16π⎛⎫⎪⎝⎭C.,06π⎛⎫- ⎪⎝⎭D.,16π⎛⎫- ⎪⎝⎭5.设锐角三角形ABC的内角,,A B C所对的边分别为,,a b c,若2,2a B A==,则b的取值范围为()A.(0,4)B.(2,23)C.(22,3)D.(22,4)6.边长为4的正三角形ABC中,点D在边AB上,12AD DB=u u u v u u u v,M是BC的中点,则AM CDu u u u v u u u v⋅=()A.16B.123C.83-D.8-7.下列类比推理中,得到的结论正确的是A.把()na b+与()nab类比,则有()n n na b a b+=+B .把长方体与长方形类比,则有长方体的对角线平方等于其长宽高的平方和C .把()log a x y +与()a b c +类比,则有()log log log a a a x y x y +=+D .向量a ,b 的数量积运算与实数,a b 的运算ab a b=⋅类比,则有⋅=⋅a b a b8.已知曲线1C 是以原点O 为中心,12F F 为焦点的椭圆,曲线2C 是以O 为顶点、2F 为焦点的抛物线,A 是曲线1C 与2C 的交点,且21AF F ∠为钝角,若1275,22AF AF ==,则12AF F ∆的面积是() A .3 B .2C .6D .49.设等差数列{}n a 的前n 项和为n S 若2a ,8a 是方程2430x x --=的两根,则9S =( ) A .18 B .19 C .20 D .3610.已知复数(i)(1i)z a =+-(i 为虚数单位)在复平面内对应的点在直线2y x =上,则实数a 的值为( )A .0B .1-C .1D .13-11.已知三棱锥中,为中点,平面,,,则下列说法中错误的是( )A .若为的外心,则B .若为等边三角形,则C .当时,与平面所成角的范围为D .当时,为平面内动点,若平面,则在三角形内的轨迹长度为12.已知△ABC 的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,2b =,则△ABC 面积的最大值是 A .1B 3C .2D .4二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考数学第一次模拟试卷一、填空题(共14个小题)1.已知集合A={x|0<x<2},B={x|﹣1<x<1},则A∩B=.2.复数z=(i为虚数单位)的虚部为.3.函数的定义域为.4.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的两张,则抽取的两张卡片编号之和是偶数的概率为.5.在平面直角坐标系xOy中,若双曲线(a>0,b>0)的离心率为,则该双曲线的渐近线方程为.6.某种圆柱形的如罐的容积为128π个立方单位,当它的底面半径和高的比值为时,可使得所用材料最省.7.在平面直角坐标系xOy中,双曲线的右准线与渐近线的交点在抛物线y2=2px 上,则实数p的值为.8.已知α是第二象限角,且,tan(α+β)=﹣2,则tanβ=.9.已知等差数列{a n}的前n项和为S n,若S3=6,S6=﹣8,则S9=.10.在平面直角坐标系xOy中,已知直线l:y=与函数f(x)=sin(ωx+)(ω>0)的图象在y轴右侧的公共点从左到右依次为A1,A2…,若点A1的横坐标为1.则点A2的横坐标为.11.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若e2=3e1,则e1=.12.如图,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则=.13.已知函数f(x)是定义在R上的奇函数,其图象关于直线x=1对称,当x∈(0,1]时,f(x)=﹣e ax(其中e是自然对数的底数),若f(2020﹣ln2)=8,则实数a的值为.14.已知函数(其中e为自然对数的底数),若关于x的方程f2(x)﹣3a|f(x)|+2a2=0恰有5个相异的实根,则实数a的取值范围为.二、解答题15.如图,在斜三棱柱ABC﹣A1B1C1中,已知△ABC为正三角形,D,E分别是AC,CC1的中点,平面AA1C1C⊥平面ABC,A1E⊥AC1.(1)求证:DE∥平面AB1C1;(2)求证:A1E⊥平面BDE.16.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)若a=5,,求b的值;(2)若,求tan2C的值.17.截至1月30日12时,湖北省累计接收揭赠物资615.43万件,包括医用防护服2.6万套,N95口罩47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.某运输队接到给武汉运送物资的任务,该运输队有8辆載重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?18.