自动寻星卫星电视天线控制系统

自动寻星卫星电视天线控制系统
自动寻星卫星电视天线控制系统

万方数据

万方数据

万方数据

万方数据

自动控制原理-雷达天线伺服控制系统

自动控制理论课程设计 设计题目雷达天线伺服控制系统 姓名 学号 专业 班级 指导教师 设计时间

目录 第一章绪论 (1) 1.1课题背景及意义 (1) 1.2课题研究的目的 (1) 1.3课题研究的主要内容 (2) 第二章系统的总体设计 (3) 2.1系统的组成图 (3) 2.2控制系统的结构图 (3) 2.3系统的简化方框图及简单计算 (4) 2.4系统的动态分析 (6) 第三章系统的根轨迹和伯德图 (7) 3.1系统的根轨迹图及分析 (7) 3.2系统的Bode图及分析 (8) 第四章校正设计 (10) 4.2校正后的根轨迹图及分析 (12) 4.2校正后的Bode图及分析 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 1.1课题背景及意义 雷达天线伺服控制系统是用来控制天线,使之准确地自动跟踪空中目标的方向,也就是要使目标总是处于天线轴线的方向上的,用来精确地跟随或复现某个过程的反馈控制系统,又称随动系统,主要解决位置跟随系统的控制问题。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度,加速度的反馈控制系统,并要求具有足够的控制精度。其作用是使输出的机械位移(或转角)准确地跟踪输入地位移(或转角)。伺服系统的结构组成和其他形式反馈控制系统没有原则上的区别,它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。 雷达天线伺服控制系统,可以准确确定障碍物的位置。利用雷达天线伺服控制系统可以探测飞机、舰艇、导弹以及其他军事目标,信息处理、数字处理,收集、综合地面运动目标和固定目标的情报及图像,还可以探测低空飞行的威胁,为用户提供包含面广的威胁画面。对空搜索、边搜索边测距、空地测距、自动检测;除了军事用途外,雷达在交通运输上可以用来为飞机、船只导航;在天文学上可以用来研究星体;在气象上可以用来探测台风,雷雨,乌云等等。雷达天线伺服控制系统的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。然而雷达天线伺服控制系统在洪水监测、海冰监测、土壤湿度调查、森林资源清查、地质调查等方面显示了很好的应用潜力。 1.2课题研究的目的 雷达天线伺服控制系统的设计目的是通过采取各种控制策略,快速,准确,稳定,可靠地跟踪目标,使天线伺服系统的天线座驾的机械轴随控制指令运动,并能使天线的电轴始终对准目标,完成各项任务,并确保天线伺服系统安全,可靠,长期,稳定地工作。利用电磁波探测目标的电子设备,发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。而在我们设计的伺服控制系统中,天线的转动要求

车载卫星通信设备及操作简介

车载卫星通信设备及操作简介 3.1 卫星通信系统开通前应该注意的事项: 3.1.1 环境勘察 1)选择停放场所 ★选择较为平坦、坚实的空地作为停车场地。确保对卫星信号收发、微波信号收发不形成遮挡。 ★车辆上方应无遮挡物,以免阻碍天线桅杆正常升起。 ★应尽量避开高大的障碍物(陡坡、高大建筑、高大树木等),确保对卫星通信、微波通信、无线网桥通信的信号收发不形成遮挡。 ★如果采用市电则车辆停放地距最近的有效市电电源应在60M以内,且能打地桩以接地或能接入其他的接地系统。 ★车辆停放地还要考虑整车噪声对居民或环境的影响。 2)选择市电电源 ★车载系统原则上应尽量考虑采用目的现场的有效市电电源。 ★在车载系统到达现场前,应与提供电源的单位或供电部门做好协商。 3)确定传输方式 ★同相关单位协商拟采用的传输方式,传输方式应遵循方便接入的原则结合停放场所条件综合考虑。若距机房较近,可采用光纤直接连接的方式;否则可采用微波或者无线网桥传输方式;特殊情况可采用卫星传输方式。 ★采用微波或者无线网桥传输方式时,要预先选定好对端微波架设的位置,以最近的机房和视距传输来综合考虑。原则上在车载系统达到目的现场 前,应架设好对端微波天线,以尽量缩短系统开通的时间。 ★采用卫星传输方式时,应根据使用的卫星经度考虑对应方位无遮挡,且 避免使车头朝向卫星方位停放,以方便卫星天线接收。 ★车载卫星系统通过自动对星需要获取的信息:(1)GPS、(2)电子罗盘、(3)AGC(信标机电压)。

