第五章投影与视图教案解析
第五章投影与视图单元(教案)

另外,小组讨论环节非常活跃,学生们能够积极思考并参与讨论。但在分享成果时,我发现有些小组的表达不够清晰,这可能是因为他们在讨论过程中的逻辑梳理不够。我打算在下次的小组活动中,提前给出一些指导性的问题,帮助他们更好地组织和表达自己的观点。
2.教学难点
-空间想象能力的培养,特别是对于复杂的几何体,如何从不同的角度进行观察和想象。
-投影变换的理解,包括如何将三维空间中的物体转换成二维平面上的视图。
-视图的精细绘制和尺寸标注,如何确保视图的准确性和清晰度。
-对透视图的理解,以及如何将透视图与实际物体对应起来。
-计算机辅助设计软件的使用,如何将传统视图绘制方法与现代化工具相结合。
第五章投影与视图单元(教案)
一、教学内容
第五章投影与视图
1.投影的基本概念与分类
-中心投影
-平行投影
-斜投影
2.三视图的形成及其特性
-主视图
-俯视图
-左视图
-等轴测图
3.视图绘制方法与步骤
-确定投影方向
-绘制主视图
-绘制俯视图Leabharlann 左视图-标注尺寸和细节4.空间几何体的视图识别与应用
-立方体
-球体
-圆柱体
3.重点难点解析:在讲授过程中,我会特别强调平行投影和中心投影这两个重点。对于难点部分,如透视图的理解,我会通过实例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与视图相关的实际问题,如如何从给定的视图重建三维模型。
北师大版本九年级数学上册第五章投影和视图知识点解析含习题练习

北师大版本九年级数学上册第五章投影和视图知识点解析第01讲_投影与视图知识图谱投影知识精讲投影的定义1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影;照射光线叫做投影线;投影所在的平面叫做投影面.2.由平行光线(如太阳光线)形成的投影称为平行投影.3.由同一点发出的光线所形成的投影称为中心投影.4.在物体的平行投影中,投影线垂直于投影面,则该平行投影称为正投影.三点剖析一.考点:投影的定义二.重难点:投影的定义三.易错点:中心投影的光源为点光源,平行投影的光源为阳光;平行投影例题1、平行投影中的光线是()A.平行的B.聚成一点的C.不平行的D.向四面八方发散的【答案】A 【解析】平行投影中的光线是平行的,如阳光等.例题2、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化D.物体在阳光照射下,影子的长度和方向都是固定不变的【答案】C【解析】平行投影的特点:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻的同一物体在太阳光下的影子的大小也在变化.例题3、例已知:如图,AB 和DE 是直立在地面上的两根立柱,5AB m =,某一时刻,AB 在阳光下的投影4BC m =.(1)图中画出此时DE 在阳光下的投影;(2)AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)如图所示;(2)7.5m 【解析】(1)根据已知连接AC ,过点D 作DF AC ,即可得出EF 就是DE 的投影;(2)利用ABC DEF ∆∆ AB BC DE EF ∴=5AB m = ,4BC m =,6EF m =7.5DE m ∴=随练1、下列说法错误的是()A.两人在太阳光下行走,同一时刻他们的身高与影长的比相等B.两人在同一灯光下行走,同一时刻他们的身高与其影长不一定相等C.一人在同乙灯光下不同地点的影长不一定相同D.一人在不同时间的阳光下同一地点的影长相等【答案】D【解析】暂无解析随练2、请指出下列小明的影子,平行投影的是__________,中心投影是__________.①一个晴天的上午,小明身后的影子;②一个晴天的中午,小明脚下的影子;③夜晚,小明在路灯下的影子;④小明在幻灯机前经过时投在屏幕上的影子【答案】①②;③④【解析】根据中心投影和平行投影的性质,中心投影的光源为灯光,平行投影的光源为阳光与月亮.随练3、某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12m ,并测出此时太阳光线与地面成30 夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发上了变化,假设太阳光线与地面夹角保持不变,求树的最大影长.【答案】(1);(2)【解析】(1)3tan 3012)3AB AC m ==⨯=(2)如图2,112sin 45)2B N AN AB m ====11tan 60)NC NB m === ,11AC AN NC =+=+当树与地面成60 角时影长最大2AC ,222AC AB ==随练4、如图是两根标杆在地面上的影子,根据这些投影,在灯光下的影子是()A.①和②B.②和④C.③和④D.②和③【答案】D【解析】根据物体的顶端和影子顶端的连线必经过光源从而可判断出答案.随练5、如图,小明和小燕在院子里玩捉迷藏游戏,院子里有三堵墙,现在小明站在O点,小燕如果不想被小明看到,则不应该站的区域是()A.(1)B.(2)C.(3)D.(4)【答案】C【解析】∵(1)、(2)、(4)区域均为视力盲区∴站在(1)、(2)、(4)区域均不会被看见,而(3)区在视力范围内∴只要不站在(3)区就不会被看见.中心投影例题1、物体在光线的照射下,会在地面或墙壁上留下它的影子,这种现象就是__________现象,投影现象中,由阳光形成的影子是__________投影,由灯光形成的影子是__________投影,海滩上游人的影子是__________投影,晚上路旁栏杆的影子是__________投影.【答案】投影;平行;中心;平行;中心【解析】根据平行投影和中心投影的定义作答即可.例题2、四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、KB.CC.KD.L、K、C【答案】A【解析】根据平行投影和中心投影的特点和规律.“L”、“K”与“N”属中心投影.例题3、如图,我们常用“y随x的增大而增大”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()y x=+A.y x=B.3C.3y x = D.()233y x =-+【答案】D【解析】从A 到路灯的正下方前他与路灯的距离逐渐减少,经过路灯后它与路灯的距离逐渐增加.随练1、如图,夜晚小亮从点A 经过路灯C 的正下方沿直线走到点B ,他的影长y 随他与点A 之间的距离x 的变化而变化,那么表示y 与x 之间的函数关系的图像大致是()A.B.C.D.【答案】A【解析】设身高GE h =,1CF =,AF a=当x a ≤时,OEG OFC∆∆ OE GE OF CF ∴=,即y h a x l =-h hay x l l∴=-+a 、h l 、均为常数∴这个函数图像是一次函数图像影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.正投影例题1、Rt ABC ∆斜边在平面α上,则ABC ∆在平面α的正投影()A.一定不是钝角三角形B.一定不是直角三角形C.一定不是锐角三角形D.