专题:函数隐性零点问题

专题:函数隐性零点问题
专题:函数隐性零点问题

函数隐性零点问题

近年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。

函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 1.不含参函数的隐性零点问题

已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,②注意确定0x 的合适范围. 2.含参函数的隐性零点问题

已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关.

题型一 求参数的最值或取值范围

例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2.

(1)求f (x )的单调区间;

(2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增;

若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1.

故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k <

1

1

-+x

e x +x (x >0)(*), 令g (x )=1

1-+x e x +x ,则g′(x )=2

)1()2(---x x x e x e e ,而函数f (x )=e x

﹣x ﹣2在(0,+∞)

上单调递增,①f (1)<0,f (2)>0,所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点.设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a )

③所以g (a )=a+1∈(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2.

点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

题型二 不等式的证明

例2.(湖南部分重点高中联考试题)已知函数f (x )=

2

)(ln a x x

+,其中a 为常数.

(1)若a=0,求函数f (x )的极值;

(2)若函数f (x )在(0,﹣a )上单调递增,求实数a 的取值范围;

(3)若a=﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2. 解析(1)略解f (x )极大值=f (e )=

e

21

,无极小值; (2)可得a≤﹣

e

2

(3)证明:a=﹣1,则f (x )=

2

)

1(ln -x x

导数为f′(x )=3

)1(1

ln 21---x x x ,

①设函数f (x )在(0,1)上的极值点为x 0,②可得01

ln 210

0=-

-x x ,即有0

01

1ln 2x x -

=,

要证f (x 0)<﹣2,即2

00

)1(ln -x x +2<0,由于200

)1(21

1--

x x +2=)1(21

00-x x +2=)1(2)21(0020--x x x ,由

于x 0∈(0,1),且x 0=21,2lnx 0=1﹣01x 不成立,③则02)

1(ln 2

00

<+-x

x ,故f (x 0)<﹣2成立.

例3.(2017年全国课标1)已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0.

(1)求a ;

(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣

2<f (x 0)<2﹣

2.

解析(1)因为f (x )=ax 2﹣ax ﹣xlnx=x (ax ﹣a ﹣lnx )(x >0),则f (x )≥0等价于h (x )=ax ﹣a ﹣lnx≥0,求导可知h ′(x )=a ﹣

x

1

.则当a≤0时h ′(x )<0,即y=h (x )在(0,+∞)上单调递减,所以当x 0>1时,h (x 0)<h (1)=0,矛盾,故a >0.

因为当0<x <

a 1时h ′(x )<0,当x >a 1时h ′(x )>0,所以h (x )min =h (a

1), 又因为h (1)=a ﹣a ﹣ln1=0,所以

a

1

=1,解得a=1; (另解:因为f (1)=0,所以f (x )≥0等价于f (x )在x >0时的最小值为f (1),所以等价于f (x )在x=1处是极小值,所以解得a=1;)

(2)证明:由(1)可知f (x )=x 2﹣x ﹣xlnx ,f′(x )=2x ﹣2﹣lnx ,令f′(x )=0,可得2x ﹣2﹣lnx=0,记t (x )=2x ﹣2﹣lnx ,则t′(x )=2﹣

x

1

,令t′(x )=0,解得:x=21,所以t (x )在区

间(0,21

)上单调递减,在(

21,+∞)上单调递增,所以t (x )min =t (2

1

)=ln2﹣1<0,从而t (x )=0有解,即f ′(x )=0存在两根x 0,x 2,且不妨设f′(x )在(0,x 0)上为正、在(x 0,x 2)上为负、在(x 2,+∞)上为正,所以f (x )必存在唯一极大值点x 0,且2x 0﹣2﹣lnx 0=0,所以f (x 0)=2

0x ﹣

0x ﹣00ln x x =20x ﹣0x ﹣)22(00-x x =﹣20x +0x ,由x 0<

2

1

可知f (x 0)<41

212

1)(2

m a x 02

0=+-

=+-x x ;由f ′(e 1)<0可知x 0<e 1<21, 所以f (x )在(0,x 0)上单调递增,在(x 0,

e 1)上单调递减,所以

f (x 0)>f (e 1)=21e

; 综上所述,f (x )存在唯一的极大值点x 0,且e ﹣

2<f (x 0)<2﹣

2.

简要分析:通过上面三个典型案例,不难发现处理隐性零点的三个步骤;这里需要强调的是: 第一个步骤中确定隐性零点范围的方式是多种多样的,可以由零点的存在性定理确定,也可以由函数的图象特征得到,甚至可以由题设直接得到,等等;至于隐性零点的范围精确到多少,由所求解问题决定,因此必要时尽可能缩小其范围;

第二个步骤中进行代数式的替换过程中,尽可能将目标式变形为整式或分式,那么就需要尽可能将指、对数函数式用有理式替换,这是能否继续深入的关键;

第三个步骤实质就是求函数的值域或最值。

最后值得说明的是,隐性零点代换实际上是一种明修栈道,暗渡陈仓的策略,也是数学中“设而不求”思想的体现。

变式训练

1.已知函数 f (x )=22

ln )2

1(ax x x x ++(a ∈R ),曲线y=f (x )在x=1处的切线与直线x+2y ﹣1=0垂直.