在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.19.设函数f(x)=2x2+alnx,(a∈R)(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+m,求实数a,m的值(Ⅱ)若f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,求实数a的取值范围;(Ⅲ)关于x的方程f(x)+2cos x=5能否有三个不同的实根?证明你的结论20.已知f(x)=x3+ax2+bx,a,b∈R.(1)若b=1,且函数f(x)在区间(﹣1,)上单调递增,求实数a的范围;(2)若函数f(x)有两个极值点x1,x2,x1<x2,且存在x0满足x1+2x0=3x2,令函数g (x)=f(x)﹣f(x0),试判断g(x)零点的个数并证明你的结论.[选做题]本题包括A、B、C三小题,请选定其中两题.[选修4-2:矩阵与变换]21.已知矩阵M=的一个特征值为4,求矩阵M的逆矩阵M﹣1.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的非负半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段AB的长.[选修4-5:不等式选讲」23.已知x1,x2,x3∈(0,+∞),且满足x1+x2+x3=3x1x2x3,证明:x1x2+x2x3+x3x1≥3.[必做题]第22题、第23题,每题10分,共计20分.24.如图,在平面直角坐标系xOy中,已知抛物线:C:y2=2px(p>0)的焦点F在直线x+y﹣1=0上,平行于x轴的两条直线l1,l2分别交抛物线线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段AB上,P是DE的中点,证明:AP∥EF.25.在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.参考答案一、填空题1.已知集合A={x|0<x<2},B={x|﹣1<x<1},则A∩B={x|0<x<1}.解:∵A={x|0<x<2},B={x|﹣1<x<1},∴A∩B={x|0<x<1}.故答案为:{x|0<x<1}.2.复数z=(i为虚数单位)的虚部为1.解:z==i+1的虚部为1.故答案为:1.3.函数的定义域为[4,+∞)..解:函数f(x)=有意义,只需log2x﹣2≥0,且x>0,解得x≥4.则定义域为[4,+∞).故答案为:[4,+∞).4.在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的两张,则抽取的两张卡片编号之和是偶数的概率为.解:在编号为1,2,3,4,5且大小和形状均相同的五张卡片中,一次随机抽取其中的两张,基本事件总数为n==10,抽取的两张卡片编号之和是偶数包含的基本事件个数:m==4,则抽取的两张卡片编号之和是偶数的概率为p=.故答案为:.5.在平面直角坐标系xOy中,若双曲线(a>0,b>0)的离心率为,则该双曲线的渐近线方程为.解:因为双曲线(a>0,b>0)的离心率为,可得=,所以=,所以渐近线方程为y=±x.故答案为:y=±x.6.某种圆柱形的如罐的容积为128π个立方单位,当它的底面半径和高的比值为时,可使得所用材料最省.解:如图所示,设圆柱的高为h,底面半径为r.由题意,128π=πr2•h,∴S=2πr2+2πr•h==≥3.当且仅当,即当r=4时取等号.此时h==8.∴它的底面半径和高的比值为.故答案为:.7.在平面直角坐标系xOy中,双曲线的右准线与渐近线的交点在抛物线y2=2px 上,则实数p的值为.解:双曲线的右准线x=,渐近线y=x,双曲线的右准线与渐近线的交点(,),交点在抛物线y2=2px上,可得:=3p,解得p=.故答案为:.8.已知α是第二象限角,且,tan(α+β)=﹣2,则tanβ=﹣.解:∵α是第二象限角,且sinα=,∴cosα=﹣=﹣,tanα=﹣,∵tan(α+β)===﹣2;∴tanβ=﹣.故答案为:﹣.9.已知等差数列{a n}的前n项和为S n,若S3=6,S6=﹣8,则S9=﹣42.解:由题意可得:2×(﹣8﹣6)=6+S9﹣(﹣8),解得S9=﹣42.故答案为:﹣42.10.在平面直角坐标系xOy中,已知直线l:y=与函数f(x)=sin(ωx+)(ω>0)的图象在y轴右侧的公共点从左到右依次为A1,A2…,若点A1的横坐标为1.则点A2的横坐标为3.解:因为点A1的横坐标为1,即当x=1时,f(x)=sin(ω+)=,所以ω+=2kπ+或ω+=2kπ+(k∈Z),又直线l:y=与函数f(x)=sin(ωx+)(ω>0)的图象在y轴右侧的公共点从左到右依次为A1,A2…,所以ω+=,故ω=,所以:函数的关系式为f(x)=sin().当x2=3时,f(3)=sin()=,即点A2的横坐标为3,(3,)为二函数的图象的第二个公共点.