3.1.2 数据准备 确定BTS的相关数据 ★根据网络规划,确定车载BTS相关数据,如频点、邻区切换等,必要时,到目的现场测试移动网络的数据,了解频率干扰情况、话务量分配、切换等情况。同时与传输室确认应急车传输的接入基站,并在基站端对通传输电路,同BSC 核对每套应急传输电路所对应小区的关系、核对小区定义的设备数量、设备类型和软件版本等信息,确保BSC的数据定义与应急车安装的硬件完全对应; ★根据现场的网络状况,确定基站天线的覆盖范围和方向。 ★根据网络规划,确定车载BTS系统接入PLMN网的BTS的相关数据。 3.1.3 带卫星的小C车规范开通流程 1、停车、拉手刹 2、打地桩、接工作地、保护地 3、放支撑脚、启动联合供电 4、挂CDMA天线、升天线桅杆、接馈线 5、对星、核对工作频率、极化、标定功率、载波上星 6、开基站、数据下载 7、开通测试、网络优化 3.2 卫星系统概述 3.2.1卫星系统业务需求简介 卫星传输作为小型应急通信车三种传输方式(微波传输、光纤传输、卫星传输)之一的传输手段解决从车载BTS到各省BSC的Abis接口的传输,实现1x 语音数据及EVDO数据业务的传输。 3.2.2卫星系统组成 根据系统设备配置和改装要求,小型应急通信车包括移动通信系统(不同厂商BTS和BSC设备)、传输系统(SDH、PDH、50M无线以太网桥、车载卫星)及天馈线系统(卫星天线、微波天线基站天线、桅杆等),其中卫星子系统主要由以下几种设备组成: 车载卫星天线、GPS天线、天线控制系统、信标接收机、MODEM、LNB、固态高功放。

实训七装配单元的结构与控制

实训七、装配单元的结构与控制 1.实训目的 (1)、熟悉YL-335A 设备系统中装配单元的结构组成。 (2)、查明装配单元中PLC的I/O接口地址。 (3)、掌握装配单元的工作过程,传感器技术及其应用。 (4)、掌握根据控制要求编制、调试程序的方法。 2.实训内容 (1)、在教师的指导下,观察了解装配单元的结构。 (2)、查明气动机构的组成(气缸、控制阀),通过手动操作控制阀分别控制各个气动执行机构动作,观察分析控制信号与气动执行机构动作之间的关系,然后画出气动控制回路原理图。 (3)、认识了解该工作单元中所使用的传感器,并查明各传感器的类型、安装位置、作用及其对应的PLC的接口地址(输入地址);查明各电控阀的电控信号所对应的PLC接口地址(输出地址)。然后画出该装配单元PLC的I/O接线原理图。 (4)、根据控制要求编制、调试程序。 3.注意事项 (1)、在气动执行元件接通起源的情况下,禁止用手直接扳动气动元件。 (2)、在PLC处于RUN模式或RUN-P模式并运行用户程序时,禁止用手动方式操作方向控制阀。 (3)、在观察结构时,不要用力拽导线、气管;不要拆卸元器件及其它装置;遇有不能解决的问题,及时请教指导教师。 4、YL-335A 设备系统中装配单元的介绍 (1)、装配单元的功能 装配单元就是将该生产线中分散的两个物料进行装配的过程。主要就是通过对自身物料仓库的物料按生产需要进行分配,并使用机械手将其装配到来自加工单元的物料中心孔的过程。 (2)、装配单元的结构组成 装配单元主要结构为:简易物料仓库,物料分配机构,被分配物料位置变换机构,机械手,半成品工件的定位机构,气动系统及其阀组,信号采集及其自动控制系统,以及用于电器连接的端子排组件,整条生产线状态指示的信号灯与用于其她机构安装的铝型材支架及底板,传感器安装支架等其它附件。 图4-1 装配单元实物图图4-2 装配单元气动控制回路工作原理图 (3)、装配单元的工作过程