(1)求a 的值,并求f (x )的单调区间;

(2)若λ是整数,当x >0时,总有f (x )﹣(3+λ)x 221x >

-

λlnx+24

1

x ,求λ的最大值. 解析:(1)函数f (x )的定义域是(0,+∞),f'(x )=(x+1)ln x+(2a+

2

1

)x+1,依题意可得,f'(1)=1,2a+

21+1=2,∴4

1

=a , f '(x )=(x+1)ln x+(x+1)=(x+1)(lnx+1),令f '(x )=0,即(x+1)(ln x+1)=0,∵x >0,∴e

x 1

>

.x ∈(

e 1,+∞)时,f′(x )>0,x ∈(0,e

1

)时,f ′(x )<0.∴f (x )的递增区间是(

e 1,+∞),单调递减区间为(0,e

1

). (2)由(Ⅰ)可知,f (x )=(

221x +x )lnx+4

1x 2? 2241ln 21)3()(x x x x x f +>

-+-λλ

?λ>+-13ln x x x x .

设h (x )=

1

3ln +-x x

x x ,只需λ<h (x )min

h '(x )=

2)1()3ln ()1)(3ln 1(+--+-+x x x x x x =2

)

1(ln 2++-x x

x (x >0), 令u (x )=x ﹣2+ln x ,∴u'(x )=1+

x

1

>0,可得u (x )在(0,+∞)上为单调递增函数, ∵u (1)=﹣1<0,u (2)=ln 2>0,∴存在x 0∈(1,2),使u (x 0)=0, 当x ∈(x 0,+∞)时,u (x )>0,即h'(x )>0,

当x ∈(0,x 0)时,u (x )<0,即h '(x )<0,∴h (x )在x=x 0时取最小值,且h (x )min =

1

3ln 00

00+-x x x x ,

又u (x 0)=0,∴ln x 0=2﹣x 0, h (x )min =

1

3)2(00

00+--x x x x =x 0,

∵λ<h (x )min ,λ∈Z ,x 0∈(1,2),∴﹣x 0∈(﹣2,﹣1),λ的最大值为﹣2. 2.设函数f (x )=e 2x ﹣alnx .

(Ⅰ)讨论f (x )的导函数f′(x )零点的个数; (Ⅱ)证明:当a >0时,f (x )≥2a+aln

a

2

. 解析:(Ⅰ)f (x )=e 2x ﹣alnx 的定义域为(0,+∞),∴f ′(x )=2e 2x ﹣

x

a

. 当a≤0时,f′(x )>0恒成立,故f ′(x )没有零点, 当a >0时,∵y=e 2x 为单调递增,y=﹣

x

a

单调递增,∴f ′(x )在(0,+∞)单调递增,又f′(a )>0,假设存在b 满足0<b <ln 2a 时,且b <4

1

,f′(b )<0,故当a >0时,导函数f ′(x )存在唯一的零点。

(Ⅱ)由(Ⅰ)知,可设导函数f ′(x )在(0,+∞)上的唯一零点为x 0,

当x ∈(0,x 0)时,f′(x )<0,当x ∈(x 0+∞)时,f′(x )>0,故f (x )在(0,x 0)单调递减,在(x 0+∞)单调递增,所以当x=x 0时,f (x )取得最小值,最小值为f (x 0),

由于

02x a ﹣0x a =0,所以f (x 0)=02x a +2ax 0+aln a 2≥2a+aln a 2.故当a >0时,f (x )≥2a+aln a

2. 3.设函数()ln f x x =,是否存在实数a ,使得2(

)()()02ax a x

f f e f x a

?+≤对任意正实数x 恒成立?若存在,求出满足条件的实数a ;若不存在,请说明理由.

解析: 令()g x 2=(

)()()ln 2ln ln ln 22ax a x

f f e f ax a ax x x a x a

?+=?-?+-,其中0,0x a >> 则()g x '=1ln 2ln a a a x a x ?--+, 22

11

()0a ax g x x x x +''=--=-

<. ∴()g x '在(0,)+∞单调递减,()0g x '=在区间(0,)+∞必存在实根,不妨设0()0g x '=,

即0001()ln 2ln 0g x a a a x a x '=?--+

=,可得00

1

ln ln 21x a ax =+-(*) ()g x 在区间0(0,)x 上单调递增,在0(,)x +∞上单调递减,所以max 0()()g x g x =, 0000()(1)ln 2(1)ln g x ax a ax x =-?--?,代入(*)式得000

1

()2g x ax ax =+

-. 根据题意0001()20g x ax ax =+

-≤恒成立. 又根据基本不等式,00

12ax ax +≥,当且仅当001ax ax =

时,等式成立. 所以0

01

2ax ax +=,01ax =,01x a ∴=. 代入(*)式得,1ln ln 2a a

=,即12,a a

=2

a =.