故答案为:3.11.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若e2=3e1,则e1=.解:如图,由椭圆定义及勾股定理得,,可得=b12,∵e1=,∴a1=,∴b12=a12﹣c2=c2(),同理可得=b22,∵e2=,∴a2=,∴b22=c2﹣a22=c2(1﹣),∴c2(﹣1)=c2(1﹣),即,∵e2=3e1,∴e1=.故答案为:.12.如图,在△ABC中,AB=AC=2,,,AE的延长线交BC边于点F,若,则=.解:作DG∥AF交BC于G;∴,∴FE=DG;BF=FG;①∵,∴DG=AF;FG=GC;②联立①②可得EF=AF;AE=AF;BF=BC;∵=(+)•=﹣[+(﹣)]•()=﹣(+)•()=﹣[﹣﹣]=﹣[×22﹣•﹣×22]∴=;则=•=×()•=×(•+)=×(×+×22)=;故答案为:.13.已知函数f(x)是定义在R上的奇函数,其图象关于直线x=1对称,当x∈(0,1]时,f(x)=﹣e ax(其中e是自然对数的底数),若f(2020﹣ln2)=8,则实数a的值为3.解:根据题意,f(x)的图象关于x=1对称,所以f(1+x)=f(1﹣x)又由f(x)是R上的奇函数,所以f(x+1)=﹣f(x﹣1),则有f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x).则f(x)是周期为4的函数,故f(2020﹣ln2)=f(﹣ln2)=﹣f(ln2)=﹣(﹣e x•ln2)=8,变形可得:2x=8,解可得x=3;故答案为:314.已知函数(其中e为自然对数的底数),若关于x的方程f2(x)﹣3a|f(x)|+2a2=0恰有5个相异的实根,则实数a的取值范围为{}∪[,).解:当x≤2时,令f′(x)==0,解得x=1,所以当x≤1时,f′(x)>0,则f(x)单调递增,当1≤x≤2时,f′(x)<0,则f (x)单调递减,当x>2时,f(x)==单调递减,且f(x)∈[0,)作出函数f(x)的图象如图:(1)当a=0时,方程整理得f2(x)=0,只有2个根,不满足条件;(2)若a>0,则当f(x)<0时,方程整理得f2(x)+3af(x)+2a2=[f(x)+2a][f(x)+a]=0,则f(x)=﹣2a<0,f(x)=﹣a<0,此时各有1解,故当f(x)>0时,方程整理得f2(x)﹣3af(x)+2a2=[f(x)﹣2a][f(x)﹣a]=0,f(x)=2a有1解同时f(x)=a有2解,即需2a=1,a=,因为f(2)==>,故此时满足题意;或f(x)=2a有2解同时f(x)=a有1解,则需a=0,由(1)可知不成立;或f(x)=2a有3解同时f(x)=a有0解,根据图象不存在此种情况,或f(x)=2a有0解同时f(x)=a有3解,则,解得,故a∈[,)(3)若a<0,显然当f(x)>0时,f(x)=2a和f(x)=a均无解,当f(x)<0时,f(x)=﹣2a和f(x)=﹣a无解,不符合题意.综上:a的范围是{}∪[,)故答案为{}∪[,)二、解答题:共6小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.如图,在斜三棱柱ABC﹣A1B1C1中,已知△ABC为正三角形,D,E分别是AC,CC1的中点,平面AA1C1C⊥平面ABC,A1E⊥AC1.(1)求证:DE∥平面AB1C1;(2)求证:A1E⊥平面BDE.解:(1)证明:D,E分别是AC,CC1的中点,∴DE∥AC1,DE⊈平面AB1C1,∵AC1⫋平面AB1C1,故DE∥平面AB1C1;(2)证明:△ABC为正三角形,所以BD⊥AC,因为平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,故BD⊥平面AA1C1C,A1E⊂平面AA1C1C,所以BD⊥A1E,又A1E⊥AC1,DE∥AC1,所以A1E⊥DE,又BD∩DE=D,所以A1E⊥平面BDE.16.在△ABC中,角A,B,C的对边分别为a,b,c,且.(1)若a=5,,求b的值;(2)若,求tan2C的值.解:(1)在△ABC中,由余弦定理b2+c2﹣2bc cos A=a2,得,即b2﹣4b﹣5=0,解得b=5或b=﹣1(舍),所以b=5.(2)由及0<A<π得,,所以,又因为0<C<π,所以,从而,所以.17.截至1月30日12时,湖北省累计接收揭赠物资615.43万件,包括医用防护服2.6万套,N95口罩47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.某运输队接到给武汉运送物资的任务,该运输队有8辆載重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?