一定是三角形【答案】C【解析】当三角形所在的平面与平面α垂直时,三角形在平面上的正投影是一条线段;当三角形所在的平面与平面不垂直时,投影形成钝角三角形;当三角形在平面上时,形成投影是直角三角形.例题2、一根笔直的小木棒(记为线段AB ),它的正投影为线段CD ,则下列各式中一定成立的是()A.AB CD =B.AB CD ≤C.AB CD >D.AB CD≥【答案】D【解析】根据正投影的定义,当AB 与投影面平行时,AB CD =;当AB 与投影面不平行时,AB CD >.视图知识精讲一.视图当我们从某一角度观察一个物体时,所看到的图像叫做物体的一个视图.视图也可以看做物体在某一角度的光线下的投影.二.常见立体图的三视图如图,我们用三个互相垂直的平面(例如墙角处的三面墙壁)作为投影面,其中正对着我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行投影:在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.三.三视图的做法:1.主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高,左视图与俯视图表示同一物体的宽;主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.2.看得见部分的轮廓线画成实线;3.看不见部分的轮廓线画成虚线.一个投射面水平放置,叫做水平投射面,投射到这个面内的图形叫做俯视图;一个投射面放置在正前方,叫直立投射面,投射到此平面内的图形叫做主视图;和水平投射面、直立投射面都垂直的投射面叫做侧立投射面,通常把这个平面放在直立投射面的右面,投射到这个平面内的图形叫做左视图;三点剖析一.考点:立体图形三视图二.重难点:立体图形三视图及由三视图求解立体图形三.易错点:1.画三视图时看不见的线应该用虚线;2.利用三视图确定小立方体的个数立体图形的三视图例题1、下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图.例题2、如图是一个底面为正三角形的直三棱柱,则这个几何体的主视图是()A.B.C.D.【答案】C【解析】从正面看是两个矩形,矩形的公共边是虚线,例题3、下面四个立体图形,从正面、左面、上面观察都不可能看到长方形的是()A. B. C. D.【答案】C【解析】A、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误;B、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;C、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;D、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误.例题4、如图是一个由若干个正方形搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:________________.【答案】①②③【解析】综合左视图跟主视图:从正面看,第一行第一列有3个正方形,第一行第二列有1个或第二行第2列有一个或都有一个.第二行第1列有2个正方体.随练1、如图①,这是一个正方体毛坯,将其沿一组对面的对角线切去一半,得到一个工件如图②,对于这个工件,左视图、俯视图正确的一组是()①②a b c dA.a,bB.b,dC.a,cD.a,d【答案】D【解析】左视图、俯视图是分别从物体的侧面和上面看所得到的图形.由三视图求解立体图形例题1、若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【答案】A【解析】∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.例题2、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的正方体有多少个小立方块()A.4个B.5个C.6个D.7个【答案】【解析】根据图形可得:最底层有4个小立方块,第二层有1个小立方块,所以构成这个立体图形的小立方块有5个.例题3、如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π【答案】B 【解析】观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,所以其体积为22104370πππ⨯-=(),例题4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图.(如图)(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.【答案】(1)见解析;(2)8n =,9,10,11.【解析】(1)左视图有以下5种情形:(2)8n =,9,10,11.随练1、从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()A. B. C. D.【答案】C【解析】如图所示:∵从一个边长为3cm 的大立方体挖去一个边长为1cm 的小立方体,∴该几何体的左视图为:.随练2、如图所示的是某几何体的三视图,则该几何体的形状是()A.长方形B.三棱柱C.圆柱D.正方体【答案】C 【解析】根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱.随练3、如图是由一些相同的小正方体组成的几何体的三视图,则组成该几何体的小正方体的个数最少为()A.7个B.8个C.9个D.10个【答案】C 【解析】由俯视图可得底面有一排有6个小正方体;从主视图看,第二层最少有2个正方体,第3层最少有一个小正方体,组成该几何体的小正方体的个数为9个.随练4、如图是一个几何体的三视图,则这个几何体的侧面积是()A.πB.9πC.18πD.27π【答案】C 【解析】根据三视图可得:这个几何体为圆锥,∵直径为6,圆锥母线长为6,∴侧面积66218ππ=⨯⨯÷=;随练5、如右图,是一个由若干个小正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是___________.【答案】①②③【解析】根据几何的主视图和左视图即可判断.拓展1、给下列几种关于投影的说法,正确的是()A.矩形的平行投影一定是矩形B.平行直线的平行投影仍是平行直线C.垂直于投影面的直线或线段的正投影是点D.中心投影的投影线是互相平行的【答案】C【解析】矩形的平行投影可能是平行四边形,也可能是线段;平行直线的平行投影可能是平行直线,也可能重合;垂直于投影面的直线或线段的正投影是点;中心投影的投影线是相交于一点的.2、李华的弟弟拿着一个菱形木框在阳光下玩,李华发现菱形木框在阳光照射下,在地面上形成了各种图形的阴影,但以下一种图形始终没有出现,没有出现的图形是()A.B.C. D.