课后作业

1.已知函数f (x )=(ae x ﹣a ﹣x )e x (a ≥0,e=2.718…,e 为自然对数的底数),若f (x )≥0对于x ∈R 恒成立.

(1)求实数a 的值;

(2)证明:f (x )存在唯一极大值点x 0,且

【解答】(1)解:f (x )=e x (ae x ﹣a ﹣x )≥0,因为e x >0,所以ae x ﹣a ﹣x ≥0恒成立,

即a (e x ﹣1)≥x 恒成立, x=0时,显然成立;

x>0时,e x﹣1>0,故只需a≥在(0,+∞)恒成立,令h(x)=,(x>0),

h′(x)=<0,故h(x)在(0,+∞)递减,而==1,故a≥1;

x<0时,e x﹣1<0,故只需a≤在(﹣∞,0)恒成立,令g(x)=,(x<0),

g′(x)=>0,故h(x)在(﹣∞,0)递增,而==1,故a≤1.

综上:a=1;

(2)证明:由(1)f(x)=e x(e x﹣x﹣1),故f'(x)=e x(2e x﹣x﹣2),

令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1,

所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增,h(0)=0,h(ln)=2eln

﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0,

∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知,方程h(x)=0在(﹣2,ln)有唯一根,设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0,所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增,从而f(x)存在唯一的极大值点x0即证,由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1,

∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=,取等不成立,所以f(x0)<得证,又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增,

所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证,

从而0<f(x0)<成立.

2.已知函数f(x)=ax+xlnx(a∈R)

(1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围;

(2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.【解答】(1)∵函数f(x)在区间[e,+∞)上为增函数,∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.∴a≥﹣2.∴a的取值范围是[﹣2,+∞).

(2)a=1时,f(x)=x+lnx,k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

∴k<,令g(x)=,则g′(x)=,令h(x)=x﹣lnx﹣2(x>1).则h′(x)=1﹣=>0,∴h(x)在(1,+∞)上单增,

∵h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,存在x0∈(3,4),使h(x0)=0.

即当1<x<x0时h(x)<0 即g′(x)<0;x>x0时h(x)>0 即g′(x)>0.

g(x)在(1,x0)上单减,在(x0+∞)上单增.令h(x0)=x0﹣lnx0﹣2=0,即lnx0=x0﹣2,

g(x)min=g(x0)===x0∈(3,4).

k<g(x)min=x0∈(3,4),且k∈Z,∴k max=3.

3.函数f(x)=alnx﹣x2+x,g(x)=(x﹣2)e x﹣x2+m(其中e=2.71828…).

(1)当a≤0时,讨论函数f(x)的单调性;

(2)当a=﹣1,x∈(0,1]时,f(x)>g(x)恒成立,求正整数m的最大值.

【解答】(1)函数f(x)定义域是(0,+∞),,

(i)当时,1+8a≤0,当x∈(0,+∞)时f'(x)≤0,函数f(x)的单调递减区间是(0,+∞);

(ⅱ)当,﹣2x2+x+a=0的两根分别是:

,,

当x∈(0,x1)时f'(x)<0.函数f(x)的单调递减.

当x∈(x1,x2)时f'(x)>0,函数f(x)的单调速递增,

当x∈(x2,+∞)时f'(x)<0,函数f(x)的单调递减;

综上所述,(i)当时f(x)的单调递减区间是(0,+∞),

(ⅱ)当时,f(x)的单调递增区间是,

单调递减区间是和

(2)当a=﹣1,x∈(0,1]时,f(x)>g(x),即m<(﹣x+2)e x﹣lnx+x,

设h(x)=(﹣x+2)e x﹣lnx+x,x∈(0,1],∴,

∴当0<x≤1时,1﹣x≥0,

设,则,∴u(x)在(0,1)递增,

又∵u(x)在区间(0,1]上的图象是一条不间断的曲线,且,∴使得u(x0)=0,即,

当x∈(0,x0)时,u(x)<0,h'(x)<0;当x∈(x0,1)时,u(x)>0,h'(x)>0;

∴函数h(x)在(0,x0]单调递减,在[x0,1)单调递增,

∴=,

∵在x∈(0,1)递减,∵,∴,

∴当m≤3时,不等式m<(﹣x+2)e x﹣lnx+x对任意x∈(0,1]恒成立,

∴正整数m的最大值是3.

4.已知函数f(x)=e x+a﹣lnx(其中e=2.71828…,是自然对数的底数).

(Ⅰ)当a=0时,求函数a=0的图象在(1,f(1))处的切线方程;

(Ⅱ)求证:当时,f(x)>e+1.