解:设每天派出A型卡车x辆,B型卡车y辆,运输队所花成本为z元,则,且x∈N,y∈N,化简得:,目标函数z=240x+378y,画出满足条件的可行域如图中阴影部分所示:由图可知,当直线z=240x+378y经过点A时,截距z最小,解方程组,得点A的坐标为(,0),又∵x∈N,y∈N,∴点A(,0)不是最优解,∵在可行域的整数点中,点(8,0)使z取得最小值,即z min=240×8+378×0=1920,∴每天排除A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为1920元,答:每天派出A型卡车8辆,B型卡车0辆,运输队所花的成本最低,最低成本为1920元.18.在平面直角坐标系xOy中,椭圆C:的右准线方程为x=2,且两焦点与短轴的一个顶点构成等腰直角三角形.(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点.①若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且,求OB的长;②若原点O到直线l的距离为1,并且,当时,求△OAB的面积S的范围.解:(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=,又由右准线方程为x=2,得到=2,解得a=,所以b2=a2﹣c2=1所以,椭圆C的方程为+y2=1(2)设B(x1,y1),而A(0,1),则M(,),∵=,∴N(,),因为点B,N都在椭圆上,所以,解得:y1=,x=所以(3)由原点O到直线l的距离为1,得=1,化简得:1+k2=m2联立直线l的方程与椭圆C的方程:,得(1+2k2)x2+4kmx+2m2﹣2=0设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,且△=8k2>0,∴•=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)﹣+m2====λ所以k2=,所以△OAB的面积S=1×AB=|x1﹣x2|====,因为S=在[,]为单调减函数,并且当λ=时,S=,当λ=时,S=,所以△OAB的面积S的范围为19.设函数f(x)=2x2+alnx,(a∈R)(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+m,求实数a,m的值(Ⅱ)若f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,求实数a的取值范围;(Ⅲ)关于x的方程f(x)+2cos x=5能否有三个不同的实根?证明你的结论解:(I)∵f(x)=2x2+alnx,∴f′(x)=4x,由题意可得,f′(1)=2,f(1)=2∴4+a=2,2+m=2∴a=﹣2,m=0,(II)∵f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,2(2x﹣1)2+aln(2x﹣1)+2>2(2x2+alnx),整理可得,4(x﹣1)2﹣a[2lnx﹣ln(2x﹣1)]>0对任意x∈[2,+∞)恒成立,∴4﹣a(n4﹣ln3)>0即a当a时,4(x﹣1)2﹣a[2lnx﹣ln(2x﹣1)]设g(x)=4(x﹣1)2﹣,则g′(x)=8(x﹣1)[(2x2﹣x)﹣]∵x≥2,∴x﹣1>0,,∴g′(x)>0,即g(x)单调递增,g(x)>g(2)=0综上可得,a(III)不可能有三个不同的实根,证明如下:令g′(x)=f(x)+2cos x,若g(x)=5有三个不同的实数根,则g(x)至少要有三个单调区间,则g′(x)=0至少有两个不等实根,所以只要证明g′(x)=0在(0,+∞)至多1个实根,g′(x)=4x,g′′(x)=4﹣2cos x﹣∵,∴g′′(x)>0,∴g′(x)在(0,+∞)上单调递增,∴g′(x)=0至多1个根,当a≥0时,(4x﹣2sin x)′=4﹣2cos x>0,∴y=4x﹣2sin x在(0,+∞)上单调递增,∴y=4x﹣2sin x>0,又因为a≥0时,∴>0,g′(x)=0g′(x)在(0,+∞)上没有实数根综上可得,g′(x)=0(0,+∞)上至多一个实数根,得证20.已知f(x)=x3+ax2+bx,a,b∈R.(1)若b=1,且函数f(x)在区间(﹣1,)上单调递增,求实数a的范围;(2)若函数f(x)有两个极值点x1,x2,x1<x2,且存在x0满足x1+2x0=3x2,令函数g (x)=f(x)﹣f(x0),试判断g(x)零点的个数并证明你的结论.解:f′(x)=3x2+2ax+b,(x∈R),(1)当b=1时,f′(x)=3x2+2ax+1,因为f(x)在区间(﹣1,)上单调递增所以当x∈(﹣1,)时,f′(x)=3x2+2ax+1≥0恒成立.函数f′(x)=3x2+2ax+1的对称轴为x=﹣.①﹣<﹣1,即a>3时,f′(﹣1)≥0,即3﹣2a+1≥0,解之得a,解集为空集;②﹣1,即﹣时,f即,解之得,所以﹣③﹣,即a时,f≥0即3+a+1≥0,解之得a≥﹣,所以﹣综上所述,当﹣函数f(x)在区间(﹣1,)上单调递增.