【答案】D【解析】根据平行四边形投影的特点,在同一时刻不同物体的物高和影长成比例,所以不可能是梯形.3、如图,一根直立于水平地面上的木杆AB 在灯光下形成影子,当木杆绕点A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB 垂直于地面时的影长为AC (假定AC AB >)的最大值为m ,最小值为n ,那么下列结论:①m AC >;②m AC =;③n AB =;④影子的长度先增大后减小.其中,正确结论的序号是.【答案】①③④【解析】当木杆绕点A 按逆时针方向旋转时,如图所示当AB 与光线BC 垂直时,m 最大,则m AC >,①成立;最小值为AB 与底面重合,故n AB =;由上可知,影子的长度先增大后减小.4、如图,小军、小珠之间的距离为2.7m ,他们在同一盏路灯下的影长分别为1.8m ,1.5m ,已知小军、小珠的身高分别为1.8m ,1.5m ,则路灯的高为_________m .【答案】3【解析】如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴CD DE =AB BE ,FN MN =FB AB ,即1.8 1.8=AB 1.8+BD , 1.5 1.5=AB 1.5+2.7-BD,解得:AB=3m5、如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定【答案】A【解析】灯光下,涉及中心投影,根据中心投影的特点灯光下影子与物体离灯源距离有关,此距离越大,影子才越小.6、如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5mB.变长2.5mC.变短3.5mD.变短2.5m【答案】C【解析】设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴AC MAOP MO=,BD BNOP ON=,则1.68xx a=+,∴14x a=;1.6148yy a= +-,∴1 3.54y a=-,∴ 3.5x y-=,故变短了3.5米.7、如图所示零件的左视图是()A.B.C.D.【答案】D【解析】零件的左视图是两个竖叠的矩形.中间有2条横着的虚线8、如图是由一些相同的小正方体构成的立体图形的三种视图,那么构成这个立体图形的小正方体有()A.4个B.5个C.6个D.7个【答案】B【解析】由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成.故选B.9、如图所示的几何体是由五个小正方体组合而成的,它的左视图是()A. B. C. D.【答案】A【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,10、与如图所示的三视图对应的几何体是()A.B.C.D.【答案】B【解析】根据主视图、左视图、俯视图判断即可得到.11、一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为()A.11B.12C.13D.14【答案】B【解析】由俯视图可得:碟子共有3摞,由几何体的主视图和左视图,可得每摞碟子的个数,如下图所示:故这张桌子上碟子的个数为3+4+5=12个。
5.1 投影 第1课时 数学北师大版九年级上册教案

第五章 投影与视图1 投影第1课时【教学目标】知识与技能:了解中心投影的含义,体会灯光下物体的影子在生活中的运用,体会灯光投影在生活中的实际价值.过程与方法:经历实践、探索的过程,能区别平行投影与中心投影条件下物体的投影.情感态度与价值观:通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力.【重点难点】重点:了解中心投影的含义.难点:能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.【教学过程】一、创设情境投影现象调查(提前一周布置)以4人合作小组为单位,开展调查活动:(1)尽所能收集生活中各类投影现象(用电子图片形式呈现).(2)小组长整理所收集的图片,统一规格要求,交给数学教师.二、探索归纳教师课前整理、选择学生资,多媒体展示,选3—4个小组代表简单介绍,分析投影的光线特点(讲解太阳光线可以看成是平行光线).给展示图片编号,要求学生根据一定的标准进行分类(学优生可以先设定标准,再分类;学困生可以先分类,再根据自己的分类尝试写出分类的标准),通过对分类及标准的过程性加工,使学生明晰投影光线可以看成是从同一个点发出的投影叫中心投影,投影光线可以看成是平行光线的投影叫平行投影.结合中心投影的特点,完成对点光确定方法的学习.例题:确定图中路灯灯泡所在的位置.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤时(确保学生有资可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行班级交流(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明晰对应点的正确找取是确定灯泡位置的关键.三、交流反思今天我最大的收获是……(从数学知识,数学方法和数学思想方面引导学生思考)四、检测反馈1.如图,一个广告牌挡住了路灯的灯泡.(1)确定图中路灯灯泡所在的位置;(2)在图中画出表示小赵身高的线段.2.两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置.(2)画出图中表示婷婷影长的线段.五、布置作业课本P128 习题5.1 第2、3题六、板书设计投影1.探究2.归纳分类:3.应用练习:例题七、教学反思1.多媒体的合理应用,可极大地激发学生的学习兴趣,提高教学效果.在本节课的“综合调查”和“情境引入”教学环节中,通过学生收集和用多媒体展示的人影、皮影、手影等的精彩图片,给学生以视觉冲击,产生了视觉和心理的震撼,这样在课堂“第一时间”抓住了学生的注意力、极大地激发了学生的学习热情,这十分有利于后面教学活动的开展,提高课堂教学效果.2.通过富有挑战性的“问题(或活动)”激发学生的探索欲望,培养创新精神,拓展思维能力.在本节课“合作学习,深入研究”“练习巩固,拓展提高”教学环节中活动设计,由简单的“模仿”到“创作设计”循序渐进、挑战性逐渐增大,不断激发学生的探索欲望,引人入胜,培养创新精神,提高拓展能力.关闭Word文档返回原板块。
九年级数学上册第5章《视图(2)》名师教案(北师大版)

第五章投影与视图2.视图(二)一、学情与教材分析1.学情分析学生在七年级已经学习了从三个不同的方向看小立方块图形,又在本章第一节学习了正投影,本节的第一课时学习了圆柱、圆锥、球及其组合图形的三种视图,初步了解了视图的作用,为进一步学习较复杂图形三种视图的画法打好了基础。
而经过7、8年级的数学学习,学生已经形成了一定的探究能力,思维形式也已经从一般的操作层面上升到了理性思考的层面,对平面与空间的感受更加深刻,具备了将空间图形从不同方面转化为平面图形的能力,这也为本节课的学习奠定了基础。
2.教材分析教科书基于学生对简单几何体三种视图认识的基础之上,提出了本课的具体学习任务:掌握棱柱(主要是三棱柱和四棱柱)的三种视图的画法,这是本课时主要的教学目标,本课《视图》的内容与立体几何有着密不可分的联系,因此本课时的教学不能仅仅是学生掌握最终的结果,还应注重得到结果的过程和对学生动手操作能力和合作交流意识的培养。