卫星天线安装图解

卫星天线安装图解 天线的安装: 安装前的准备: 1.按说明书的地基施工图做好天线地基。 2.安装工具。包括:活动扳手(大18寸*2、小4寸*2或钳子)、专用改锥、剪子、水平仪、防水胶布等。 3.按照说明书清点卫星天线的另件数是否正确。 4.请准备12寸--14寸带AV输入的彩色或黑白电视机一台,视音频线(AV线)一套,一根3米左右的和一根30米左右的同轴电缆,一条临时的220V电源及插座。 安装步骤: 第一步:注意安装的基座立柱必须保证水平和垂直,可使用水平尺等进行调整。 第二步:安装天线的锅体四脚支撑。注意螺杆、螺母的正反方向。不要旋紧螺丝。 第三步:安装天线的方向轴。方向轴与天线的四脚支撑进行连接。注意方向轴的方向,使天线高频头支撑杆,中间的那只,保持在锅体下方即可。旋紧与之连接的固定螺丝。 第四步:把天线抬起,安装到天线基座的立柱上。 第五步:安装高频头支撑杆。不要把螺丝拧死。 第六步:把高频头置于高频头固定盘上。(可能需要专用螺丝刀,拆开高频头的保护罩) 第七步:使用馈线(同轴电缆)连接高频头的高频输出端至接收机的高频输入端。 第八步:上好其他部分的固定螺丝。注意都不要拧死。 第九步:使用AV线(视音频线)连接卫星接收机的视频输出到电视机的视频输入。 至此,天线的安装已经完成。 寻星指南: 调试前准备:1.安装工具。2.调试器材。3.连接线材。4.寻星参数。 寻星时间:根据你所在的地点和接收卫星的位置计算出当地的寻星时间。这对于卫星覆盖边缘地区、小天线尤为重要。 天线方向的调试:粗调:根据事先算出的仰角和方位角,将天线的这两个角度分别调到这两个数值上,使之对准所要接收的卫星,直至接收到电视信号。细调:使所收的信号最佳。根据现场的条件,可以有多种简易而有效的调整方法。 第一步:检查连接好的线路。 第二步:用量角器调整好天线仰角。 仰角直接用量角器就可以量 先将直尺最低端固定在天线最低端边沿上,另一端固定在天线最高端边沿上,注意直尺一定要通过天线中心,找准直径,不能倾斜,这是关键。直尺顶端留出20㎝以供固定量角器。在量角器中心钻一小孔,用小钉将带有重锤的线穿过量角器中心孔,将量角器一同

短波收信天线交换系统的初步设计

短波收信天线交换系统的初步设计X 靳煜1)王玉龙2) (中国人民解放军91917部队1)北京102401)(海军驻荆州地区通信军事代表室2)荆州434007)摘要:根据短波通信业务对收信天线交换的发展需求,简要介绍了短波收信天线交换系统的功能与结构,并对系统的功能模块进行了初步设计。 关键词:天线交换;集中控制;电子矩阵;公用器;SPDT 中图分类号:T N82 Preliminary Design of the Exchange System of the Shortwave Aerial Jin Yu1)Wang Yulong2) (N o.91917of P LA1),Beijing102401) (N av y Communication M ilitary R epresentative Office in Jing zhou2),Jingzhou434007) Abstract:Development demand that the aerial ex chang es to collecting mail of communication serv ice of foundation shortwave of this text.Function and structure of t he ex chang e system of the aer ial that have introduced the shortw av e and collected mail briefly,and has designed the function module o f the system tentatively. Key words:aerial ex chang ing,centralized control,electronic matr ix,public device,SPDT C lass number:T N82 1引言 近年来,短波通信业务在军队短波通信台站得到了迅速发展。短波收信机以及通信终端机不断更新,而目前的收信天线交换系统基本上是机械式的。选择天线靠人工插拔,频繁动作极易造成接触不良、接插件损坏等故障,性能极不稳定。虽然各通信台站的通信规模和通信特点不同,但制作天线自动交换系统,提高天线交换的时效和抢代通的速度已成为各通信台站面临的一个紧迫问题。 短波收信天线交换系统根据通信组网要求,实现收信天线和收信机的快速、准确、可靠连接,并对天线连接状态及使用情况实施监控。适用于在短波通信台站中取代现有的天线交换(机械式的、靠人工插拔操作方式的)系统,提高短波通信系统的可靠性及通信天线的利用率。 2收信天线交换系统基本结构 短波收信天线交换系统主要由三个模块组成:收信天线公用器、收信天线交换器(电子式自动交换矩阵)、收信天线集中控制管理系统。 2.1系统方框图 短波收信天线交换系统方框图如图1所示 : 图1收信天线交换控制系统方框图 2.2各单元功能 2.2.1天线共用器 此单元包括天线阻抗匹配(200欧)50欧),滤波,放大三个环节。实现任意一付天线允许同时接任意10部收信机,这就对信号放大环节提出了很 131 总第148期2005年第4期 舰船电子工程 Ship Electronic Engineer ing Vol.25N o.4 X收稿日期:2005年2月22日,修回日期:2005年3月11日