【解答】(Ⅰ)解:∵a=0时,∴,∴f(1)=e,f′(1)=e ﹣1,∴函数f(x)的图象在(1,f(1))处的切线方程:y﹣e=(e﹣1)(x﹣1),即(e﹣1)x﹣y+1=0;(Ⅱ)证明:∵,设g(x)=f′(x),则,

∴g(x)是增函数,∵e x+a>e a,∴由,∴当x>e﹣a时,f′(x)>0;

若0<x<1?e x+a<e a+1,由,∴当0<x<min{1,e﹣a﹣1}时,f′(x)<0,

故f′(x)=0仅有一解,记为x0,则当0<x<x0时,f′(x)<0,f(x)递减;当x>x0时,f′(x)>0,f(x)递增;∴,

而,记h(x)=lnx+x,则

,?﹣a<?h(x0)<h(),而h(x)显然是增函数,∴,∴.

综上,当时,f(x)>e+1.

5.已知函数f(x)=axe x﹣(a+1)(2x﹣1).

(1)若a=1,求函数f(x)的图象在点(0,f(0))处的切线方程;

(2)当x>0时,函数f(x)≥0恒成立,求实数a的取值范围.

【解答】(1)若a=1,则f(x)=xe x﹣2(2x﹣1),当x=0时,f(0)=2,f'(x)=xe x+e x﹣4,

当x=0时,f'(0)=﹣3,所以所求切线方程为y=﹣3x+2.……(3分)

(2)由条件可得,首先f(1)≥0,得,而f'(x)=a(x+1)e x﹣2(a+1),

令其为h(x),h'(x)=a(x+2)e x恒为正数,所以h(x)即f'(x)单调递增,

而f'(0)=﹣2﹣a<0,f'(1)=2ea﹣2a﹣2≥0,所以f'(x)存在唯一根x0∈(0,1],

且函数f(x)在(0,x0)上单调递减,在(x0+∞)上单调递增,

所以函数f(x)的最小值为,只需f(x0)≥0即可,

又x0满足,代入上式可得,

∵x0∈(0,1],∴,即:f(x0)≥0恒成立,所以.……(13分)6.函数f(x)=xe x﹣ax+b的图象在x=0处的切线方程为:y=﹣x+1.

(1)求a和b的值;

(2)若f(x)满足:当x>0时,f(x)≥lnx﹣x+m,求实数m的取值范围.

【解答】(1)∵f(x)=xe x﹣ax+b,∴f′(x)=(x+1)e x﹣a,由函数f(x)的图象在x=0处的切线方程为:y=﹣x+1,知:,解得a=2,b=1.

(2)∵f(x)满足:当x>0时,f(x)≥lnx﹣x+m,∴m≤xe x﹣x﹣lnx+1,①

令g(x)=xe x﹣x﹣lnx+1,x>0,则=,

设g′(x0)=0,x0>0,则=,从而lnx0=﹣x0,

g′()=3()<0,g′(1)=2(e﹣1)>0,由g′()﹣g′(1)<0,知:,当x∈(0,x0)时,g′(x)<0;当x∈(x0,+∞)时,g′(x)>0,

∴函数g(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增.

∴g(x)min=g(x0)=﹣x0﹣lnx0=﹣x0﹣lnx0=x0?﹣x0+x0=1.

m≤xe x﹣x﹣lnx+1恒成立?m≤g(x)min,∴实数m的取值范围是:(﹣∞,1].

7.已知函数f(x)=3e x+x2,g(x)=9x﹣1.

(1)求函数φ(x)=xe x+4x﹣f(x)的单调区间;

(2)比较f(x)与g(x)的大小,并加以证明.

【解答】(1)φ'(x)=(x﹣2)(e x﹣2),令φ'(x)=0,得x1=ln2,x2=2;

令φ'(x)>0,得x<ln2或x>2;令φ'(x)<0,得ln2<x<2.

故φ(x)在(﹣∞,ln2)上单调递增,在(ln2,2)上单调递减,在(2,+∞)上单调递增.(2)f(x)>g(x).证明如下:

设h(x)=f(x)﹣g(x)=3e x+x2﹣9x+1,∵h'(x)=3e x+2x﹣9为增函数,

∴可设h'(x0)=0,∵h'(0)=﹣6<0,h'(1)=3e﹣7>0,∴x0∈(0,1).

当x>x0时,h'(x)>0;当x<x0时,h'(x)<0.

∴h(x)min=h(x0)=,又,∴,

∴==(x0﹣1)(x0﹣10),

∵x0∈(0,1),∴(x0﹣1)(x0﹣10)>0,

∴h(x)min>0,∴f(x)>g(x).

8.已知函数f(x)=lnx+a(x﹣1)2(a>0).

(1)讨论f(x)的单调性;

(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.

【解答】(1),

①当0<a≤2时,f'(x)≥0,y=f(x)在(0,+∞)上单调递增,

②当a>2时,设2ax2﹣2ax+1=0的两个根为,且

,y=f(x)在(0,x1),(x2,+∞)单调递増,在(x1,x2)单调递减.