二、教学目标1.经历由直三棱柱和直四棱柱到其三种视图的转化过程,发现同一个几何体三种视图之间的关系.2.能根据几何体的俯视图尝试画出它的主视图和左视图.3.能根据简单组合体的实物图尝试画出它的主视图、左视图和俯视图.三、教学重难点重点:掌握正三棱柱的三种视图的画法,培养空间想象能力.难点:能根据几何体的俯视图尝试画出它的主视图和左视图.四、教法建议诱思导学、合作交流、归纳总结相结合,引导学生发现同一个几何体三种视图之间的关系. 五、教学过程(一)课前设计1.预习任务任务1:预习课:137—138页例题上面内容,回答问题:(1)三视图时从三个方面反映平面图形与立体图形的联系:主视图反应物体的_________,俯视图反应物体的__________,主视图反应物体的_________.(2)画一个几何体的三种是师徒时,看得见的轮廓线用_______,看不见的轮廓线用________. 任务2:观看视频:《视图》新知讲解00:00-00:20,体会三种视图的作法,完成课本139页随堂练习第2题,拍照上传.2.预习自测一.选择题1.有一个实物如图所示,那么它的主视图是().A. B. C. D.答案:B解析:解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的棱.故选B.点拨:细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.2.如下图所示的几何体的俯视图应该是().A. B. C. D.答案:B解析:解:从上面看所得几何体的俯视图是矩形,且中间有一条实的竖线.故选:B.点拨:俯视图是从物体上面看所得到的图形,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.二.填空题3.一个工人师傅要制作某一工件,想知道工件的高,他须看到的视图是______或_______. 答案:主视图,左视图解析:解:要想知道工件的高,需从正面或左面看到高,因此需知道主视图或左视图.点拨:从正面看某一工件,看到的是工件的长和高,从左面看到的是工件的宽和高,从上面看到的是工件的长和宽,由此问题得解.解答此类问题,需要注意从三个方向看物体,所看的是到物体的哪些部分.三.解答题4.画出如下图所示立体图形的三视图.答案:解:如图所示:解析:从正面看下面是一个横着的长方形,上面是一个竖着的长方形;从左面看下面是一个横着的长方形,上面是一个三角形;从上面看是一个大正方形中右上一个小正方形.点拨:从正面看下面是一个横着的长方形,上面是一个竖着的长方形;从左面看下面是一个横着的长方形,上面是一个三角形;从上面看是一个大正方形中右上一个小正方形.(或点击“课前预习-名师预习”,选择“《视图(2)》预习自测”)(一)课堂设计1、情境引入导入1:同学们都见过这种纯净水水桶吧,那么你们会画如图摆放的两个纯净水水桶的三种视图吗?提问:(1)如何画一个几何体的三种视图?(2)三种视图分别反映几何体长、宽、高中的哪几方面?(3)画出下列几何体的三种视图:2、探究发现探究一:正三棱柱的三种视图画法如下图所示的是一个正三棱柱.问题1:你能想象出这个正三棱柱的主视图、左视图和俯视图吗?学生大胆猜想,教师多找几名学生发言。
2024-2025学年北师版初中数学九年级上册教案第五章投影与视图5.2视图(第3课时)

第五章 投影与视图2 视图第3课时 由三种视图确定几何体教学目标1.能根据三视图想象出物体形状,进一步提高学生的空间想象能力.2.能画出除了圆柱、圆锥、正方体等几何体外,其他较复杂的几何体的三视图.3.通过小组合作的方式,进一步培养学生的动手操作能力和合作意识.教学重难点重点:根据三视图还原简单的物体. 难点:根据三视图还原几何体.教学过程导入新课问题:下面是哪个几何体的三视图?主视图 左视图 俯视图A B C D通过前面的学习,同学们已经能够根据几何体的特点画出它的三视图,那么如果已知一个几何体的三视图,你能想象出这个几何体吗?本节课让我们继续来研究视图.引出本节课研究的问题——由三种视图确定几何体.探究新知一、知识回顾复习上一节课所学过的三种视图的画法.教学反思1.提问:画一个几何体的三种视图的顺序和位置是什么?2.完成下列练习:(1)如图1所示是一个几何体立体图形的三视图,请根据视图说出几何体的名称:______.图1 图2(2)某几何体的三种视图分别如图2所示,那么这个几何体可能是( )A.长方体B.圆柱C.圆锥D.球设置目的:因为练习(1)(2)提供的是前两课时常见的几何体,学生对这几种几何体的三视图很熟悉,所以大多数学生能很快找出正确答案.二、合作探究活动1 观察图1所示的三种视图,你能在图2中找到与之对应的几何体吗?图1 图2师生活动:让学生观察并判断比较两图,找出三视图与实物之间的对应关系,对于有困难的学生,小组内帮扶、交流,最后教师全面总结.设计意图:在回顾、练习之后引入的探索活动由浅入深,由简单到复杂,学生在观察与推理时有一定的难度,解决的办法可以先由主视图与实物对比,排除②③,再由左视图和俯视图排除①.选择的过程就是空间想象能力的提升过程,让学生体会由三视图推断几何体,逐步还原几何体或实物的过程,进一步理解三视图的位置与大小的对应关系,发展学生的空间想象能力、逆向思维能力.活动2议一议:根据图中的三种视图,你能想象出相应几何体的形状吗?教学反思师生活动:先独立思考,再小组交流,然后学生展示,展示时说出自己判断的依据以及先后顺序.必要的时候教师巡视学生的情况,借助实物帮助分析.设计意图:本活动主要是让学生进行更深层次的体验,脱离了实物,学生完全靠想象在头脑中勾勒几何体的形状,更能提升学生的空间想象能力,在出示图片时可以将三个视图分开呈现,先出示主视图,让学生猜想几何体可能的形状,然后依次出示左视图、俯视图,使几何体的形状范围逐渐缩小,令学生更能理解三视图与几何体之间的联系.活动3 拓展延伸一个几何体的三视图如图所示,根据图中的数据得这个几何体的表面积为( )A.2πB.6πC.7πD.8π思路引领:根据三视图确定几何体→确定几何体表面积的算法. 学生活动:小组合作,根据思路引领进行探索.解析:由几何体的三视图可知该几何体为平放的圆柱,其底面半径为1,高为3,故其表面积S =2π·12+2π·1·3=8π.答案:D活动总结:由三视图计算几何体的体积或表面积的一般步骤:(1)根据三视图描述几何体的形状(或画出表面展开图);(2)根据三视图“长对正、高平齐、宽相等”的教学反思关系和轮廓线的位置确定各个方向的尺寸;(3)用面积公式求出表面积或用体积公式教学反思求出体积.(学生总结,老师点评)课堂练习1.某几何体的三种视图分别如下图所示,那么这个几何体可能是().A.长方体B.圆柱C.圆锥D.球2.如图所示是一个几何体的三视图,请根据视图说出该几何体的名称_______.3.由下列三视图想象出实物形状.4.已知一个几何体的三视图如图所示,画出这个几何体的草图.5.根据如图所示的三种视图,你能想象出相应几何体的形状吗?(画出几何体的草图)参考答案1.B2.圆锥3.解:A是四棱锥,B是球,C是三棱柱.4.解:根据三视图想象出的几何体是一个长方体上面竖立放置一个小圆柱,如图所示.5.解:(1)半球体,如图1所示.(2)四棱柱,如图2所示.图1 图2课堂小结(学生总结,老师点评)由三视图确定几何体的步骤布置作业1.课本142页随堂练习和习题5.52.(选作题)同桌两人合作,每人想象一个几何体并且画出三视图,另一人根据三视图描述几何体的形状.板书设计第五章投影与视图2 视图第3课时由三种视图确定几何体由三视图确定几何体的步骤:(1)根据主视图、俯视图和左视图想象几何体的正面、上面和左面以及几何体的长、宽、高.(2)由实线和虚线想象几何体看得见的部分和看不见的部分的轮廓线.。