PID雷达天线控制系统

自动控制理论课程设计报告 研究课题PID雷达天线控制系统 学院 专业班级 姓名 学号 年月

PID雷达天线控制系统 摘要: 这篇文章是把PID调节器运用于雷达位置伺服系统,使其跟踪能力和迅速反应能力得到改善。采用校正数字PID 控制器作为控制器,通过Matlab 仿真对校正 PID 控制雷达天线系统响应曲线进行分析,结果表明,基于校正 PID 控制的雷达天线系统响应时间短,满足了雷达天线对控制性能的要求。 关键词:PID 控制;雷达天线系统。 PID radar antenna control system Abstract: This article is to put PID adjustor into the radar servo system, and improve the tracking ability and rapid response ability.we choose the digital PID controller as controller.Through the simulation of Matlab to design of the calibration PID control radarantenna system and analyse the radar antenna system calibration PID response curve. Results show that based on the calibration of the PID control system of the radarantenna short response time meet the radar antenna to control performance requirements. Key words: P ID adjustor ; Radar antenna system. 1.引言: 在自动控制系统中,要提高系统的静态精度,增大放大倍数,但系统增大放大倍数后,由于系统中惯性的影响,容易使系统发生振荡,因此,提高放大倍数,减小静态误差和提高系统稳定性便成了一对主要矛盾。为了解决这个矛盾,使用比例(P),积分(I),微分(D)(即所谓的(PID)调节器),以此作为自动控制系统的校正工具。比例调节的显著特点就是有差调节。如果采用比例调节,则在负荷扰动下的调节过程结束后,被测量不可能与设定值准确相等,它们之间一定有残差。积分调节的特点是无差调节,但采用积分调节时其调节过程比较缓慢,表现在振荡频率较低。PID调节器有P,I,D三种调节的优点,在系统中,比例(P)调节器的作用是按控制偏差的大小,迅速输出一个信号(电压),这个过程便是偏差大,调节作用大,偏差小,调节作用也小,积分(I)调节器的作用,不是迅速改变调节作用,而是根据偏差的大小逐渐地改变,偏差大的,调节作用变化速度快,偏差小的调节作用速度满,只有当偏差消除时,才停止改变调节作用,偏差不消除,调节作用总是在不断改变,微分(D)调节器的作用则是一有偏差出现,马上快速地,大幅度地改变调节作用,然后使调节作用逐渐见效,这就是所谓的超调,目的是使偏差快些消除。总而言之,P的作用是将偏差迅速传递到输出端;I的作用是缓慢消除偏差;D的作用是快速消除偏差。

全自动卫星天线定位伺服控制系统概要

全自动卫星天线定位伺服控制系统 本控制系统是专门为4.5M卫星天线设计制作,通过本控制系统可方便地进行天线的方位、俯仰和极化的角度调整。由于采用了新型交流伺服控制器,使天线的各角度的控制精度得以大幅提高,在目前国内同类系统中应用技术较为先进。 (一)卫星天线控制系统的方案 采用我公司生产的交流伺服控制器和交流异步电机组成的伺服驱动单元,以可编程控制器、可编程终端等组成控制单元。 系统构成方案如图所示。 (二)系统功能及技术指标 该系统由室内控制单元和室外伺服驱动单元组成,通过可编程终端显示的文字提示进行操作。交流伺服控制器驱动天线机构上的交流异步电机实现精确的位置、速度控制,以实现天线的方位、俯仰和极化的角度调整。安装在电机上的编码器不仅为交流伺服控制提供反馈信息,而且为室内控制单元提供天线的方位、俯仰信息,经数据处理后用于控制和显示角度。 软件在实现系统的各种功能中起着非常重要的作用。本系统的软件有交流伺服控制器(3台)的程序、可编程控制器的程序和可编程终端的程序。这几种程序分别担负着人机界面、数据处理、动作控制以及状态监视等各种作用。与天线方位有关的软件部分对应于天线和本系统安装在北半球。