(2)证明:依题可知f(1)=0,若f(x)在区间(0,1)内有唯一的零点x0,

由(1)可知a>2,且.于是:①②由①②得,设,

则,因此g(x)在上单调递减,

又,

根据零点存在定理,故.

9.已知函数f(x)=,其中a为常数.

(1)若a=0,求函数f(x)的极值;

(2)若函数f(x)在(0,﹣a)上单调递增,求实数a的取值范围;

(3)若a=﹣1,设函数f(x)在(0,1)上的极值点为x0,求证:f(x0)<﹣2.

【解答】(1)f(x)=的定义域是(0,+∞),f′(x)=,

令f′(x)>0,解得0<x<,令f′(x)<0,解得:x>,

则f(x)在(0,)递增,在(,+∞)递减,故f(x)极大值=f()=,无极小值;

(2)函数f(x)的定义域为{x|x>0且x≠﹣a}.=,要使函数f(x)在(0,﹣a)上单调递增,则a<0,又x∈(0,﹣a)时,a<x+a<0,

只需1+﹣2lnx≤0在(0,﹣a)上恒成立,即a≥2xlnx﹣x在(0,﹣a)上恒成立,

由y=2xlnx﹣x的导数为y′=2(1+lnx)﹣1=1+2lnx,

当x>时,函数y递增,0<x<时,函数y递减,

当﹣a≤即﹣<a<0时,函数递减,可得a≥0,矛盾不成立;

当﹣a>即a<﹣时,函数y在(0,)递减,在(,﹣a)递增,

可得y<﹣2aln(﹣a)+a,可得a≥﹣2aln(﹣a)+a,解得﹣1≤a<0,则a的范围是[﹣1,0);(3)证明:a=﹣1,则f(x)=

导数为f′(x)=,

设函数f(x)在(0,1)上的极值点为x0,可得1﹣2lnx0﹣=0,即有2lnx0=1﹣,

要证f(x0)<﹣2,即+2<0,

由于+2=+2==,

由于x0∈(0,1),且x0=,2lnx0=1﹣不成立,则+2<0,

故f(x0)<﹣2成立.

10.已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数.(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2).

【解答】解:(Ⅰ)…………………………………(2分)

x∈(0,1)时,f'(x)>0,y=f(x)单增;

x∈(1,+∞)时,f'(x)<0,y=f(x)单减……………………….(4分)

(Ⅱ)证明:令h(x)=axe x﹣4x﹣2lnx+2x﹣2=axe x﹣2x﹣2lnx﹣2(a>0,x>0)………………….(5分)

故…………………………….(7分)令h'(x)=0即,

两边求对数得:lna+x0=ln2﹣lnx0即lnx0+x0=ln2﹣lna……………….(9分)

∴,

∴h(x)≥2lna﹣2ln2……………………………(12分)

11.已知函数f(x)=x2﹣(a﹣2)x﹣alnx(a∈R).

(Ⅰ)求函数y=f(x)的单调区间;

(Ⅱ)当a=1时,证明:对任意的x>0,f(x)+e x>x2+x+2.

【解答】(Ⅰ)函数f(x)的定义域是(0,+∞),

f′(x)=2x﹣(a﹣2)﹣=…(2分)

当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,

所以,函数f(x)在区间(0,+∞)单调递增;…(4分)

当a>0时,由f′(x)>0得x>,由f′(x)<0,得0<x<,

所以,函数在区间(,+∞)上单调递增,在区间(0,)上单调递减;

(Ⅱ)当a=1时,f(x)=x2+x﹣lnx,要证明f(x)+e x>x2+x+2,只需证明e x﹣lnx﹣2>0,

设g(x)=e x﹣lnx﹣2,则问题转化为证明对任意的x>0,g(x)>0,

令g′(x)=e x﹣=0,得e x=,容易知道该方程有唯一解,不妨设为x0,则x0满足e x0=,

当x变化时,g′(x)和g(x)变化情况如下表

g(x)min=g(x0)=e x0﹣lnx0﹣2=+x0﹣2,

因为x0>0,且x0≠1,所以g(x)min>2﹣2=0,因此不等式得证.

12.已知函数.

(Ⅰ)当a=2时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数f(x)的单调区间;

(Ⅱ)若1<a<2,求证:f(x)<﹣1.

【解答】解:(Ⅰ)当a=2时,,定义域为(0,+∞),

,f′(1)=﹣1﹣2=﹣3,f'(1)=2﹣2=0;

所以切点坐标为(1,﹣3),切线斜率为0. 所以切线方程为y=﹣3;

(ii)令g(x)=2﹣lnx﹣2x2,

所以g(x)在(0,+∞)上单调递减,且g(1)=0

所以当x∈(0,1)时,g(x)>0即f'(x)>0

所以当x∈(1,+∞)时,g(x)<0即f'(x)<0

综上所述,f(x)的单调递增区间是(0,1),单调递减区间是(1,+∞).