北师大九年级数学上册教案:第5章 投影与视图

第五章投影与视图5.1投影第1课时投影的概念与中心投影课题中心投影课型新授课教学目标1.经历实践、探索的过程,了解中心投影的含义,体会灯光下物体的影子在生活中的应用。
2.通过观察、想像,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化。
3.体会灯光投影在生活中的实际价值。
教学重点了解中心投影的含义。
教学难点在中心投影条件下物体与其投影之间相互转化的理解。
教学方法观察实践法教学后记教学内容及过程备注一、创设情境、操作感知皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐。
学生在灯光下做不同的手势,观察映射到屏幕上的表象。
学生小组合作,实验感悟。
概念:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面.做一做取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)去照射这些小棒和纸片。
提问:(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒和纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子发生了什么变化?学生小组合作,实验感悟。
概念:手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线所形成的投影称为中心投影。
二、范例学习、理解领会例1确定图5-1中路灯灯泡所在的位置。
学生观察屏幕,动手实验,找出灯泡的位置。
三、联系生活、丰富联想议一议图5-3,一个广场中央有一盏路灯.(1)高矮相同的两个人在这盏路灯下的影子一定一样长吗?如果不一定,那么什么情况下他们的影子一样长?请实际试一试,并与同伴交流.继续探索:(2)高矮不同的两个人在这盏路灯下的影子有可能一样长吗?学生交流、画图。
四、随堂练习课本随堂练习1、2五、课堂总结本节课让同学们通过实践、观察、探索。
了解中心投影的含义,学会进行中心投影条件下的物体与其投影之间的相互转化。
北师大版九年级数学《投影与视图》回顾与思考教案

第五章投影与视图回顾与思考一、本节课的教学目标如下:1、知识与技能:①通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体与其投影之间的相互转化。
②通过实例能够判断简单物体的三种视图,能够准确画出三种视图,能根据三种视图描述基本几何体或实物原型,并画出草图,实现简单物体与其三种视图之间的相互转化。
2、过程与方法:①通过具体活动,积累数学活动经验,进一步增强学生的动手实践能力和数学思考能力,发展学生的空间观念。
②通过学习和实践活动,增强学生观察与抽象、演示与画图、直观与推理等能力。
3、情感与态度:通过本章内容的回顾与思考,培养学生的归纳、整理等能力;通过对投影与视图的学习,体会数学与学习生活的联系。
二、本节课重难点如下:解决在学生中存在的易错点与能力提升点三、本节课教学过程如下:①学生回忆本章重要知识点,以问题串的形式呈现1.生活中有哪些中心投影和平行投影现象? 举例说明.2.中心投影和平行投影的特点分别是什么? 举例说明灯光及其形成的影子、太阳光及其形成的影子的应用.3.什么是几何体的三种视图?圆柱、圆锥、球、正方体的三种视图分别是什么?如何画直棱柱的三种视图?4.一个几何体的三种视图有什么特征?它与实物有什么联系?5. 学了本章后,你有哪些收获和体会?与同伴进行交流.6.用你自己喜欢的方式梳理本章的知识.②学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系。
(上课前一天布置,让每一位学生都提前做好准备。
)举例:四、基础知识重现---典型例题及练习专题一:中心投影作图例1:如图是灯光下形成的投影,请你在图中画出小朋友的影长.点评:点光源位置的确定由两个物体的投影,即可得到点光源位置,确定方法为:1.分别连接两个物体顶端与它的投影顶端,并延长交于一点.该交点即为点光源位置.2.若要作第三个物体的投影,需要连接点光源与该物体顶端,并延长使与地面相交,那么该点和该物体底端的连线即该物体的投影.专题二:利用光沿直线传播的性质构造相似三角形测高例2. 小明想测量路灯杆上灯泡的高度,就拿起一根2m长的竹竿伸向路灯,但无论如何也触不到.于是他走到路灯旁的一个地方,竖起竹竿,量得竹竿的影长正好是1m;然后他沿着影子的方向走出两根竹竿的长度(即4 m),又竖起竹竿,测得竹竿的影长正好是一根竹竿的长度(即2m),你知道小明将怎样计算灯泡的高度吗?点评:在投影问题的实际应用中,利用投影知识建立相似三角形的数学模型,是解决该类问题的基本思路. 在学习中要善于思考、归纳题目的应用规律.例3:如下图所示,墙边有甲、乙两根木杆,乙木杆的影子刚好不落在墙上.(1)画出太阳光线及甲木杆的影子;(2)当甲木杆高为2 m,乙木杆高为1.5 m,乙木杆到墙的距离为1.5 m时,求甲木杆的影长.专题三:几何体与三视图的相互转化例4:(1)如图所示,在一个透明的玻璃正方体内镶嵌了一条铁丝,请指出图①中的两个图是正方体的哪种视图.解:(1)由三视图的定义可以看出,图①分别是正方体的俯视图、主视图. (2)如图②所示,粗线表示嵌在玻璃正方体内的一根铁丝,画出该正方体的主视图、左视图、俯视图.解:(2)几何体的三视图如图所示.点评:三种视图的作法由几何体确定三种视图时,一定要理清以下概念:主视图是从几何体的正面观察到的平面图形;左视图是从几何体的左面观察到的平面图形;俯视图是从几何体的上面观察到的平面图形;长对正、高平齐、宽相等由三视图计算几何体的体积或表面积的一般步骤:(1)首先要根据三视图描述几何的形状(或画出表面展开图);(2)再根据三视图“长对正、高平齐、宽相等”的关系和轮廓线的位置确定各个方向的尺寸;(3)最后用面积公式求出表面积或用体积公式求体积.五、针对训练1:如图,电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆:(1)请画出路灯O的位置;(2)画出标杆EF在路灯下的影子FH.2:我国《道路交通安全法》第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行”.如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?3:下图是一几何体的两种视图,请你指出其中的错误,并把它们改正过来.4:一个立体图形的三视图如图所示,根据图中的数据得这个立体图形的表面积为( )A.2πB.6πC.7πD.8π六、课堂小结---谈收获内容主要涉及以下几个方面:(1)整节课的感悟:如在画三视图时,要使用刻度尺,画图尽可能精确;在计算时要做到细心;对于学过的内容,自己要及时进行梳理等等;(2)对于某个知识点的困惑;(3)通过本节课的学习,自己的最大收获。