动作范围:方位90.00°(东)~270.00°(西)[正南为180°] 俯仰 5.00°(俯)~90.00°(仰) 极化±90° 动作方式: ⑴角度操作:设定角度值,运动至设定位置。(对好第一颗星之后) ⑵步进操作:选择步进距(小步距0.01°、中步距0.05°、大步距0.25°)后,单键操作,按1次键,运动1步。 ⑶启停操作:选择电机转速(方位、俯仰和极化的速度分挡不同)后,单键操作,按1次运动、再按1次停止。 换星操作:按序号登录5颗星的方位角、俯仰角数据。设定目标星号后执行换星。非常快捷、方便。若所设定的星号未登录则不执行并提示“无效”。 防护操作:俯仰运动至87.00°使天线朝上,在遇强风时防止机构或基础的损害。 限位保护:设有限位开关和极限开关。方位可设定软极限。设定后限制方位角度范围,防止干涉或碰撞。 控制精度:与电机同轴装有2500线的编码器,作为位置及速度的传感器。天线的方位轴是经减速器后,0.01°间距对应2333个脉冲;俯仰轴是经减速器后,0.01°间距对应约20000个脉冲。交流伺服控制器将编码器的信息是按4倍频(10000脉冲/转)进行数据处理。而且,它的位置控制精度可达±1个脉冲。因此、天线的综合控制精度相当高。 间隙补偿: 每当电机转动改变方向时,减速器和机构等机械部件会有换向间隙。用伺服控制能补偿实测的间隙量。 角度显示:卫星天线的位置数据是以有2位小数的角度值表示。方位角度是3位整数2位小数。4舍5入至小数点后第2位。俯仰角度是2位整数2位小数。4舍5入至小数点后第2位。极化角度不显示。 报警提示:交流伺服控制器监视,异常时有文字提示。限位和原点传感器监视,异常时有文字提示。 使用电源:控制单元AC 220V±10%(单相) 50Hz 100W 伺服驱动单元AC220V±10%(单相) 50Hz 1000Wmax 外型尺寸:室内控制单元 (标准19吋3U) L:300 W:430 H:134(mm) 室外伺服驱动单元 L:250 W:600 H:800(mm) 工作环境温度:室内控制单元0℃~40℃ 室外伺服驱动单元-30℃~40℃(内有温度调节单元) (三)特点 ⑴.与卫星通讯设备一致,本系统采用单相交流220V电源。 ⑵.以对准第一颗卫星时登录的天线方位、俯仰角度为数据,方便、快速地进行对星、换星的操作。基准 ⑶.使用交流伺服控制器,定位控制精度高,重复好。 ⑷.有互锁、限位等多项安全防护功能。

卫星天线的调试策略和技巧

卫星天线的调试策略和 技巧 标准化管理部编码-[99968T-6889628-J68568-1689N]

浅谈地面卫星天线的调试方法和技巧 ——普陀区广电台张皓摘要:本文阐述了调试地面卫星天线中需要注意的各种要素、原则、方法和以及调试过程中的注意事项。 关键词:卫星天线搜星要素调整方法注意事项 随着卫星转发的广播电视节目和数据不断增多,各电视台下行接收设施也越来越多,而且由于各种原因导致传输原节目的卫星轨道经常变化,因此地面卫星接收站也需要不断调整天线方向来对准卫星,以保证正常收视。 一、地面站搜星要素 搜索卫星一般要注意四个要素:仰角、方位角、极化和焦距。 仰角:指卫星地面站的天线主瓣波束轴线对准卫星的连线与其在地平面的投影夹角,常用EL表示。 方位角:指当以地理正北为零度,按顺时针方向参考时,天线波束主瓣轴瞄准卫星的连线的投影线与正北方向线的夹角,常用AZ来表示。 极化:指电磁波在传播过程中的电场矢量方向和幅度随时间变化的特性,一般包括左旋、右旋圆极化及水平、垂直线极化四种极化方式,我国卫星接收信号通常采用水平、垂直线极化波。地卫站天线的极化方式一定要与所接收的卫星下行信号的极化方式一致即极化匹配,才能保证接收质量达到规定的标准,否则将影响信号的正常接收及质量。 焦距是指卫星接收天线对接收信号反射后信号汇聚最强的位置点。 二、常用计算公式与调星原则 地面站方位角、仰角是卫星接收天线指向的两个重要数据,馈源极化角ρ、焦距f是卫星接收天线调整中另外两个不容忽视的参数。四个参数可由以下卫星天线定位经验计算公式获得,实际应用中我们一般以Az的大小与正负来确定方位角。

全自动便携天线系统..(1)