(Ⅱ)证明:f(x)<﹣1,即

设,,

设φ(x)=﹣ax2﹣lnx+2

.

所以φ'(x)在(0,+∞)小于零恒成立,即h'(x)在(0,+∞)上单调递减.

因为1<a<2,所以h'(1)=2﹣a>0,h'(e2)=﹣a<0,

所以在(1,e2)上必存在一个x0使得,即,

所以当x∈(0,x0)时,h'(x)>0,h(x)单调递增,

当x∈(x0,+∞)时,h'(x)<0,h(x)单调递减,

所以,因为,所以,令h(x0)=0得,因为1<a<2,所以,,

因为,所以h(x0)<0恒成立,即h(x)<0恒成立,

综上所述,当1<a<2时,f(x)<﹣1.

13.已知函数f(x)=(x﹣a)lnx+x,(其中a∈R)

(1)若曲线y=f(x)在点(x0,f(x0))处的切线方程为y=x,求a的值;

(2)若为自然对数的底数),求证:f(x)>0.

【解答】解:(1)f(x)的定义域为(0,+∞),,

由题意知,则,

解得x0=1,a=1或x0=a,a=1,所以a=1.

(2)令,则,

因为,所以,即g(x)在(0,+∞)上递增,

以下证明在g(x)区间上有唯一的零点x0,

事实上,,

因为,所以,,由零点的存在定理可知,g(x)在上有唯一的零点x0,

所以在区间(0,x0)上,g(x)=f'(x)<0,f(x)单调递减;

在区间(x0,+∞)上,g(x)=f'(x)>0,f(x)单调递增,

故当x=x0时,f(x)取得最小值,

因为,即,

所以,

即>0.

∴f(x)>0.

用好零点”,证明函数不等式 高考数学压轴题之函数零点问题

“用好零点”,证明函数不等式 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围;

若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当 时,证明: (其中为自然对数的底数). 4.已知函数f (x )=lnx+a (x ﹣1)2 (a >0). (1)讨论f (x )的单调性; (2)若f (x )在区间(0,1)内有唯一的零点x 0,证明:. 5. 已知函数f (x )=3e x +x 2 ,g (x )=9x ﹣1. (1)求函数φ(x )=xe x +4x ﹣f (x )的单调区间; (2)比较f (x )与g (x )的大小,并加以证明. 6. 已知函数f (x )=lnx ﹣x+1,函数g (x )=ax?e x ﹣4x ,其中a 为大于零的常数. (Ⅰ)求函数f (x )的单调区间; (Ⅱ)求证:g (x )﹣2f (x )≥2(lna ﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数 的最大值 为. (1)求实数的值; (2)若 ,证明: . 8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数), . (I)记,讨论函单调性; (II)令 ,若函数G(x )有两个零点. (i)求参数a 的取值范围; (ii)设 的两个零点,证明 . 9.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 0e x e - -<<. 10.已知函数()1x f x e ax =--,其中e 为自然对数的底数, a R ∈

专题复习之--函数零点问题

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 变式:函数b x a x f x -+=)(的零点))(1,(0Z n n n x ∈+∈,其中常数b a ,满足 23,32==b a , 则=n ( ) A. 0 B.1 C.2- D.1- 2.已知a 是实数,函数2 ()223f x ax x a =+--,如果函数()y f x =在区间[]11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()44f x x x = ++-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5.若存在区间[,]a b ,使函数[]()2(,)f x k x x a b =+ +∈的值域是[,]a b ,则实数k 的范围 是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. 7.(选作思考)函数f (x )=234 20122013123420122013x x x x x x ??+-+-+-+ ?? ? cos2x 在区间[-3,3]上的零点的个数为_________.

(三)复合函数与分段函数零点问题(由里及外,画图分析) 8.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的 零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 变式一:设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 变式三:已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B. b >-2且c <0 C. b <-2且c =0 D. b 2c=0≥-且