北师大版九年级数学上册第五章投影与视图5.2视图(教案)

(1)视图的概念及其分类:主视图、左视图、俯视图的特点和识别方法。
举例:通过展示实际物体的图片,让学生学会区分不同视图,并能够指出各个视图所呈现的物体面。
(2)视图的画法:掌握根据物体形状绘制主视图、左视图和俯视图的方法。
举例:以简单的几何体为例,引导学生按照一定比例和规范步骤进行视图绘制。
在实践活动中,分组讨论和实验操作让学生们动手动脑,积极投入到学习中来。我发现,学生们在讨论和操作中能够互相学习,互相启发,这种合作学习的方式有助于他们更好地理解视图的画法。
然而,我也注意到,在小组讨论环节,有些学生参与度不高,可能是因为他们对主题不够感兴趣,或者是对自己的观点缺乏信心。在今后的教学中,我需要更加关注这部分学生,鼓励他们积极参与,勇于表达。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解视图的基本概念。视图是物体在不同方向上的投影。它能够帮助我们更直观地理解物体的形状和结构,是工程绘图和建筑设计中不可或缺的部分。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了视图在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调主视图、左视图、俯视图的概念和画法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
二、核心素养目标
本节课的核心素养目标如下:
1.培养学生的空间观念:通过视图的学习,使学生能够更好地观察和认识周围的空间物体,提高空间想象力和思维能力。
2.增强几何直观:让学生在绘制和观察视图过程中,培养几何图形的直观感知能力,为解决几何问题奠定基础。
3.提高数据分析能力:通过视图案例分析,使学生能够运用视图数据来描述物体形状和结构,提高数据分析与应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:第五章投影与视图学科:授课班级:执教教师:授课时间:旁注5.1投影第1课时中心投影【学习目标】1.了解中心投影的含义,体会灯光下物体的影子在生活中的应用.2.能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.【学习重点】体会灯光下物体的影子在生活中的运用,体会灯光投影在生活中的实际价值.【学习难点】根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.情景导入生成问题举例或展示利用光线产生影子的生活现象和应用:(1)物体在日光或灯光的照射下,会在地面、墙面留下影子(可用教室灯光作试验);(2)驴皮影是利用灯光的照射,把影子的形态反映到银幕上的表演艺术;(3)我国古代的计时器日晷,也是利用日影来观测时间的;(4)电影或幻灯片.教学说明:学生可以用自己的手指在墙面上投影来表演某些动物,可让学生来说说日晷的构成和大致原理.同时,再请学生举一些利用光线产生影子的例子.从而激起学生的好奇心和探索欲望.自学互研生成能力知识模块中心投影的概念及作图先阅读教材P125-126页的内容,然后完成下面的填空:1.物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象.通常情况下物体影子所在的平面,称之为投影面.2.探照灯、手电筒、路灯和台灯的光线可以看成是从一个点发出的,像这样的光线所形成的投影称为中心投影.3.根据下面中心投影的作图填空:(1)通过物体上的一点以及它影子上的对应点的直线一定经过点光源;(2)地面上高度相同的物体,离点光源近的物体影子较短,离点光源远的物体影子较长.内容:结合中心投影的特点,完成对点光源确定方法的学习.例题:确定右图中灯泡所在的位置师:结合你们刚才对中心投影的理解,请用铅笔在图中尝试找一下灯泡的位置.生:动手探究.师:走入学生巡视,捕捉教学资源,进行教学指导.根据学生反映情况,教师选择下列方式进行过程性点拨:1.在同一灯光下,物体的影子与物体上对应点的连线超过灯泡所在的位置吗?2.如何找物体与影子上的对应点?3.找一对对应点可以完成灯泡位置的确定吗?4.能够找到灯泡位置的同学,请思考你确定灯泡位置的原理和刚才的具体操作步骤并尝试在图旁边写下来.根据学生反映情况,教师使用实物投影展示,选择下列方式进行过程性打断纠错:1.找错对应点;2.所画光线不进行适当延长,没有相交;3.所画光线不考虑实际背影,画入地平线以下;4.找到灯泡位置,未用字母表示.待绝大多数学生正确完成灯泡位置的确定,大部分学生在思考原理及步骤,部分学生开始书写原理及步骤(确保学生有资源可以交流),教师适时打断,引导学生讨论确定灯泡位置方法的原理和具体操作的步骤,并要求小组派代表进行班级交流(确保学生真正参与交流),使全班同学掌握作图原理及操作步骤,明晰对应点的正确找取是确定灯泡位置的关键.对应练习:两棵小树在一盏路灯下的影子如图所示.(1)确定该路灯灯泡所在的位置;(2)画出图中表示婷婷影长的线段.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块中心投影的概念及作图检测反馈达成目标1.皮影戏是在哪种光照射下形成的(A)A.灯光B.太阳光C.平行光D.都不是2.下列各种现象属于中心投影现象的是(B)A.上午10点时,走在路上的人的影子B.晚上10点时,走在路灯下的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子3.小刚走路时发现自己的影子越走越长,这是因为(A)A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近C.人与路灯的距离与影子长短无关D.路灯的灯光越来越亮4.如图,在一间黑屋里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:___________________________________________________________________第2课时平行投影【学习目标】1.了解平行投影的含义,能够确定物体在太阳光下的影子,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的.2.会根据物体的影子情况区分平行投影和中心投影.【学习重点】了解平行投影的含义,并理解物体、影子、光线这三者之间的关系,能正确作图.【学习难点】结合相似的知识,解决简单实际问题.情景导入生成问题1.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子(C) A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短2.已知小明的身高比小强高,那么在同一路灯下(D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长自学互研生成能力知识模块平行投影的概念及作图先阅读教材P129-130页的内容,然后完成下面的填空:1.