便携式全自动卫星通信系统 中国电子科技集团公司第十五研究所 北京天行金盾科技发展有限公司 2008年

TXJD-3000-25便携式全自动卫星通信系统 一.产品概述 TXJD-3000-25全自动便携式卫星通信系统主要针对政府应急通信部门、新闻媒体、公安、边防、武警、军队等特殊用户而设计的新一代卫星通信设备。系统配备等效口径为1米的高性能偏馈型碳纤维抛物面天线及馈源系统,高精度的卫星天线系统具有全自动的一键对星功能工作模式,设备从展开、跟踪、对星、调整、收藏均可全自动完成,安装简单,无须较准,快速对星,并具有全自动和手动两种工作模式。断电时,配备有手摇柄可手动操作。 该设备参考和借鉴了国内外多家便携卫星通信设备的长处和优点,充分考虑到用户快速展开,快速收藏,稳定工作,易于运输等需求,中国电子科技集团公司第十五研究所、北京天行金盾科技发展有限公司在设备的集成度、体积、重量、强度和设备的稳定性、可靠性、灵活性、易操作性等方面进行了独到的设计和改进,力求以最轻便紧凑的结构来为用户提供高质量全业务的卫星通信业务。 TXJD-3000-25全自动便携式卫星通信系统组成如下图所示,蓝色部分为卫星通信天线系统,黄色部分为卫星通信终端系统。绿色部分为用户终端设备接口。 全自动便携式卫星通信系统组成示意图 TXJD-3000-25天线系统内置GPS定位系统和位置检测系统、极化调整系统、伺服驱动系统、自动保护系统、高性能卫星信标接收机、天线控制器、智能控制管理软件系统等设

备,另外,可根据用户的需求,将BUC、RCST终端和高性能LNB都集中安装在天线箱内,实现设备的高集成度、高可靠性和小型化等特点。此外,高精度的卫星天线系统具有全自动的一键对星功能工作模式,设备从展开、跟踪、对星、调整、收藏均可全自动完成,安装简单,无须较准,快速对星。同时TXJD-3000-25还具有手动操作模式,当天线系统的控制、伺服驱动、位置检测等部分出现异常或外部供电中断等情况发生时,可以通过手动模式完成天线系统展开、对星、调整、收藏等一系列操作,极大的方便了用户的使用。TXJD-3000-25系统借助于高性能的信标接收机、高精度LNB和可靠稳定的天线控制系统及跟踪控制软件,使得其具有优秀的跟踪精度和100%的寻星准确率。同时凭借其可折叠和高度可调的风稳支脚,使得TXJD-3000-25天线具有卓越的抗风能力,能够保证系统在恶劣的环境下稳定的工作。 TXJD-3000-25通信终端系统设计紧凑、功能齐全,高度集成了数据、视频、语音和加密等通信设备,例如液晶电视、电话机、麦克风、摄像头等常用声像设施,还可根据用户需要加入保密设备。做到了功能齐全、操作简单、体积小巧、携带方便、稳定可靠。TXJD-3000-25展开图如下所示: 二.产品特点 TXJD-3000-25便携站天线系统内嵌信标接收机、天线控制器、GPS模块和各种传感器等器件,通过自主研发的对星算法程序,能实现全自动模式工作,即自动展开、对星、收藏

雷达天线伺服控制系统要点

概述 用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。伺服系统的结构组成和其他形式的反馈控制系统没有原则上的区别。它是由若干元件和部件组成的并具有功率放大作用的一种自动控制系统。位置随动系统的输入和输出信号都是位置量,且指令位置是随机变化的,并要求输出位置能够朝着减小直至消除位置偏差的方向,及时准确地跟随指令位置的变化。位置指令与被控量可以是直线位移或角位移。随着工程技术的发展,出现了各种类型的位置随动系统。由于发展了力矩电机及高灵敏度测速机,使伺服系统实现了直接驱动,革除或减小了齿隙和弹性变形等非线性因素,并成功应用在雷达天线。伺服系统的精度主要决定于所用的测量元件的精度。此外,也可采取附加措施来提高系统的精度,采用这种方案的伺服系统称为精测粗测系统或双通道系统。通过减速器与转轴啮合的测角线路称精读数通道,直接取自转轴的测角线路称粗读数通道。因此可根据这个特征将它划分为两个类型,一类是模拟式随动系统,另一类是数字式随动系统。本设计——雷达天线伺服控制系统实际上就是随动系统在雷达天线上的应用。系统的原理图如图1-1所示。

1 雷达天线伺服控制系统结构及工作原理 图1-1 雷达天线伺服控制系统原理图 系统的结构组成 从图1-1可以看出本系统是一个电位器式位置随动系统,用来实现雷达天线的跟踪控制,由以下几个部分组成:位置检测器、电压比较放大器、可逆功率放大器、执行机构。以上四部分是该系统的基本组成,在所采用的具体元件或装置上,可采用不同的位置检测器,直流或交流伺服机构等等。 现在对系统的组成进行分析: 1、受控对象:雷达天线 2、被控量:角位置m θ。 3、干扰:主要是负载变化(f 及L T )。 4、给定值:指令转角*m θ。 5、传感器:由电位器测量m θ、*m θ,并转化为U 、*U 。 6、比较计算:两电位器按电桥连接,完成减法运算*U U e -=(偏差)。 7、控制器:放大器,比例控制。 8、执行器:直流电动机及减速箱。