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

专题03 “用好零点”,证明函数不等式-2019年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

复合函数零点问题专题训练

复合函数零点问题专题训练 1.定义域和值域均为[-a,a](常数a>0)的函数y=f(x)和y=g(x)的图像如图所示,给出下列四个命题中: (1)方程f[g(x)]=0有且仅有三个解;(2)方程g[f(x)]=0有且仅有三个解;(3)方程f[f(x)]=0有且仅有九个解;(4)方程g[g(x)]=0有且仅有一个解。 那么,其中正确命题的个数是 () A .1 B.2 C.3 D.4(第1 题图) 解:选B.(1)方程f[g (x )]=0有且仅有三个解;g (x )有三个不同值,由于y=g (x )是减函数,所以有三个解,正确; (2)方程g[f (x )]=0有且仅有三个解;从图中可知,f (x )∈(0,a )可能有1,2,3个解,不正确; (3)方程f[f (x )]=0有且仅有九个解;类似(2)不正确; (4)方程g[g (x )]=0有且仅有一个解.结合图象,y=g (x )是减函数,故正确.2.已知函数1)(+=x xe x f , 若函数2)()(2 ++=x bf x f y 恰有四个不同的零点,则实数b 的取值范围是 ( ) A.) 22,(--∞ B.) 2,3(-- C.) 3,(--∞ D.(] 2 2,3--解:用求导方法得,f(x)在x =-1取得最大值1,在x=0取得最小值0,故01时,f(x)=a,有1个解,2)()(2 ++=x bf x f y 恰有四个不同的零点,则 2 t +bt+2=0有两个不等根,1个在(0,1)内,另1个根大于1,令g(t)= 2 t +bt+2,于是得, ⊿>0且g (0)>0且g(1)<0,解得b <-3,故选C .思考:已知函数1 )(+=x xe x f ,若函数2)()(2 ++=x bf x f y 恰有6个不同的零点,则 实数b 的取值范围是 ( ) 3.(2013四川,理10)设函数f (x (a ∈R ,e 为自然对数的底数),若曲线 a a x y f(x)O a a a a x y g(x) O a a

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析 一、函数与方程基本知识点 1、函数零点:(变号零点与不变号零点) (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。 若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(f ,所以由根的存在性定理可知,函数x x x f 2 )1ln()(-+=的零点所在的大致区间是(1,2),选B (二)求解有关函数零点的个数(或方程根的个数)问题。 函数零点的存在性定理,它仅能判断零点的存在性,不能求出零点的个数。对函数零点的个数问题,我们可以通过适当构造函数,利用函数的图象和性质进行求解。如:

专题03 直击函数压轴题中零点问题(解析版)

一、解答题 1.(2020·湖南省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

导数方法与技巧一(隐零点问题)

高三数学一轮复习第二十讲:导数的方法与技巧一(隐零点问题) 1.已知函数 ()()()ln ,f x x h x ax a R ==∈(1)若函数与的图像无公共点,试求实数的取值范围; ()f x ()g x a (2)是否存在实数,使得对任意的,都有函数的图像在的图像m 1,2x ??∈+∞ ??? ()m y f x x =+()x e g x x =的下方?若存在,求出最大整数的值;若不存在,请说明理由. m (参考数据:) ln 20.6931,ln 3 1.3956≈≈≈≈ 2.已知函数,其中,为自然对数的底数. ()()222 x a f x x e x =--a R ∈e (1)函数的图象能否与轴相切?若能求出实数的值;否则,说明理由. ()f x x a (2)若函数在上单调递增,求实数能取到的最大整数值. ()2y f x x =+R a

3.设函数. ()()ln ,21x f x x x g x x e x =-=?--(1)关于的方程在区间上有解,求实数的取值范围; x ()2103 f x x x m =-+[]1,3m (2)证明:当时,. 0x >()()g x f x ≥ 4.已知函数,若恒成立,求实数的取值范围. ()()()2 23,x f x e x a a R =--+∈()0,0x f x ≥≥a

5.已知函数. ()ln 1f x ax x =++(1)讨论函数零点的个数; ()f x (2)对任意的恒成立,求实数的取值范围. ()20,x x f x xe >≤a 6.已知函数. ()2 x f x e x ax =--(1)若函数在R 上单调递增,求实数的取值范围. ()f x a (2)若,证明:当时,. 1a =0x >()2 ln 2ln 2122f x ??>-- ??? (参考数据:) 2.71828,ln 20.69e ≈≈

高考数学专题复习函数隐性零点的处理技巧

高考数学专题复习函数隐性零点的处理技巧 近些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1 -+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a ∈(1,2).当x ∈(0,a )时,g ′(x )<0;当x ∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ).

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

函数零点问题专题

函数零点问题专题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

专题复习之--函数零点问题 (一)零点所在区间问题(存在性,根的分布) 1.函数()lg 3f x x x =+-的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,+∞) 2.已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间 []11-,上有零点,则a 的取值范围是____________. (二)零点个数问题(重点,常用数形结合) 3.函数()4f x x =+-的零点有 个. 4.讨论函数2()1f x x a =--的零点个数. 5. 若存在区间[,]a b ,使函数[]()(,)f x k x a b =∈的值域是[,]a b ,则实数k 的范围是__________. 6. 已知偶函数)(x f 满足)()2(x f x f =-,且当10<≤x 时,x x f =)(,则x x f lg )(=的零点个数是________. (三)复合函数与分段函数零点问题(由里及外,画图分析) 7:设定义域为R 的函数2lg (>0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为______. 8:已知函数(0)()lg()(0)x e x f x x x ?≥=?-