…(2)∵f(x)有两个极值点x1,x2,∴x1,x2是方程f′(x)=3x2+2ax+b=0的两个根,且函数f(x)在区间(﹣∞,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减.∵g′(x)=f′(x)∴函数g(x)也是在区间(﹣∞,x1)和(x2,+∞)上单调递增,在(x1,x2)上单调递减∵g(x0)═f(x0)﹣f(x0)=0,∴x0是函数g(x)的一个零点.…由题意知:x1+2x0=3x2,g(x2)=f(x2)﹣f(x0)∵x1+2x0=3x2,∴2x0﹣2x2=x2﹣x1>0,∴x0>x2∴f(x2)<f(x0),∴g(x2)=f(x2)﹣f(x0)<0又g(x1)=f(x1)﹣f(x0)=x13+ax12+bx1﹣(x03+ax02+bx0)=(x1﹣x0)(x12+x1x0+x02+ax1+ax0+b)=(x1﹣x0)(x12+x1•+()2+ax1+a•+b)=(x1﹣x0)(3x12+2ax1+b+9x22+6ax2+3b)∵x1,x2是方程f′(x)=3x2+2ax+b=0的两个根,∴3x12+2ax1+b=0,3x22+2ax2+b=0…∴g(x1)=f(x1)﹣f(x0)=0∵函数g(x)图象连续,且在区间(﹣∞,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增∴当x∈(﹣∞,x1)时,g(x)<0,当x∈(x1,x0)时g(x)<0,当x∈(x0,+∞)时g(x)>0,∴函数g(x)有两个零点x0和x1.…(16分)[选做题]本题包括A、B、C三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换]21.已知矩阵M=的一个特征值为4,求矩阵M的逆矩阵M﹣1.解:矩阵M的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣3t;因为矩阵M的一个特征值为4,所以方程f(λ)=0有一根为4;即f(4)=2×3﹣3t=0,解得t=2;所以M=,设M﹣1=,则MM﹣1==,由,解得;由,解得;所以M﹣1=.[选修4-4:坐标系与参数方程](本小题满分10分)22.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的非负半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段AB的长.解:(1)已知直线l的参数方程为(t为参数),转换为直角坐标方程为:,曲线C的极坐标方程是.由,得ρ2=4ρcosθ+4ρsinθ,整理的直角坐标方程为:x2+y2=4x+4y,所以曲线C:(x﹣2)2+(y﹣2)2=8.(2)由(1)知圆C半径,利用圆心到直线的距离,所以.[选修4-5:不等式选讲」23.已知x1,x2,x3∈(0,+∞),且满足x1+x2+x3=3x1x2x3,证明:x1x2+x2x3+x3x1≥3.【解答】证明:∵x1+x2+x3=3x1x2x3,∴,∴,当且仅当“x1=x2=x3=1”时取等号,故x1x2+x2x3+x3x1≥3,即得证.[必做题]第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.24.如图,在平面直角坐标系xOy中,已知抛物线:C:y2=2px(p>0)的焦点F在直线x+y﹣1=0上,平行于x轴的两条直线l1,l2分别交抛物线线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段AB上,P是DE的中点,证明:AP∥EF.解:(1)抛物线C的焦点F坐标为,且该点在直线x+y﹣1=0上,所以,解得p=2,故所求抛物线C的方程为y2=4x;(2)由点F在线段AB上,可设直线l1,l2的方程分别为y=a和y=b且a≠0,b≠0,a≠b.则,,D(﹣1,a),E(﹣1,b)∵P是DE的中点,∴直线AB的方程为,即4x﹣(a+b)y+ab=0,又点F(1,0)在线段AB上,∴ab=﹣4,,,由于AP,EF不重合,所以AP∥EF.25.在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.(1)求选出的4名选手中恰好有一名女教师的选派方法数;(2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.【解答】角:(1)某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.选出的4名选手中恰好有一名女教师的选派方法数为:m=+=28.(2)记X为选出的4名选手中女教师的人数,则X的可能取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴X的概率分布为:X0123PX的数学期望E(X)==.。