太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影,假设一束平行光线从正面投射到物体上,当投影射线与投影面垂直时,这种投影叫做正投影.2.在平行投影中,物体上的点和影子的对应点连线互相平行.在同一时刻太阳光下,互相平行的物体,影长和物长的比相等.3.平行投影的光源是平行光源,其光线是平行的;中心投影的光源是点光源,其光线交汇于一点.4.就北半球而言,从早晨到傍晚,物体影子的指向是:上午向西,下午向东;影长的变化情况是:上午日影越来越短,下午日影越来越长.内容:1.下面三幅图片是我国北方某地某天上午不同时刻的同一位置拍摄的,请将它们按照拍摄前后顺序,进行排列.(1)在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.(2)在同一时刻,两棵树影子的长度与它们的高度之间有什么关系?与同伴交流.2.某校墙边有甲、乙两根木杆,已知木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图所示.你能画出此时乙木杆的影子吗?(2)当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)如果此时测得甲、乙木杆的影子长为1.24m和1m,那么你能求出甲木杆的高度吗?目的:借助例题讲解的形式,让学生深入了解并运用上一环节所学的相关知识.通过问题1深化学生所学知识,发现物体、影子、光线这三者之间;确定其中的两个因素即可确定第三个因素;通过问题2,让学生学会动态看待投影问题,通过问题3,使学生能够应用所探究到的知识解决实际问题.3.做一做:(1)如图下左是两棵小树在同一时刻的影子,请在图中画出形成树影的光线,并判断它们是太阳的光线还是灯火的光线?(2)如上右图是两棵小树在同一时刻的影子,请在图中画出形成树影的光线,并判断它们是太阳的光线还是灯火的光线?交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块平行投影的概念及作图检测反馈达成目标1.下列光源发出的光线中,能形成平行投影的是(B)A.探照灯B.太阳C.路灯D.手电筒2.如图,当平行光线由左面射向圆柱,则图中圆柱的投影是(B)A.圆B.矩形C.梯形D.圆柱3.如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列,正确的是(B)A.①②③④B.②①③④C.④②③①D.④③②①4.小明同学在学习了相似三角形的知识后,就想利用树影测量树高,但这棵树离楼房太近,影子不全落在地上,有一部分影子落在墙上,如图,在某时刻测留在墙上的影子长为1.2m,测得地面影长4.9m,巧的是他拿的竹竿的长也是1.2m,竹竿的影长1.05m,你知道小明是怎样求树高AB的吗?你知道结果是多少吗?解:设树高AB为x m,延长AD交地面于E,由1.21.05=x(4.9+1.05),解得x=6.8.课后反思查漏补缺5.2视图第1课时常见简单几何体的视图【学习目标】1.会画圆柱、圆锥、球等常见几何体的三种视图,体会这几种几何体及其视图之间的转化.2.经历由实物抽象出几何体的过程,进一步发展空间观念.【学习重点】探索基本几何体(圆柱、圆锥、球)与其三种视图(主视图、左视图、俯视图)之间的关系.【学习难点】会判断简单物体的三视图,结合具体实例,初步体会视图在现实生活中的应用.情景导入生成问题1.物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象.影子所在的平面称为投影面.2.太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影;如果平行光线与投影面垂直,这种投影称为正投影.自学互研生成能力知识模块视图的概念及常见几何体的视图先阅读教材P134-135页的内容,然后完成下面的填空:1.用正投影的方法绘制的物体在投影面上的图形,称为物体的视图.2.通常我们把从正面得到的视图叫做正视图,从左面得到的视图叫做左视图,从上面得到的视图叫做俯视图.3.请在下列表格中画出圆柱、圆锥、球的三种视图.内容:1.如图,这个物体可以看作是由什么几何体组成的?2.假如一束平行光线从正面、左面、上面投射到物体上,你能想象出它的正投影吗?试着画出来.物体的正投影称为物体的视图,由此自然引出主视图、左视图、俯视图的定义,随之准确给出上述三种图形的名称.目的:这一部分是让学生经历实物抽象成几何体的,在前面的基础上将长方体增加到大小不一的两个,培养学生的抽象能力和想象能力,看清楚长方体三视图的特点,灵活运用所学得到两个长方体组合的三视图,培养学生举一反三的能力.3.参照教材提供的几何体,提出问题:(1)下图中物体的形状分别可以看成什么样的几何体?(2)你能在下列图形中找出上面几何体对应的主视图吗?(3)你能想象出它们的左视图和俯视图吗?与同伴交流,请你试着画出来.(4)你能说出常见几何体的三种视图的特点吗?目的:以问题串的形式引导学生逐步深入思考三种视图的特点.第一个问题的设置帮助学生,让学生经历将实物抽成几何体的过程,培养学生的抽象能力;问题(2)的设置帮助学生体会物体的曲面正投影变成平面,为完成问题(3)扫清障碍.在以上三个问题的铺设下,问题(4)的设置起到归纳总结的作用.对应练习:1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(A),A),B),C),D) 2.下列四个几何体中,左视图为圆的是(D),A),B),C),D) 3.如图,已知该几何体是由一些小正方体组合而成的,则这个几何体的俯视图是图中的(D),A),B),C),D)4.由五个同样大小的立方体组成如图所示的几何体,则关于此几何体三种视图叙述正确的是(B)A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块视图的概念及常见几何体的视图检测反馈达成目标1.如图所示的几何体是由若干个大小相同的小立方块搭成的,则这个几何体的左视图是(D),A),B),C),D)2.如图所示的几何体的主视图是(B),A),B),C) ,D)3.下列四个几何体中,俯视图为四边形的是(D),A),B),C),D)4.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是(B),A),B),C),D)5.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是(C) ,A.正方体),B.圆柱),C.圆锥),D.球)课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:_________________________________________________第2课时画简单几何的三视图【学习目标】1.会画直三棱柱和直四棱柱的三种视图.2.能根据几何体的俯视图尝试画出它的主视图和左视图.【学习重点】知道画物体三种视图的规则,明确视图中实线和虚线的含义,体会简单几何体三种视图之间的相互关系.