隐零点问题

隐零点问题 有一种零点客观存在,但不可解,然而通过研究其取值范围、利用其满足的等量关系实现消元、换元以及降次达到解题的目的.这类问题就是隐零点问题. 类型一 根据隐零点化简求范围 典例1. 已知函数的图像在点(其中为自然对数的底数)处的切线斜率为3. ()ln f x ax x x =+x e =e (1)求实数的值; a (2)若,且对任意恒成立,求的最大值; k Z ∈() 1 f x k x <-1x >k 【答案】 3【解析】解析:(1),由解得; ()'1ln f x a x =++()3f e =1a =(2),,, ()ln f x x x x =+()ln ()11f x x x x k g x x x +< =--@2 2ln '()(1)x x g x x --= -令,有,那么. ()2ln h x x x =--1 '()10h x x =- >()(1)1h x h >=-不妨设,由,,则可知,且. 0()0h x =(3)0h <(4)0h <0(3,4)x ∈00ln 2x x =-因此,当时,,;当时,,; ()0h x >()'0g x >0x x >()0h x <()'0g x <0x x <即可知, []000000min 00(ln 1)(1) ()()11 x x x x g x g x x x x +-== ==--所以,得到满足条件的的最大正整数为3. 0k x ≤k

类型二 根据隐零点分区间讨论 典例2 已知函数,为何值时,方程有唯一解. 2()2ln (0)f x x t x t =->t ()2f x tx =【答案】 (,0){1}-∞ 【解析】 , 222ln 22(ln )x t x tx t x x x -=?+=当时,有; ln 0x x +=t R ∈设,;又,,不妨设, ()ln u x x x =+1'()10u x x =+ >(1)10u =>11 ()10u e e =-<00ln 0x x +=则可知. 01(,1)x e ∈当时,得到; , ln 0x x +≠22()ln x t g x x x =+@222 2ln (12ln )'()(ln )(ln )x x x x x x x g x x x x x -+-+== ++令,易知,且时,;时,; ()12ln g x x x =-+(1)0g =1x >()0g x >1x <()0g x < 综上可知在区间上为减函数,在区间上为增函数;画图函数图像: ()g x 00(0,),(,1)x x (1,)+∞ 因此,可知所求的范围为. t (,0){1}-∞

函数隐性零点的处理技巧

函数隐性零点的处理技巧 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 2.不等式的证明 例2.(湖南部分重点高中联考试题)已知函数f (x )=2 ) (ln a x x ,其中a 为常数. (1)若a=0,求函数f (x )的极值; (2)若函数f (x )在(0,﹣a )上单调递增,求实数a 的取值范围; (3)若a=﹣1,设函数f (x )在(0,1)上的极值点为x 0,求证:f (x 0)<﹣2.

3.对极值的估算 例3已知函数f (x )=ax 2 ﹣ax ﹣xlnx ,且f (x )≥0. (1)求a ; (2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2 <f (x 0)<2﹣2 . 二、针对性演练: 1.已知函数 f (x )=22 ln )2 1( ax x x x ++(a∈R),曲线y=f (x )在x=1处的切线与直线x+2y ﹣1=0垂直. (1)求a 的值,并求f (x )的单调区间; (2)若λ是整数,当x >0时,总有f (x )﹣(3+λ)x 221x > -λlnx+24 1 x ,求λ的最大值. 2.设函数f (x )=e 2x ﹣alnx . (Ⅰ)讨论f (x )的导函数f′(x )零点的个数; (Ⅱ)证明:当a >0时,f (x )≥2a+aln a 2 .

答 案 函数隐性零点的处理技巧 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1 -+x e x +x ,则g′(x )=2)1()2(---x x x e x e e , 而函数f (x )=e x ﹣x ﹣2在(0,+∞)上单调递增,①f (1)<0,f (2)>0, 所以f (x )在(0,+∞)存在唯一的零点.故g ′(x )在(0,+∞)存在唯一的零点. 设此零点为a ,则a∈(1,2).当x∈(0,a )时,g ′(x )<0;当x∈(a ,+∞)时,g ′(x )>0.所以g (x )在(0,+∞)的最小值为g (a ). ③所以g (a )=a+1∈(2,3).由于(*)式等价于k <g (a ),故整数k 的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

专题06 重温高考压轴题----函数零点问题集锦-2020年高考数学压轴题之函数零点问题(原卷版)

专题六 重温高考压轴题----函数零点问题集锦 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力. 【典型例题】 类型一 已知零点个数,求参数的值或取值范围 例1.【2018年理新课标I 卷】已知函数 .若g (x )存在2个零 点,则a 的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数. (1)若,证明:当时, ; (2)若 在 只有一个零点,求. 类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数. (1)若,求 的单调区间; (2)证明: 只有一个零点. 类型三 挖掘“隐零点”,证明不等式 例4.【2017课标II ,理】已知函数()2 ln f x ax ax x x =--,且()0f x ≥. (1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2 202e f x --<<. 类型四 利用函数单调性,确定函数零点关系 例5.【2016高考新课标1理】已知函数2 ()(2)e (1)x f x x a x =-+-有两个零点. (I )求a 的取值范围;

相关文档
最新文档