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

电调天线控制系统

目录 一、系统概述 (2) 1.1 系统描述 (2) 1.2 电调天线的手动调节 (2) 1.3 电调天线的本地控制 (3) 1.4 电调天线的远程控制 (3) 二、附件介绍 (4) 2.1 驱动器MBRET-RCU-A (4) 2.2 手持控制器MBRET-CCU-A (4) 2.3 台式控制器MBRET-CCU-B (5) 2.4 控制信号避雷器MBLPD-AISG-C01 (5) 2.5 控制电缆MBRET-CXXX (6) 三、系统组件 (7)

远程电调天线控制系统简介 一、 系统概述 1.1 系统描述 本公司生产的电调天线采用组件配置模式,当不接驱动器时,装上手动调节杆即成为手调天线,这适用于一些天线安装位置不高,易维护且对自动化程序要求不高的场合。当天线安装位置较高,不易维护,但调节机会较少且对成本要求苛刻的场合,我们提供手持式的天线控制器,通过它,维护人员可以对多个基站的天线进行独立控制。同样,对于调节比较频繁的场合,我们提供机架安装方式的电调天线控制器,它可以通过RS232接口、USB 与PC 机相连,完成电调天线的本地控制或者通过以太网络进行远程控制。 所有的控制器提供12V 4A 或24V 2A 的直流驱动电源,驱动器的连接数量取决于驱动器的功耗及电缆的损耗。 1.2 电调天线的手动调节 本公司的所有电调天线均采用组件配置模式,在安装位置低,维护方便,调节机会少的一些地方,可以只选择手动电调天线,将天线手动调节到所需要的角度,然后用自带的锁紧螺母固定即可。 天线1 天线2 天线3 RCU3 RCU2 RCU1

图1 天线的本地控制 1.3 电调天线的本地控制 电调天线可以通过手持控制器(MBRET-CCU-A)或台式控制器(MBRET-CCU-B)实现本地控制。当采用手持控制器来控制电调天线时,手持控制器可以由维护人员随身携带。当采用PC机时,可以通过台式控制器的RS232接口控制。当采用笔记本电脑对天线进行调试时,还可以通过控制器的USB接口实现通信(目前大部分笔记本已经取消了串口,USB接口较常用)。台式控制器完成PC机与天线驱动器之间的协议转换,然后将指令发至驱动器执行,其系统框图如图1所示。 1.4 电调天线的远程控制 对于调节比较频繁,自动化要求较高的场合,可以采用机架安装方式的台式控制器。机架式的天线控制器提供了一个PPP串口和一个网口,通过PPP串口接一个MODEM可以实现远程无线连接。通过以太网接入内部网络可以实现局域网网内控制或INTERNET远程控制。图2是通过MODEM和INTERNET网络的电调天线控制示意图。 MBRET-CCU-B USB RS-232 PSTN 公共电话网 MBRET-CCU-B MODEM 电话线 电话线 MODEM RS-232 HTTP 网管中心交换机 电话线 MODEM RS-232 电话线 MODEM RS-232 HTTP HTTP MBRET-CCU-B MBRET-CCU-B RS-232

雷达天线控制系统的设计.doc

雷达天线控制系统设计 摘要 本课题研究的雷达天线控制系统要求具有定位和等速跟踪功能,定位控制要求精度高、响应快,等速跟踪控制要求转速平稳。早期的雷达天控系统大多采用模拟电路实现,如需调整控制参数时,就要更换控制器中一些元件,同时受环境温度、外界干扰及元件老化等因素的影响,调节器参数都会发生变化,从而影响控制性能。 一般的雷达天线的性能主要取决于其伺服系统的设计水平。伺服系统的设计包括结构设计和控制设计两部分,这两部分是相互影响紧密耦合的。一般所采用的设计方法是对结构系统和控制系统先分别设计,然后再根据要求进行调校,这往往会导致产品研制的周期长、成本高、性能差、结构笨重,不能保证伺服系统总体的综合性能最优。针对雷达天线伺服系统设计中存在的结构设计与控制设计相分离的问题,提出一种结构与控制集成优化设计的模型,即采用手轮控制和电路自动化控制相结合的方式完成。 本文以雷达天线控制系统的研制为背景,设计了系统总体方案。雷达为机动型远程警戒雷达,天线在圆周360°方位中进行运转工作,在伺服系统中对天线的控制实现远程遥控和人工控制。工作中为了有效的消除云雨气象杂波的干扰,利用空间电磁场和目标的特性,在伺服系统中对云雨气象杂波的干扰实现线极化和原极化的转换控制。对于天线360°圆周运转状态,需要通过处理变换并把360°圆周运转的模拟方位信号转换为数字方位信号,同时为雷达各个分系统提供出方位数据;通过方位处理可实现雷达寻北,对方位数据进行自动教北。天线在架设时应进行升降俯仰控制,通过控制可安全操作升降俯仰。 关键词:雷达,天线,控制,精度,伺服