【学习难点】知道画物体三种视图的规则,明确视图中实线和虚线的含义,体会简单几何体三种视图之间的相互关系.情景导入生成问题1.请你找出下列物体所对应的主视图2.画出下列几何体的三种视图:自学互研生成能力知识模块探索画简单几何体视图的规则先阅读教材P137-138页的内容,然后完成下面的填空:1.如图,画一个物体的三视图时应画出主视图,主视图下面画俯视图,主视图右面画左视图.2.主视图反映物体的左右长度和上下高度,俯视图反映物体的左右长度和前后宽度,左视图反映物体的上下高度和前后宽度,因此在画三视图时,主、俯视图要做到长对正,主、左视图要高平齐,左、俯视图要宽相等;3.在画视图时,看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.内容:(一)绘制三棱柱的三视图如右图,出示一个三棱柱(最好有实物模型)1.提问:你能想象出这个正三棱柱的主视图、左视图和俯视图吗?你能画出它们吗?2.小亮画出了这个几何体的三视图,你同意他的画法吗?3.你所画的主视图与俯视图中有哪些部分对应相等?主视图与左视图中有哪些部分对应相等?左视图与俯视图呢?目的:使学生掌握三棱柱三视图的画法.首先引导学生观察并想象,怎样画出空间立体图形的三视图,在收集学生有价值的资源的基础上讨论,给出小亮画的三视图,归纳总结正确的画法,在此基础上,让学生展示讨论问题3,引导学生体会三视图的关系及规范画法的好处.结论:(1)三种视图分别反映几何体长、宽、高中的哪几方面?主视图反映长和高,俯视图反映长和宽,左视图反映高和宽;(2)如何画一个几何体的三种视图?(顺序和位置):应先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.(二)直四棱柱三种视图的画法.1.如右图,出示一个四棱柱(最好有实物模型);2.先由学生想象,然后动手画出四棱柱的主视图、左视图和俯视图.3.以小组为单位交流四棱柱的三视图,看看谁画的最正确,并派代表向全班展示,说明画四棱柱三种视图的注意事项.目的:使学生掌握四棱柱三种视图的画法和注意事项.采用上述设计是为了在学生已经学习了三棱柱三视图的画法和注意事项的基础上,类比学习四棱柱三种视图的画法.注意事项:(1)看不见的棱应用虚线,看得见的棱用实线,边框都是实线;(2)主视图中两条虚线应与俯视图中四边形的两个顶点对齐;(3)左视图中间的实线与左边实线的距离应等于俯视图中两条虚线间的距离;(4)在画图时最好先画俯视图,再根据俯视图画主视图和左视图.对应练习:1.如图所示的零件的左视图是(D),A),B),C),D)2.如图所示的几何体的俯视图是(B),A),B),C),D)3.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左视图是(C),A),B),C),D)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块探索画简单几何体视图的规则检测反馈达成目标1.如图所示,该几何体的俯视图是(B),A),B),C),D)2.如图,是由三个相同的小正方体组成的几何体,该几何体的俯视图是(D),A),B),C) ,D)3.将两个长方体如图放置,则所构成的几何体的左视图可能是图中的(C),A),B),C) ,D)4.关于如图所示的正六棱柱的视图(主视图、左视图、俯视图),画法错误的是图中的(A),A),B),C),D)5.画出下列几何体的三视图.解:课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:__________________________________第3课时简单几何体三种视图的应用【学习目标】1.能由三视图想象出简单几何体的形状,并且能画出草图.2.能画出除了圆柱、圆锥、正方体等几何体外,其他较复杂几何体的三视图.【学习重点】画出较复杂几何体的三视图.【学习难点】根据所给物体的三视图,想象出相应几何体的形状.情景导入生成问题复习上一节课所学过的三种视图的画法:1.提问:如何画一个几何体的三种视图?(顺序和位置)答:应先确定主视图的位置,画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.2.三种视图分别反映几何体长、宽、高的哪几方面?答:主视图反映长和高,俯视图反映长和宽,左视图反映高和宽.3.完成下列练习:(1)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称圆锥.(2)某几何体的三种视图分别如下图所示,那么这个几何体可能是(B)A.长方体B.圆柱C.圆锥D.球自学互研生成能力知识模块简单几何体三视图的应用先阅读教材P141页的内容,然后完成下面的问题:1.一个几何体的三视图如图所示,则这个几何体是(D)A.长方体B.圆柱C.圆锥D.正三棱柱2.长方体的主视图、俯视图如图所示,则其左视图面积为(A)A.3B.4C.12D.16内容:(一)观察图①的三种视图,你能在图②找到与之对应的几何体吗?,),)目的:在回顾练习之后引入的探索活动由浅入深,由简单到复杂,学生在观察与推理时有一定的难度,解决的办法可以先由主视图与实物对比,排除(2)(3),再由左视图和俯视图排除(1),选择的过程就是空间想象能力的提升过程.(二)根据下面的三种视图,你能相象出相应几何体的形状吗?先独立思考,再小组交流.目的:本环节主要是让学生进行更深层次的体验,脱离了实物的对比,学生完全靠想象在头脑中勾勒几何体的形状,更能激发学生的空间想象能力,在出示图片时可以将三个视图分开呈现,先出示主视图,让学生猜想几何体可能的形状,然后再依次出示左视图、俯视图,几何体的形状范围逐渐缩小,使学生更能理解三视图与几何体之间的联系.对应练习:1.下列四个水平放置的几何体中,三视图如图所示的是(D),A),B),C),D) 2.下面的三视图所对应的物体是(A),A),B),C),D)3.与图中的三视图相对应的几何体是(B),A),B),C),D)4.如图是某几何体的三视图,其侧面积为(C)A.6B.4πC.6πD.12π5.下面是某一个几何体的三视图,该几何体的名称是正三棱锥.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块简单几何体三视图的应用检测反馈达成目标1.如图是一个几何体的三视图,则该几何体的展开图可以是(A),A),B) ,C) ,D) 2.如图是某几何体的三视图及相关数据,则下面判断正确的是(D)A.a>c B.b>c C.4a2+b2=c2D.a2+b2=c23.如图是一个几何体的三视图,则这个几何体的侧面积是(A)A.18cm2B.20cm2C.(18+23)cm2D.(18+43)cm24.如图是由几个相同的小立方块组成的三视图,小立方块的个数是(B)A.3个B.4个C.5个D.6个5.一张桌子上摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有13个碟子.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:__________________________________________________________二、学习者分析。