Radar antenna control system design Summary Research of radar antenna control system requires a positioning and velocity tracking, positioning control requires high precision and fast response, speed speed tracking control requirements, such as stable. Most of the early days of radar controlled systems used analog circuits, need to adjust control parameters, it is necessary to replace the controller components in and influenced by environmental factors such as temperature, outside interference and component aging effects, changes regulator parameters, thus affecting performance. General performance of radar antenna mainly depends on the level of its servo system design. Design of servo system design including design and control of two parts, interaction between these two parts are tightly coupled. General system design method is used to structure and control system design, respectively, and then adjusted according to the requirements, which often leads to long product development cycles, high cost, poor performance, structure of heavy, cannot ensure the overall performance of optimal servo system. For the radar antenna servo system design of structure and control design of phase separation problem, proposed a model of integrated optimization design of structure and control, using hand wheel completed the combination of control and automatic control circuit. With development of the radar antenna control system in the background of this article, designing the general scheme of the system. Radar-Mobile early warning radar, antennas work running in a circle of 360 ° azimuth, remote control for antenna servo system of control and manual control. In order to be effective in eliminating Cloud and rain weather clutter interference using spatial characteristics of electro-magnetic fields and the target, Cloud and rain in a servo system of weather clutter jamming transition control for linear polarization and the polarization. Aerial 360 °circle running condition, use the transform and simulation of running in a circle of 360 °azimuth direction of signal into a digital signal, while for the radar system with location data through North azimuth radar homing, on North azimuth data

[发射台,天线,系统]PLC在发射台天线交换系统的设计与应用

PLC在发射台天线交换系统的设计与应用 摘要大功率短波广播发射台一般设有多部大功率短波发射机及多副大功率短波发射天线。为了使发射机能在不同的时间使用不同的频率对不同服务区进行广播,就必须有能把发射机灵活转接到不同天线上的天线交换系统。本文针对我台三个发射机房的十部发射机和十付发射天线交换控制系统,应用PLC可编程逻辑控制器为控制核心进行改造,使得全台天线资源得到充分利用,改造后的天线交换系统操作方法简单直观、维护方便,提高了天线使用率,减小了发射机停播时间。 关键词 PLC 短波发射机天线交换开关控制系统 Design and Application of PLC in the Transmitting Station Antenna Switching System LIAO Shide (State Press and Publication Administration of Radio Qiliuyi Station, Yong'an,Fujian 366000) Abstract Short wave radio transmitting power generally has multiple power shortwave transmitters and multiple vice power shortwave antenna. In order for the transmitter to be able to use different frequencies at different times for different broadcast service area, there must be flexible and be able to turn the transmitter to the antenna switching system on different antennas. In this paper,ten sets of three transmit transmitter for my room and pay ten transmitting antenna switching control system, PLC programmable logic controller application to control the core transformation, making the whole station antenna resources are fully utilized,after the transformation of the antenna switching system operation is simple and intuitive, easy to maintain and improve the utilization of the antenna, reducing the transmitter off the air time. Key words PLC; shortwave transmitter; antenna switching switch; control system 0 引言 随着计算机信息技术的飞跃发展,原来大功率发射台天线交换控制系统已经告别了单纯的继电器控制,取而代之的是单片机和以PLC为核心的可编程逻辑控制器技术,同时也将过去的天线交换控制由室外切换改为室内切换。以我台而言,三个发射机房原都有独立的天线交换系统,由于发射机投产是不同年代,天线交换系统设备也就不统一,不在同一个起点;有的在室内切换、有的在室外切换,不适应信息化管理的需求。为此,我们利用PLC为核心的可编程逻辑控制器对原三个发射机房的十部发射机户内外天线控制系统进行了改造,增加了控制系统的软硬件设备设施及连接网络等;成功将三个发射机房的十数部发射机灵活转接到不同天线上。通过改造充分整合利用有效的发射天线资源,实现了发射机在不同时间使用不

相关文档
最新文档